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Abstract

The main objective of this paper is to illustrate the applicability and potential advan-

tages of model-based traffic control for the reduction of emissions. We investigate the

impact of a model-based control strategy on emissions and traffic flow using model pre-

dictive control (MPC). We consider reduction of emissions and total time spent (TTS).

The MPC controller is based on a car-following traffic flow model and an average-

speed-based emission model. Moreover, we illustrate that a control strategy, that only

addresses the improvement of traffic flow does not necessarily guarantee improvement

in the level of emissions. We demonstrate that a traffic control strategy (such as MPC)

addressing emissions and total time spent can result in a balanced reduction of emis-

sions and total time spent.

Using simulation, we analyse the effects of different weighting combinations on the

different emission gases of traffic flow and the TTS. We illustrate with a simulation

example that the proposed traffic control approach can reduce both emissions and TTS.

Simulation results show 11.1% reduction in average time spent, and 37.55% reduction

in total average emission levels.

Keywords

Traffic management, emissions, model-based predictive control, optimisation
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1 Introduction

Despite the improvements in transportation systems, the rise of fuel prices, and the

imposition of more stringent environmental policies for emission levels, the demand

for mobility and transportation is continuously increasing. Consequently roads are fre-

quently congested, creating economical, social, and ecological challenges. Moreover,

in recent epidemiological studies of the effects of combustion-related (mainly traffic-

generated) air pollution, NO2 was shown to be associated with adverse health effects

(WHO, 2004; Schmidt & Schäfer, 1998). Furthermore, road traffic exhaust emissions

account for 40% of volatile organic compounds, more than 70% of NOx, and over 90%

of CO in most European cities (Schmidt & Schäfer, 1998), and about 45% pollutants

released in the US (National Research Council, 1995). Frequent and longer congested

traffic conditions make this even worse.

There are several possible approaches to address these problems. Large-scale substi-

tution of fossil oil by alternative fuels is a possible solution, but difficult to realise in

the short to medium term. A second possible solution is enhancing vehicle technology.

However, vehicle improvements seem to be approaching their limits (Kishi et al., 1996)

and they alone cannot solve the problems. Furthermore, the limitations in the availabil-

ity of land, the economical and environmental constraints make extending infrastruc-

tures a difficult solution. An alternative and promising solution is the implementation

of intelligent transportation systems. Different traffic flow control measures (such as

traffic signal, ramp metering, speed control, route guidance, etc.) can then be used to

minimise the impact of traffic jams (such as longer travel times and emissions).

To the best of our knowledge, there are not many papers in the traffic control literature

that explicitly aim on the reduction of emissions directly. Many papers deal with traffic

control problems to improve traffic flow. They address problems related to reduction of

congestion, improving safety, reducing total time travel, and the like. As an example,

Hegyi et al. (2005) showed that integration of speed limit control and ramp metering

can be used to reduce the total time spent (TTS). Similar work by Zhang et al. (2005)

but using microscopic models shows similar results. But, both studies focus on the

improvement of traffic flow. However, improvement in traffic flow does not necessarily

guarantee reduced emission levels. As will be shown in this work, a controller that

focuses only on reduction of the TTS can result in higher emissions than a controller

that also takes emissions into account. This paper illustrates how to integrate both

requirements so that a balanced trade-off is obtained.

In this paper we use a model-based control approach to reduce emissions while still

improving the traffic flow. Particularly we implement Model Predictive Control (MPC)

using a car-following model and an average-speed-based emission model. We use speed

limit control to control a freeway network to improve the TTS and the total emissions.

The results show that a control strategy with an objective of reducing emissions and

improving traffic flow can have different impact on the traffic flow than when only

concentrating on the improvement of the traffic flow.

The paper starts by discussing both the traffic and the emission models considered in

this study in Section 2. In Section 3 the MPC control strategy is presented. Section 4

illustrates the particular example we considered for this study. Finally, Section 5 gives

the conclusions drawn from the work.
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2 Models

2.1 Traffic flow models

Traffic flow models can be divided into three classes, viz. macroscopic, microscopic,

and mesoscopic. Macroscopic traffic models deal with the average traffic variables

(such as average speed, average density, and average flow). On the other hand micro-

scopic traffic models describe the behaviour of individual vehicles in the traffic flow.

The position, speed, and acceleration of each vehicle are the states of such models.

Mesoscopic traffic models describe the behaviour of each vehicle (microscopically)

with macroscopic variables (such as link flows and link travel times). In other words

mesoscopic models combine characteristics of both microscopic and macroscopic traf-

fic flow models. For this study we use a microscopic traffic model, particularly car-

following model. In this paper only the longitudinal kinematic behaviour of vehicles

and drivers is considered.

Vehicle kinematics

The general longitudinal kinematic motion of the vehicles after discretisation is de-

scribed by:

xi(ℓ+1) = xi(ℓ)+ vi(ℓ)ts +0.5ai(ℓ)t
2
s (1)

vi(ℓ+1) = vi(ℓ)+ai(ℓ)ts (2)

where xi, vi, and ai are the position, speed, and acceleration of ith vehicle in the network,

ℓ is the simulation time step counter, while ts is the sampling time of the discretised

model. The acceleration in (1) and (2) is determined from the driver model described

in the sequel. Moreover, the acceleration is saturated between minimum and maximum

acceptable accelerations amin and amax respectively.

Longitudinal human driver behaviour

The speed and nature of the reaction of drivers is dependent on their headway time (or

distance). The time headway is defined as the time difference between two consecutive

vehicles to pass a certain location. This can be described as the time needed by the

following vehicle to reach the current position of the leading vehicle with its current

speed. Mathematically it can be given as:

th(ℓ) =
xl(ℓ)− xf(ℓ)

vf(ℓ)
(3)

where xl, xf are the positions of the leading and the following vehicle respectively, and

vf is the speed of the following vehicle. Depending on the time headway a vehicle

can be either in car-following or free-flow mode. When the time headway is larger

than the threshold time headway (e.g, 10 s), then the vehicle is said to be in free-flow

mode. Whereas if the time headway is smaller than the threshold time headway, then

the vehicle is in car-following mode.

In free-flow driving conditions the acceleration (or response) of a vehicle is determined

by a constant multiple of the difference in the delayed reference speed (or speed limit)

and delayed speed of the vehicle. Mathematically, this is described as:

ai(ℓ) = F(vref,i(ℓ−σ)− vi(ℓ−σ)) (4)
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where F is a controller parameter, vref,i is the speed limit (or reference speed) of the

ith vehicle, σ is the reaction delay1 of the driver. In the car-following driving mode,

where the time headway is smaller than the threshold time headway ttr, the acceleration

of the vehicle is determined using car-following models. There are various types of car-

following models. A review of various car-following models can be found in Brack-

stone & McDonald (2000). In this paper we use the Gazis-Herman-Rothery (GHR)

(Gazis et al., 1961) stimuli-response car-following model. In this model the reaction

of the driver (in other words the acceleration of the vehicle) varies with the variation

of its current speed, and the relative speed and position of the vehicle with respect to

its predecessor vehicle (Brackstone & McDonald, 2000; Hoogendoorn & Bovy, 2001;

Bong & Han, 2005). The model also takes in to account the delay in the reaction of

the driver in the relative speed and position of the vehicle. The expression given below

describes the relationship of the variables:

af(ℓ) = αv
β
f (ℓ)

(vl(ℓ−d)− vf(ℓ−d))

(xl(ℓ−d)− xf(ℓ−d))γ (5)

where α , β , and γ are model parameters, and d is the reaction delay of the driver.

2.2 Traffic emission models

Traffic emission models calculate the emissions produced by vehicles based on the op-

erating conditions of the vehicles. Emissions of a vehicle are influenced by the vehi-

cle technology, vehicle status (such as age, maintenance, etc.), vehicle operating con-

ditions, the characteristics of the infrastructure, and external environment conditions.

For a given vehicle technology and status of a vehicle, emission models can be cali-

brated for every vehicle, or homogeneous vehicle categories. The main inputs to the

emission models are the operating conditions of the vehicle (such as speed, acceler-

ation, engine load) (Heywood, 1988). Emission modelling approaches can be either

technology-based engineering modelling or traffic emission modelling.

Technology-based emission or/and fuel consumption models are very detailed models.

These kind of models are developed for a specific vehicle (or engine) model (Hey-

wood, 1988). Thus, such models are used for the assessment of new technological

developments, and for regulation purposes (Heywood, 1988). Since these models are

very detailed, they are difficult to use for on-line prediction or/and on-line estimation of

emissions and fuel consumption of traffic flow. Therefore, we do not use such models

for this study.

Traffic emission models are more simple, and they are developed for diverse collections

of vehicles grouped in homogeneous categories. In general these models are calibrated

based on the operating conditions of the vehicle in a traffic flow. Traffic emission mod-

els can be either average-speed-based or dynamic. For its simplicity of use, and for

being a long established method (Boulter et al., 2002) we have used an average-speed-

based model for this study. In principle the input for an average-speed-based model is

the trip-based average speed, but in practise it is also common to use local speed in-

puts (Boulter et al., 2002). Moreover, using local speed inputs can give more accurate

results. And thus we implemented the local speed input approach of the model.

1We assume that the reaction delay is an integer multiple of simulation time step.
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Figure 1: Average speed based emission model for petrol EURO 1 passenger cars,

1.4-2.0l

The model considered for this study is obtained from COPERT III (Ntziachristos &

Samaras, 2000). Fig. 1(a) shows the model used for CO, NOx, and HC emissions. The

mathematical expressions for this model of each of the emissions are:

ECO(v) = (0.001728v2 −0.245v+9.617) [g/km] (6)

ENOx
(v) = 10−4(0.854v2 −85v+5260) [g/km] (7)

EHC(v) = 10−4(0.521v2 −88.8v+4494) [g/km] (8)

where v is the average speed and ECO, ENOx
and EHC denote the emission levels of

carbon monoxide (CO), oxides of nitrogen (NOx), and hydrocarbons (HC) in grams per

kilometre respectively.

As the output of the emission model in (6)-(8) is given in g/km, we changed the ex-

pressions into emission functions which results in emissions in g/h. This is done by

multiplying the expressions by the average speed v. This model makes computation of

emission levels of each vehicle simpler. We can get the emission levels at each simu-

lation step by multiplying the output of the model with the simulation time step. This

model can then be used to get second-by-second emissions of a vehicle in a network.

The new expressions of the model have a structure that is similar to the model of Ahn

et al. (1999) when the acceleration is zero. But, since the model of Ahn et al. (1999) is

developed considering acceleration into account, the corresponding coefficients of the

model are different. The plots of the transformed equations are given in Fig. 1(b).

3 Model Predictive Control

3.1 Philosophy of model predictive control

The basic concept of Model Predictive Control (MPC) (Maciejowski, 2002; Camacho

& Bordons, 1995) lies in the optimisation of control inputs based on prediction and

a moving horizon. MPC uses an on-line optimisation method, based on the measure-

ment of current and future predicted evolution of the system states. Using a model of
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the system and numerical optimisation, it determines a sequence of control inputs that

optimise a performance criterion over the given future time horizon (i.e. from control

time k up to k+Np). However, only the first control input is applied for the system in a

moving horizon concept2. At every time step the process is repeated.

This concept in depicted in the schematic diagram given in Fig. 2. Fig. 2(a) illustrates

the interrelationship of the traffic system and MPC controller, and Fig. 2(b) depicts

the concepts of prediction and control horizons. We consider both the traffic system

and MPC controller in discrete time. The discrete control time counter k, is an integer

divisor of the discrete simulation time counter ℓ (i.e. ℓ= Mk, where M ∈ N
+). A mea-

surement of the traffic states is made at every M simulation time steps (see Fig. 2(a)).

In other words, after a control signal is applied for M simulation time steps, a new mea-

surement of the states of the system is undertaken and the MPC controller generates

and applies new control inputs by predicting the evolution of the system states from the

current time k up to the k+Np future time (see Fig. 2(b)).

The main advantage of MPC is its ability to take constraints into account and that it

can be used for nonlinear systems. Its main limitation emanates from the computation

time required by the optimisation process. To alleviate the computational problems

several methods can be used. In order to limit the number of variables to be optimised,

a control horizon Nc ≤ Np is defined after which the control input is kept constant, i.e.

u(k+ j) = u(k+ j−1) for j = Nc, · · · ,Np −1, where Nc ≤ Np.

System
Control

Control

inputs

inputs

MPC controller

Optimisation

Model

Measurements

Prediction
Objective,
Constraints

(a) Schematic representation

k+Nc −1k+1k k+Np

predicted horizon
control horizon

past future

current state
predicted future states

computed control inputs u

(b) Prediction and control horizon

Figure 2: Conceptual representation of model predictive control

3.2 MPC for traffic and emission control

In this study we use MPC to control the traffic flow using speed limits. We investigate

the impact of speed limit control on the improvement of the total time spent (TTS)

and the total emissions in a traffic network. The model of the optimisation includes

both a traffic flow model and an emission model. As models we could use the ones

presented in Section 2. Note however that MPC is a modular control design method.

As a consequence, it can also accommodate other, more complex traffic models.

2At each control time step only the first sample of the optimal control input is applied to the system;

afterward the time axis is shifted one control sample time step. Then, based on the new states and control

inputs of the system, new set of optimal control inputs are generated. Ones again the first control input is

applied. This process is repeated until the end of the simulation time.
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We update the control action every varntc time units, where tc is called the control time

step and assumed to be an integer multiple of the simulation time step ts: tc = Mts,

where M is a positive integer number. Therefore, the controller time step counter k is

an integer divisor of the simulation time counter ℓ. At time t = M · tc = ℓ · ts they are

related by ℓ= Mk. At control time step k, the MPC controller predicts the evolution of

the traffic flow and emission levels in the network for the time period [k · tc, (k+Np · tc),
and it optimises the speed limit control us = [uT (k), uT (k+1), · · · ,uT (k+Nc−1)]T in

such a way that the objective function

J(k) = λ1

MNp

∑
j=1

N (ℓ(k)+ j)ts +λ2

MNp

∑
j=1

∑
i∈V (ℓ(k)+ j)

TE,i(ℓ(k)+ j)+

λ3

Nc−1

∑
j=0

‖u(k+ j)−u(k+ j−1)‖2
2 (9)

is reduced. Here λn ≥ 0, for n = 1,2,3 are weighting coefficients, N (ℓ) denotes the

number of vehicles in the network at time t = ℓ · ts, and V (ℓ) denotes the set of vehicles

present in the network at time t = ℓ · ts. Moreover,

TE,i(ℓ) =











(µ1ECO(vi(ℓ))+µ2ENOx
(vi(ℓ))+µ3EHC(vi(ℓ)))vi(ℓ)ts

if vehicle i is in the network at time t = ℓ · ts

0 otherwise

corresponds to the total weighted emissions of vehicle i at time t = ℓ · ts, and µi ≥ 0,

n = 1,2,3 are the weighting values for the different emission gases. The last term in (9)

is a penalty term for fluctuations of the control inputs.

Next, only the first optimal control input u∗s (1) = u∗(k) of the optimal control input

sequence u∗s = [uT (k)∗, uT (k+1)∗, · · · ,uT (k+Nc −1)∗]T is applied to the system. At

the next control time step k+1, the same process is repeated.

3.3 Optimisation method

One of the bottlenecks in MPC control approach is the extensive optimisation and the

resulting computational requirements. The MPC optimisation problem considered for

this study is nonlinear. Then the objective function, which is a function of the system

states, is also a nonlinear and nonconvex function. Thus a proper choice of optimisa-

tion technique has to be made in order to obtain feasible optimal control values. Owing

to the nonconvex nature of the objective function, global or multi-start local optimisa-

tion methods are required. In our case multi-start sequential quadratic programming

(SQP) (Pardalos & Resende, 2002), pattern search (Audet & Dennis Jr., 2007), generic

algorithms (Davis, 1991), or simulated annealing (Eglese, 1990) can be used.

4 Case Study

In this section we demonstrate the applicability of the strategies aforementioned above

on a simple case study. We consider this simulation benchmark to investigate the ef-

fect of the control strategy. The layout of the freeway, the performance criterion and

simulation results are given in the subsequent subsections.
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Figure 3: Layout of the case study
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Figure 4: Demand profile

4.1 Traffic freeway layout

We have considered a single-lane one-way 8 km freeway. As shown in Fig. 3, the road-

way is divided into three sections, and two speed limit controls are applied in the last

two sections. The section of the freeway from 3.5km to 5.5km is assumed to be con-

gested. When the system is initialised the demand varies over the whole span of the

simulation time. We have considered the same demand for all the different cases con-

sidered in this study. The demand profile is depicted in Fig. 4. It illustrates the variation

of the number of vehicle entering the network with respect to time. For instance, in

the first 7.5 minutes (=1/8h), the number of vehicles entering the network (freeway) is

computed as 450veh/h×1/8h ≈ 57vehicles.

Moreover, the parameters that we have used for the MPC controllers are tabulated in

Table 1.

4.2 Performance criterion

In this case study we have considered the performance criterion defined in (9). We

have considered different weighting values to analyse the effects of different control

policies on emissions and traffic flow. The combinations considered in this study are

given in Table 2. Before, weighting the TTS, emissions, and change in control input,

we first normalised both TTS and emissions with a typical values at an average speed

of 80 km/h. The average speed is chosen as the average of the possible minimum and

maximum speed limit controls. At this typical speed, the time spent and total emissions

of a single vehicle to complete the 8 km freeway are computed. These values are then

used to normalise both the TTS and emissions components of the objective function.

For solving the MPC optimisation problem we have adopted a multi-start sequential
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Table 1: MPC controller parameters

MPC Parameters Values Remarks

Tsim 60 min Simulation time

Np 10 min Prediction horizon

Nc 2 min Control horizon

tc 1 min Control time step

ts 1 s Simulation time step

vmax 120 km/h Maximum speed limit

vmin 40 km/h Minimum speed limit

Table 2: Simulation results for different cases

Weighting Simulation results

Cases Average Average emission (g)

λ1 λ2(µ1, µ2, µ3) λ3 time spent (h) CO NOx HC Total average emission

case 1 0 0 0 0.12769 37.593 5.2078 1.3373 44.1381

case 2 1 0 0.01 0.07013 42.673 5.9496 1.1104 49.733

case 3 0 1(1, 1, 1) 0.01 0.11352 22.538 4.107 0.9786 27.6236

case 4 1 1(1, 1, 1) 0.01 0.11341 22.487 4.1008 0.9772 27.565

case 5 1 1(0.9, 1.5, 0.6) 0.01 0.12513 24.038 4.0360 1.0866 29.1606

case 6 0 1(0.9, 1.5, 0.6) 0.01 0.12513 24.039 4.0358 1.0866 29.1614

quadratic programming (SQP) (Pardalos & Resende, 2002) optimisation method. More

specifically, we have used fmincon command of the Matlab optimisation toolbox.

4.3 Simulation results

Two terms are defined to analyse the simulation results, viz. average time spent and

average emissions. The average time spent (ATS) is defined as the total time spent

of all the vehicles in the network divided by total number of vehicles. This reflects

the average time spent by each vehicle in the network. Similarly the average emissions

(AE) is the ratio of the total emissions of all vehicles in the network and the total number

of vehicles in the network. This also reflects the average emissions by each vehicle in

the network. Mathematically the two expressions are given as:

ATS =
TTS

NT
(10)

AEg =
TEg

NT
(11)

where TTS is the total time spent, TEg denotes the total emissions of gas type g, and

NT denotes the total number of vehicles that entered in the network in the simulation

period.
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The system has been simulated for a simulation period of 1h. This has been done

for uncontrolled and controlled scenarios. The results of the simulation are shown in

Table 2. As it can be seen from the table, the average time spent (ATS) and the total

average emissions (TE) are 0.12769 h and 44.1381 g respectively when the system is

not controlled (case 1). When an MPC controller with an objective function of reducing

TTS (case 2) is used, the ATS has reduced by 45.1%, while total AE has increased by

12.68%. With the same controller, but with an objective of reducing emissions (case

3), the ATS has reduced by 11.1% and the total AE has reduced by 37.42%. The ATS

in case 3, is larger than the ATS in case 2. This shows that controlling the total time

spent or the total emissions alone have negative effects on emissions and traffic flow

respectively. That is to say that neither a reduction in TTS does imply reduced emissions

nor does a reduction in total emissions imply a reduced TTS.

In case 4, the weighted sum of TTS and total emissions is considered as a cost func-

tion of the optimisation in the MPC controller. The change in TTS and total AE is

insignificant relative to case 3. But it has significant improvement as compared to case

1, and case 2. The changes are also more noticeable when the weighting factors are

changed. Comparing case 2, case 5, and case 6 we observe that the controller with TTS

as objective causes higher emission levels. Moreover, the controller with an objective

of reducing TTS and total emissions reduces the ATS by 11.18% (compare case 1 and

case 4) and the total AE by 37.55%. It is also possible to observe from the table that

by assigning different weighting to the specific emissions gases, the relative level of

emissions of each gas can be influenced.

The results indicate that the objective of reducing emissions and TTS are two conflicting

requirements in the traffic control system. It is difficult to get lowest emissions without

restricting the traffic flow or vice versa. This indicates that higher flows (or speeds)

do not guarantee reduced emissions. To make the matter worse, the results in case 4,

and 5, or case 3, and 6, indicate that the requirement of reducing total emissions is

difficult. The minimum value of the different traffic emissions are attained at different

traffic speeds. This makes it difficult to make a decision on the selection of better speed

limit to optimally reduce the level of the emissions. Reducing the total emissions may

have more influence on some gases than others. In the report of WHO (WHO, 2004), it

is shown that NOx has a stronger adverse health effect than the other gases. However,

gases like CO, have a bad effect in the long run. Therefore, from the study above, we see

that making choices on the gases to control, and also choices between emission levels

and traffic flow is a difficult task. However, by assigning the relative weight (policies)

on the different emissions, and TTS it is possible to use a model-based traffic control

to set the optimal speed limit which can result in a balanced trade-off of the conflicting

requirements.

5 Conclusions and Future Work

We have discussed the main challenges of traffic flow and its effects on the economy, the

environment, and the society. We proposed a model-based traffic flow control to reduce

both emissions and total time spent, or at least to provide a balanced trade-off between

these performance indicators. We have presented the approach using a car-following

traffic flow model and an average speed emissions model. A case study based on a
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single-lane one-way traffic road has been made. Two speed limit controls were applied

to show how MPC can be applied and to demonstrate the possible solutions MPC can

offer for mobility and environmental challenges.

We have discussed the possible conflicting requirement of the demand for transporta-

tion and the environmental constraints. Based on simulation results, we have shown

that the focus on the reduction of total time spent (TTS) alone cannot meet the require-

ment of reducing emissions. The simulation results suggest that emission reduction and

traffic flow improvement can also be attained by proper definition of the objective func-

tion of the MPC controller. A 37.55% reduction of total average emissions and 11.1%

reduction of average time spent has been obtained from the simulation study.

In future work we will consider more extensive case studies and investigate implemen-

tation of constraints on the emission levels, and integration of speed limit control and

ramp metering for the reduction of emissions and of the total time spent.
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