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Abstract

Traffic control measures like variable speed limits or outflow control can be used to in-

fluence the route choice of drivers. In this paper we develop a day-to-day route choice

control method that is based on model predictive control (MPC). A basic route choice

model forms the basis for the controller. We show that for the given model and for

a linear cost function it is possible to reformulate the MPC optimisation problem as

a mixed integer linear programming (MILP) problem. For MILP problems efficient

branch-and-bound solvers are available that guarantee to find the global optimum. This

global optimisation feature is not present in most of the other mixed integer optimisation

methods that are usually used for MPC (such as simulated annealing, genetic program-

ming, tabu search, etc.). We also illustrate the efficiency of the proposed approach for a

simple simulation example involving speed limit control.

Keywords

Traffic management, route choice, model-based predictive control, optimisation
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1 Introduction

Route choice takes place when there exist two or more routes between an origin and a

destination. In this case, drivers select a route based on their preferences. The choices

of the drivers lead to a traffic assignment, which describes how the vehicles are divided

over the network. When drivers select their route solely based on their own prefer-

ences, this traffic assignment may lead to large traffic flows on narrow or dangerous

roads, to socially undesired situations (e.g., too many vehicles in residential areas or

near primary schools), or to too large flows near urban areas or nature reserves causing

pollution and noise. Road administrators can try to prevent these unwanted situations

by influencing the route choice of the drivers. In Haj-Salem & Papageorgiou (1995);

Taale & van Zuylen (2003) it has been shown that traffic control measures that do not

directly influence route choice but that do have an impact on the travel time (such as

traffic signals, variable speed limits, and ramp metering) can be used for this purpose.

Traffic control methods that incorporate the effect of control measures on route choice

are described in, e.g., Bellemans et al. (2003); Karimi et al. (2004); Wang & Papageor-

giou (2002). In this paper we consider control methods that can be used for steering the

traffic flows in a network to a desired traffic assignment. This will result in settings for

the outflow capacity of the links, or for the speed limits on these links.

We use model predictive control (MPC) (Camacho & Bordons, 1995; Maciejowski,

2002) as control method. As prediction model we use the static route choice model we

have presented in van den Berg et al. (2008). This model is based on the assumption that

the experienced travel time is the most important factor in route choice, which is also

argued for in Bogers et al. (2005). Moreover, the model allows for an analytic descrip-

tion of the behaviour of traffic flows in a network. MPC uses this route choice model

combined with an optimisation algorithm to determine the optimal settings for the traf-

fic control measures. MPC has already been applied previously for traffic control in,

e.g., Hegyi (2004); Bellemans (2003); Kotsialos et al. (2002), where it resulted in non-

linear nonconvex continuous or mixed integer optimisation problems. In our specific

case the whole control problem can be formulated as a mixed integer linear program-

ming (MILP) problem, for which fast solvers are available, which reduces the required

computation time. Furthermore, the MILP approach also results in a globally optimal

solution.

This paper is organised as follows. We first describe the route choice model and the

MPC-based approach for route choice control in Section 2. In Section 3 we reformulate

the problem as an MILP problem. Next, the proposed control approach is applied to a

simulation example in Section 4. Section 5 concludes the paper.

2 Route choice control

In this section we briefly recapitulate the day-to-day route choice model and the corre-

sponding MPC-based route choice control approach that we have developed in van den

Berg et al. (2008).
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2.1 Route choice model

To illustrate our approach we will use the simple two-route network given in Figure 1

throughout the paper. This network consists of one origin and one destination that are

connected via two routes.

destination

traffic flow direction

route 1
origin

route 2

Figure 1: Network with two routes

Network variables

Consider the network of Figure 1. Each route r (r ∈ {1,2}) can be described by the

following parameters, where d is the counter for the days. The length of route r is

denoted by lr (km), and its capacity is denoted by Cr (veh/h). The speed limit vr(d)
(km/h) gives the maximum speed that is allowed on route r at day d. This speed limit

will be bounded between a minimum speed limit vmin
r (km/h) and a maximum speed

limit vmax
r (km/h). The outflow limit Qr(d) (veh/h) gives the number of vehicles per

hour that are allowed to leave the route. The maximum value of the outflow limit,

Qmax
r (veh/h), is equal to or lower than the actual capacity of the road: Qmax

r 6Cr. The

minimum value Qmin
r (veh/h) can be selected to prevent almost total closure of the road

when outflow control is applied.

We consider one part of the day, e.g., the morning peak. We denote this period by the

time interval [0,T ] and we assume that the demand Qin(d) (veh/h) in the network is

constant during [0,T ]. The demand is distributed over the two routes according to the

turning rate β (d), which gives the percentage of the vehicles that select route 1.

An important characteristic of the routes is the “free-flow” travel time, which describes

the time that a vehicle needs to travel a route when there is no delay due to congestion.

The free-flow travel time at day d along route r is given by:

τ free
r (d) =

lr

vr(d)
. (1)

Travel time model

The model of van den Berg et al. (2008) for the mean experienced travel time assumes

that the travel time τr on a route has two components: the time spent in the queue τ
queue
r

and the free-flow travel time τ free
r :

τr(d) = τqueue
r (d)+ τ free

r (d) .

The time in the queue τ
queue
1 depends on the number of vehicles in the queue. We

assume that the queues are vertical queues that build up at the end of each route. So

during the period [0,T ] the queue grows as shown in Figure 2.



Day-to-Day Route Choice Control in Traffic Networks 3

β (d)Qin(d)> Q1(d)

β (d)Qin(d)6 Q1(d)

τ free
1 (d) T

(β
(d
)Q

in
(d
)
−

Q
1
(d
))
(T

−
τ

fr
ee

1
(d
))

N

time

Figure 2: Evolution of the queue length N on route 1 during the period [0,T ]

Since the number of vehicles leaving the queue per time unit is at most Q1, the mean

time that the vehicles spend in the queue at the end of route 1 is given by:

τ
queue
1 (d) =































Nmean
1 (d)

Q1(d)
=

(β (d)Qin(d)−Q1(d))(T − τ free
1 (d))

2Q1(d)

if β (d)Qin(d)> Q1(d)

0 if β (d)Qin(d)6 Q1(d) ,

where Nmean
1 (d) is the average number of vehicles in the queue at the end of route 1.

These formulas can be rewritten more compactly as

τ
queue
1 (d) = max

(

0,
(β (d)Qin(d)−Q1(d))(T − τ free

1 (d))

2Q1(d)

)

,

and thus

τ1(d) = max

(

0,
(β (d)Qin(d)−Q1(d))(T − τ free

1 (d))

2Q1(d)

)

+ τ free
1 (d) . (2)

A similar reasoning for route 2 results in

τ2(d) = max

(

0,
((1−β (d))Qin(d)−Q2(d))(T − τ free

2 (d))

2Q2(d)

)

+ τ free
2 (d) . (3)

Route choice model

Route choice models describe the route choice of drivers at locations where a route must

be selected. The model of van den Berg et al. (2008) updates the turning rates for the
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next day d +1 based on the difference in travel times on the current day d between the

two routes, while also taking into account that the turning rates are bounded between 0

and 1. This yields

β (d +1) = min
(

1,max(0,β (d)+κ(τ2(d)− τ1(d)))
)

. (4)

Here κ includes the fraction of drivers that change their route from one day to the next

based on the travel time difference.

2.2 Route choice control using MPC

Outflow control and speed limit control

Now two control inputs can be selected for influencing the route choice of the drivers

with existing control methods: outflow limits and speed limits. Both inputs influence

the travel time of the drivers, and thus indirectly the route choice. Outflow control limits

the flow that can leave a link. The outflow can be lowered using, e.g., traffic signals and

ramp metering installations. The control via the speed limits influences the free-flow

travel time on the two routes. Variable message signs could be used to display the speed

limits.

MPC: Principle of operation

Just as in van den Berg et al. (2008) we will use Model Predictive Control (MPC)

(Maciejowski, 2002) to determine the optimal values for the outflow control limits and

speed control limits. Below we will briefly present this method.

In MPC for route choice control the goal is to determine the control inputs c that opti-

mise a cost function J over a given prediction period of Np days ahead, given the current

state of the network, the future demand, and a model of the system, and subject to op-

erational and other constraints. This results in a sequence of optimal control inputs

c∗(d),c∗(d + 1), . . . ,c∗(d +Np − 1). To reduce the computational complexity often a

control horizon Nc (Nc < Np) is introduced and the control sequence is constrained to

vary only for the first Nc days, after which the control inputs are set to stay constant

(i.e., c(d + j) = c(d +Nc −1) for j = Nc, . . . ,Np −1).

MPC uses a receding horizon approach, i.e., of the optimal control signal sequence

only the first sample c∗(d) is applied to the system. Next, at day d + 1, the procedure

is repeated given the new state of the system, and a new optimisation is performed for

days d + 1 up to d +Np. Of the resulting control signal again only the first sample is

applied, and so on. This is called the receding horizon approach.

MPC for route choice control

In the context of route choice control typical examples of cost functions are the to-

tal time the vehicles spend in the network, the total queue length, or the norm of the

difference between the realised flows and the desired flows on the routes. These cost

functions serve either to handle as much traffic as possible in a short time, or to keep

vehicles away from protected routes (e.g., routes through residential areas or nature

reserves).
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The state of the system is in our case given by the mean travel times, and the mean

turning rates for the day. As (prediction) model we could use the route choice model

of Section 2. The control inputs are the outflow limits and/or the speed limits. Typical

constraints are maximum and minimum values for these limits as well as maximal travel

times or maximal waiting times in the queues.

In van den Berg et al. (2008) the control signal was assumed to be real-valued. This

results in continuous nonlinear nonconvex optimisation problems that could be solved

using multi-start local search methods (like SQP, pattern search, etc.) or (semi-)global

optimisation methods like genetic algorithms or simulated annealing (Pardalos & Re-

sende, 2002). Note that these approaches in principle only yield a suboptimal solution

as in practice it is not tractable to find the global optimum of the continuous nonlinear

nonconvex optimisation problems that arise in MPC for route choice control.

In the remainder of this paper we will only allow discrete values for the control input

(in particular for the speed limits). In the next section we will show that for linear cost

functions this will then result in a mixed integer linear programming (MILP) problem,

for which efficient solvers exist that guarantee to find the global optimum. Note that in

principle a brute-force enumeration approach could also be used, but in practice such

an approach is not tractable, especially in case there is a large number of discrete speed

limit values and/or a large number of routes with speed limit control.

3 MPC for route choice control using mixed integer

programming

In this section we show that for linear cost functions the MPC route choice optimisation

problem can be recast as an MILP problem. In particular, we will consider the case of

speed control with no outflow control. For outflow control without speed limit control

and for combined speed and outflow control a similar reasoning will also result in an

MILP problem.

3.1 Rules for creating mixed integer linear inequalities

To formulate the route choice control problem described above as an MILP problem,

we first have to remove the nonlinearities from the model. This is done by recasting

the nonlinear equations into linear ones, and by introducing additional auxiliary vari-

ables. To perform these transformations we use the following equivalences (Bemporad

& Morari, 1999), where δ represents a binary valued scalar variable, y a real valued

scalar variable, and f a function defined on a bounded set X with upper and lower

bounds M and m for the function values:

P1: [ f (x)6 0]↔ [δ = 1] is true if and only if
{

f (x)6 M(1−δ )
f (x)> ε +(m− ε)δ ,

where ε is a small positive number1 (typically the machine precision),

1We need this construction to transform a constraint of the form y> 0 into y> ε , as in MILP problems

only nonstrict inequalities are allowed.
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P2: y = δ f (x) is equivalent to















y 6 Mδ
y > mδ
y 6 f (x)−m(1−δ )
y > f (x)−M(1−δ ) .

3.2 Model equations

For simplicity we assume that the speed limits can only have two values va and vb (note

however that an extension to more than two values is straightforward). The free-flow

travel times corresponding to these values can be represented by one binary variable δ
as follows. Define (cf. (1))

τ free
r,a =

lr

va
, τ free

r,b =
lr

vb

, and ∆r = τ free
r,b − τ free

r,a .

Then we can select va or vb on route r for day d by introducing a binary variable δr(d)
and setting

τ free
r (d) = τ free

r,a +∆rδr(d) .

Recall that we consider the case of speed control with no outflow control; so Q1(d) =C1

and Q2(d) = C2 for all d. If we substitute the above expression for τ free
1 (d) in (2) we

get

τ1(d) = max(0,y3(d))+ τ free
1,a +∆1δ1(d) (5)

with

y3(d) = a1β (d)+a2δ1(d)β (d)+a3δ1(d)+a4 (6)

with a1 =
1

2C1
Qin(d)(T −τ free

1,a ), a2 =− 1
2C1

Qin(d)∆1, a3 =
1
2
∆1, and a4 =−1

2
(T −τ free

1,a ).

By introducing an extra variable y1(d) = δ1(d)β (d) and using Property P2 with f (x) =
β (d), m = 0, and M = 1, (6) can be transformed into a system of linear inequalities. In

a similar way τ2(d) can be expressed as

τ2(d) = max(0,y4(d))+ τ free
2,a +∆2δ2(d) (7)

with y4(d) given by

y4(d) = a5β (d)+a6y2(d)+a7δ2(d)+a8

with a5 = − 1
2C2

Qin(d)(T − τ free
2,a ), a6 = 1

2C2
Qin(d)∆2, a7 = − 1

2C2
∆2(Qin(d)−C2), and

a8 =
1

2C2
(Qin(d)−C2)(T −τ free

2,a ), and with y2(d) = δ2(d)β (d). Using Property P2 these

equations can also be transformed into a system of linear inequalities.

Now define the auxiliary variables η(d) and γ(d) such that (cf. (4))

γ(d) = β (d)+κ(τ2(d)− τ1(d)) (8)

η(d) = max(0,γ(d)) . (9)
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Then we have

β (d +1) = min(η(d),1) . (10)

Let us now discuss how these equations can be recast as a system of mixed integer linear

inequalities.

Combining (5), (7), and (8) we get

γ(d) = β (d)−κ max(0,y3(d))+κ max(0,y4(d))

−κ∆1δ1(d)+κ∆2δ2(d)+κ(τ free
2,a − τ free

1,a ) .

Now we define binary variables δ3(d) and δ4(d) such that δ3(d) = 1 if and only if

y3(d) > 0, and δ4(d) = 1 if and only if y4(d) > 0. Using Property P1 these equiva-

lences can be recast as a system of linear inequalities. Now we have max(0,y3(d)) =
δ3(d)y3(d) and max(0,y4(d)) = δ4(d)y4(d). So after introducing y5(d) = δ3(d)y3(d)
and y6(d) = δ4(d)y4(d) and noting that both these expressions can be recast as a system

of linear inequalities via Property P2, we get

γ(d) = β (d)−κy5(d)+κy6(d)+b1δ1(d)+b2δ2(d)+b3 (11)

with b1 =−κ∆1, b2 = κ∆2, and b3 = κ(τ free
2,a − τ free

1,a ). Note that equation (11) is linear.

Now consider (9). If we define the binary variable δ5(d) such that δ5(d) = 1 if and only

if γ(d) > 0 (note that this equivalence can be recast as a system of linear inequalities

via Property P2), we get η(d) = δ5(d)γ(d), which can in its turn also be expressed as a

system of linear inequalities using Property P2.

Consider (10) and define the binary variable δ6(d) such that

δ6(d) = 1 if and only if η(d)≤ 1 .

Note that this equivalence can be recast as a system of linear inequalities via Property

P2. It is easy to verify that now we have

β (d +1) = min(η(d),1) = δ6(d)η(d)+1−δ6(d) ,

which after introducing the auxiliary variable z(d) = δ6(d)η(d) (this equivalence can

also be recast as a system of linear inequalities via Property P1), results in the linear

equation

β (d +1) = z(d)+1−δ6(d) .

If we now collect all variables for day d in one vector

w(d) =
[

β (d) δ1(d) . . . δ6(d) y1(d) . . . y6(d) γ(d) η(d) z(d)
]T

,

we can express β (d + 1) as an affine function of w(d): β (d + 1) = aw(d) + b for a

properly defined vector a and scalar b, where w(d) satisfies a system of linear equa-

tions Cw(d) = e, Fw(d) 6 g, which corresponds to the various linear equations and

constraints introduced above.
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3.3 Cost function

To be able to transform the route choice control problem into an MILP problem, the cost

function should be linear or piecewise affine. Possible goals of the controller that allow

for such cost functions are reaching a desired flow on one of the routes, or minimising

the flow on a route (with as constraint, e.g., a maximum allowed travel time on the other

route — see also Section 3.4). The MPC cost function for a minimum flow on route 1

is given by:

J(d) = min

Np

∑
j=1

β (d + j)Qin(d + j) .

Let us define

F̃(d) =







β (d +1)Qin(d +1)
...

β (d +Np)Qin(d +Np)






, F̃desired(d) =







qdesired
1 (d +1)

...

qdesired
1 (d +Np)






,

where qdesired
1 (d + j) denotes the desired flow on route 1 at day d + j. The MPC cost

function corresponding to reaching a desired flow on route 1 is then given by:

J(d) = min‖F̃desired(d)− F̃(d)‖

using either the 1-norm or the ∞-norm. When a 1-norm is used, the problem can trans-

formed into a linear one as follows:

min‖F̃desired(d)− F̃(d)‖1 = min

Np

∑
j=1

|qdesired
1 (d + j)−β (d + j)Qin(d + j)|

= min

Np

∑
j=1

q(d + j)

s.t. q(d + j)> qdesired
1 (d + j)−β (d + j)Qin(d + j)

q(d + j)>−qdesired
1 (d + j)+β (d + j)Qin(d + j)

for j = 1, . . . ,Np.

It is easy to verify that for the optimal solution of the latter problem we have

q∗(d + j) = max
(

qdesired
1 (d + j)−β ∗(d + j)Qin(d + j),

−qdesired
1 (d + j)+β ∗(d + j)Qin(d + j)

)

= |qdesired
1 (d + j)−β ∗(d + j)Qin(d + j)|

for all j.

Similarly, for the ∞-norm we have

min‖F̃desired(d)− F̃(d)‖∞ = min max
j=1,...,Np

|qdesired
1 (d + j)−β (d + j)Qin(d + j)|

= min q

s.t. q > qdesired
1 (d + j)−β (d + j)Qin(d + j)

q >−qdesired
1 (d + j)+β (d + j)Qin(d + j)

for j = 1, . . . ,Np,

which is also a linear programming problem.
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3.4 Constraints

It might be useful to add a constraint on the travel time on the second route, because

minimising, e.g., the flow on route 1 results in a higher flow and thus a longer travel

time on route 2:

τ2(d + j)6 τmax
2 (d + j) for j = 0, . . . ,Np −1 , (12)

where τmax
2 (d + j) denotes the maximal travel time on route 2 on day d + j. Note that

τ2(d + j) will not be a variable in the optimisation problem. However, using (7) we

can easily eliminate it from the constraint (12). This yields the equivalent system of

constraints

τ free
2,a +∆2δ2(d + j)6 τmax

2 (d + j)

y4(d + j)+ τ free
2,a +∆2δ2(d + j)≤ τmax

2 (d + j)

for j = 0, . . . ,Np −1. Note that these constraints are also linear.

An alternative constraint is to have a minimal or maximal flow on a given route. For

route 2 this would result in

Fmin
2 (d + j)6 (1−β (d + j))Qin(d + j)6 Fmax

2 (d + j) ,

for j = 1, . . . ,Np, where Fmin
2 (d + j) and Fmax

2 (d + j) denote respectively the minimal

and maximal allowed flow on route 2 on day d + j. This constraint is also linear.

3.5 Overall mixed integer linear programming problem

If we collect the linear objective function and all the linear constraints introduced

above into one big problem, we get an MILP problem in the variables w(d),w(d +
1), . . . ,w(d+Np−1),β (d+Np) and q(d+1),q(d+2), . . . ,q(d+Np) (when the 1-norm

is used) or q (when the ∞-norm is used).

Although MILP problems are in general NP-hard, recently several efficient branch-

and-bound MILP solvers (Fletcher & Leyffer, 1998) have become available. More-

over, there exist several commercial and free solvers for MILP problems such as, e.g.,

CPLEX, Xpress-MP, GLPK, or lp solve (see Atamtürk & Savelsbergh (2005); Lin-

deroth & Ralphs (2005) for an overview). In principle, — i.e., when the algorithm

is not terminated prematurely due to time or memory limitations, — these algorithms

guarantee to find the global optimum. This global optimisation feature is not present

in most of the other mixed integer optimisation methods that are usually used for MPC

(such as simulated annealing, genetic programming, tabu search, etc.).

4 Simulation example

In this section we illustrate the possibilities of the MPC-based route choice control

method with a simulation example. As network we have selected the simple network

given in Figure 1 and we apply speed limit control.

The parameters are selected as follows: κ = 0.25, C1 = C2 = 2000, l1 = 4, l2 = 6,

va = 40, vb = 100, and T = 1. This means that both routes have the same capacity, but
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Table 1: Costs and computation times for different optimisation algorithms

method cost (veh/h) CPU time (s)

MILP 850.0 2.23

genetic algorithm 850.0 138.55

simulated annealing 850.0 171.43

enumeration 850.0 296.55

Table 2: Costs for a maximal computation time of 2.23 s

method cost (veh/h)

MILP 850.0

genetic algorithm 1709.0

simulated annealing 1080.8

that route 1 has a lower free-flow travel time because it is shorter. The total demand is

Qin(d) = 3000 veh/h for all days. The initial turning rate β (0) is 0.4.

As cost function we have taken the 1-norm, as described in Section 3.3. We have

simulated a period of 20 days, where the prediction and control horizons of the MPC-

based controllers are set to 8 days. For the sake of simplicity and to eliminate possible

influences of model mismatches, we have used the same model for the simulation and

for the prediction by the MPC controller. We have set the desired flow on route 1 to

1000 veh/h, which can, e.g., be useful when the route crosses a residential area. This

lower desired flow on route 1 can lead to a large flow on route 2, which will result in

congestion on this route. To prevent this congestion, we have put a limit of 2000 veh/h

on the flow on route 2.

First, we have used the MILP formulation within the controller. The results are shown

in Figure 3. The top plot shows the flow on route 1, which starts at 1200 veh/h, and then

decreases until it starts oscillating around 1020 veh/h. These oscillations are caused by

the interplay between the bound of 2000 veh/h on the flow on route 2 (see Figure 3

(middle)), and the repeated switching between the maximum and minimum values of

the speed limit on route 1 (see Figure 3 (bottom)).

Recall that we have introduced the MILP formulation because it allows for finding the

global optimum, and because it is fast. To illustrate these properties we compare the

MILP formulation with three other optimisation methods: a multi-run genetic algorithm

(Davis, 1991), multi-start simulated annealing (Eglese, 1990), and brute-force enumera-

tion. As MILP solver we have used CPLEX, implemented through the cplex interface

function of the Matlab Tomlab toolbox (Tomlab). For the genetic algorithm and sim-

ulated annealing method we have used the ga and simulannealbnd functions of

the Matlab Genetic Algorithm and Direct Search Toolbox (The MathWorks, 2007) re-

spectively. For all these optimisation functions we have specified that the values of the

optimisation variables should be integers. For cplex the default settings were used;

for ga and simulannealbnd we have implemented the constraint of the flow on

route 2 through a penalty term and tuned the settings to get a near-optimal solution in
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Figure 3: Flows and speeds limits with an MILP-based MPC controller
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the shortest possible time. The resulting costs J and the required computation times (on

a 3 GHz Intel Pentium 4 processor) for the complete closed-loop simulation are given

in Table 1. Clearly, the MILP approach outperforms the other approaches.

Next, we have re-run the genetic algorithm and the simulated annealing approach giving

each of them a maximal CPU time of 2.23 s (i.e., the CPU time required by the MILP

algorithm). The results of this experiment are given in Table 2. These results once again

show that the MILP approach outperforms the other approaches.

5 Conclusions

We have considered a method based on model predictive control (MPC) to steer day-to-

day route choice in traffic networks towards an optimal situation using existing traffic

control measures like outflow control and variable speed limits. In general, this results

in nonlinear nonconvex optimisation problems. However, we have shown that for a lin-

ear cost function the MPC optimisation problem can be recast as a mixed integer linear

programming problem, for which efficient solvers exist that guaranteedly converge to a

global optimum.

The proposed approach has been illustrated by means of a simulation example with

speed limit control where the goal of the controller was to obtain a desired flow on

one of the routes. The developed MILP algorithm has been compared with some other

available optimisation approaches. For the case study the MILP algorithm has shown

to be the fastest, and in addition it always returns the globally optimal solution.

Some topics for future are: extending the proposed approach to more complex networks

with multiple origins, destinations, route choice locations, and routes, as well as includ-

ing additional traffic control measures and demand profiles that vary during the period

under consideration.
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