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Day-to-Day Route Choice Control in Traffic Networks with

Time-Varying Demand Profiles

Monique van den Berg, Bart De Schutter, Andreas Hegyi, and Hans Hellendoorn

Abstract— We develop a day-to-day route choice control
method that is based on model predictive control (MPC). To
influence the route choice of drivers we propose to use traffic
control measures like variable speed limits or outflow control.
In previous papers we have developed MPC for route choice
control in the case of a constant demand. In this paper we
consider the case of a time-varying demand. The resulting MPC
optimization problem is in general nonlinear and nonconvex.
However, in the case of outflow control and for a linear or a
piecewise affine cost function it is possible to approximate the
problem and to recast it as a mixed integer linear programming
(MILP) problem, for which efficient branch-and-bound solvers
are available. The solution of the MILP problem can then be
used as a good initial starting point for a nonlinear optimiza-
tion method for the original MPC optimization problem. We
also illustrate the proposed approach for a simple simulation
example involving outflow control.

I. INTRODUCTION

When an origin and destination are connected via mul-

tiple routes, drivers have to make a route choice. Drivers

make their route choice based on, e.g., the road type, the

surroundings, and most importantly the expected travel times.

The route choice of all drivers together leads to a “traf-

fic assignment”, which describes how vehicles are divided

over the various routes in the traffic network. The traffic

assignment that is obtained in this way is the most desired

assignment for the drivers. It can however result in large

flows in residential areas, or near nature reserves, which

is undesired from a social or environmental point of view.

Therefore, road administrators want to influence the traffic

assignment. In this paper we use traffic control measures to

indirectly influence the day-to-day route choice by changing

the travel time, which is argued for in [1], [2], and where we

assume that the experienced travel time on one day influences

the route choice of the next day, as proposed in [3].

As control method we use model predictive control (MPC)

[4], [5]. This is a model-based control approach that uses

a prediction model in combination with an optimization

algorithm to determine optimal settings for the traffic control

measures. The optimal settings are then applied using a

rolling horizon framework. Earlier work that uses MPC
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for traffic management on freeways via ramp metering and

dynamic speed limits is described in [6], [7], [8], which

focused on within-day traffic control. We consider a different

time-scale and focus on day-to-day route choice control,

i.e., the control measures that are applied on one day will

influence the route choice of the next day. In our framework

two control measures can be selected to influence the route

choice of the drivers: outflow control and speed limit control.

Outflow control can be done via, e.g., traffic signals or

ramp metering installations. In this way the traffic flow that

can leave a road or a freeway link can be limited and

controlled. Speed limit control uses dynamic speed limits

that are displayed using variable message signs. As a result

the free-flow travel time can be influenced and controlled.

We first formulate the route choice MPC problem as a

nonlinear, nonconvex optimization problem. Such problems

may have multiple local minima and in general they are NP-

complete and hard to solve. Therefore, we also introduce an

approximation that results in a mixed integer linear program-

ming (MILP) problem, for which fast solvers are available

[9]. The solution of this MILP problem can then used as

a good initial starting point for a nonlinear optimization

algorithm for the original MPC problem.

This research is a continuation of the work described in

[10], [11] where we have considered a constant demand. In

this paper, we extend these results to time-varying demand

profiles. Such time-varying demand profiles can be deter-

mined using historical data since often the same demand

patterns occur every day with some variations depending

on the type of day (week day or weekend), the weather,

and the season. Since we allow a different demand profile

for each day, such variations can be taken into account

in our approach. In particular, we consider piecewise con-

stant demand profiles, which allows for a good representa-

tion/approximation of reality, while preserving the properties

required to approximate the problem by an MILP problem.

This paper is organized as follows. We first describe the

route choice model and the MPC-based approach for route

choice control in Section II. In Section III we approximate

the problem and recast it as an MILP problem. Next, the

proposed control approach is applied to a simulation example

in Section IV. Section V concludes the paper.

II. ROUTE CHOICE CONTROL

In this section we extend the day-to-day route choice

model of [10], [11] to the case of time-varying demand

profiles, and we present the corresponding MPC-based route

choice control approach.



A. Route choice model

To illustrate our approach we use the simple two-route

network given in Figure 1. This network consists of one

origin and one destination that are connected via two routes.

destination

traffic flow direction

route 1
origin

route 2

Fig. 1. Network with two routes

Network model: Each route r ∈ {1,2} in the network can

be described by the following parameters, where d is the

counter for the days. The length of route r is denoted by

lr (km). The speed limit vr(d) (km/h) gives the maximum

speed that is allowed on route r at day d. This speed limit

will be bounded between a minimum speed limit vmin
r (km/h)

and a maximum speed limit vmax
r (km/h). The outflow limit

Qr(d) (veh/h) gives the number of vehicles per hour that are

allowed to leave the route. This outflow limit is also bounded

between a minimum value Qmin
r (veh/h) and a maximum

value Qmax
r (veh/h).

We consider one part of the day, e.g., the morning peak.

We denote this period by the time interval [0,T ] and we

assume that the demand D(d, ·) on day d is a piecewise

constant function during [0,T ]. More specifically, we have

D(d, t) = Di(d) for t ∈ [ti, ti+1)

for i = 0, . . . ,n− 1 where t0 = 0, tn = T , and ti < ti+1 for

i = 0, . . . ,n−1 (see Figure 2).

The demand D(d, ·) is distributed over the two routes ac-

cording to the turning rate β (d), which gives the percentage

of the vehicles that select route 1.

Travel time model: The “free-flow” travel time describes

the time a vehicle needs to travel a route when there is

no delay due to congestion. More specifically, the free-flow

travel time at day d along route r is given by: τ free
r (d) = lr

vr(d)
.

The model of [10] for the average experienced travel

time assumes that the travel time τr on a route has two

components: the time spent in the queue τ
queue
r and the free-

flow travel time τ free
r :

τr(d) = τqueue
r (d)+ τ free

r (d) . (1)

...

...

D(d, ·)

tt0 = 0 tn = Tt1 t2 t3 tn−2 tn−1

D0(d)

D1(d)
D2(d)

Dn−2(d)

Dn−1(d)

Fig. 2. Time-varying demand profile D(d, ·) on day d.

...

...

Nveh
1 (d, ·)

tt0 = 0 t ′1,0 t ′1,nt ′1,1 t ′1,2 t ′1,3 t ′1,n−2 t ′1,n−1

Fig. 3. Evolution of the queue length Nveh
1 (d, ·) on route 1 and day d

during the period [0,T +τ free
1 (d)]. For the sake of simplicity of notation we

have not indicated the argument d for the time instants t ′1,i(d) in the figure.

Nveh
1 (d, ·) Nveh

1 (d, ·)

t tt ′1,i t ′1,it ′1,i+1 t ′1,i+1t ′1,i +T1,i

(a) (b)

slope:

β (d)Di(d)−Q1(d)

Fig. 4. Two possible cases for the evolution of the queue length Nveh
1 (d, ·)

on route 1 and day d during the interval [t ′1,i(d), t
′
1,i+1(d)]

The time in the queue τ
queue
r depends on the number of

vehicles in the queue. We assume that the queues are

vertical queues that build up at the end of each route. So

during the period [0,T + τ free
r (d)] the queue on route r

grows as shown in Figure 3, where t ′r,i(d) = ti + τ free
r (d) for

i = 0, . . . ,n. Here, the term τ free
r (d) is due to the fact that

vehicles entering the network at time t will reach the queue

at time t + τ free
r (d). Next, the queue will grow or shrink

depending on the net growth of the queue, which for route

1 is given by β (d)Di(d)−Q1(d) for t ∈ [t ′1,i(d), t
′
1,i+1(d))

and i = 0, . . . ,n − 1. For route 2 the net growth is equal

to (1 − β (d))Di(d)− Q2(d) for t ∈ [t ′2,i(d), t
′
2,i+1(d)] and

i = 0, . . . ,n−1.

Let us first consider route 1. If we denote the number of

vehicles in the queue on route 1 on day d and at time t by

Nveh
1 (d, t), we have

Nveh
1 (d, t ′1,0(d)) = 0 (2)

Nveh
1 (d, t ′1,i+1(d)) = max

(

0,Nveh
1 (d, t ′1,i(d))+

(β (d)Di(d)−Q1(d))(t
′
1,i+1(d)− t ′1,i(d)

)

= max
(

0,Nveh
1 (d, t ′1,i(d))+

(β (d)Di(d)−Q1(d))(ti+1 − ti)
)

. (3)

In order to compute the average time the vehicles spend in

the queue on route 1, we first compute the total area under

the Nveh
1 curve of Figure 3. If we denote the area under the

Nveh
1 curve between t ′1,i(d) and t ′1,i+1(d) by A1,i(d), there

are two possible cases (see Figure 4):

• If Nveh
1 (d, t ′1,i+1(d))> 0 then we have

A1,i(d) =
1

2

(

Nveh
1 (d, t ′1,i(d))+Nveh

1 (d, t ′1,i+1(d))
)

(ti+1 − ti) .

(4)

• If Nveh
1 (d, t ′1,i+1(d)) = 0 then the queue length al-

ready becomes 0 at some time t ′1,i(d) + T1,i(d)

with T1,i(d) = Nveh
1 (d, t ′1,i(d))/(Q1(d)− β (d)Di(d)) if



Q1(d) 6= β (d)Di(d), and T1,i(d) = 0 if Q1(d) =
β (d)Di(d), since in the latter case the Nveh

1 curve is

horizontal and Nveh
1 (d, t ′1,i+1(d)) = Nveh

1 (d, t ′1,i(d)) = 0.

Hence,

A1,i(d) =
1

2
Nveh

1 (d, t ′1,i(d))T1,i(d) =
(Nveh

1 (d, t ′1,i(d)))
2

Q1(d)−β (d)Di(d)

if Q1(d) 6= β (d)Di(d), and A1,i(d) = 0 if Q1(d) =
β (d)Di(d) .

The total area under the Nveh
1 curve is then equal to A1(d) =

∑n−1
i=0 A1,i(d). So the average time that the vehicles spend in

the queue at the end of route 1 is given by:

τ
queue
1 (d) =

A1(d)

T
.

Similar formulas (with 1 − β (d) instead of β (d)) can be

written down for τ
queue
2 (d).

Route choice model: Route choice models describe the

route choice of drivers at locations where a route must be

selected. The model of [10] updates the turning rates for the

next day d+1 based on the difference in travel times on the

current day d between the two routes, while also taking into

account that the turning rates are bounded between 0 and 1:

β (d +1) = min
(

1,max
(

0,β (d)+κ(τ2(d)− τ1(d))
)

)

. (5)

Here κ includes the fraction of drivers that change their route

from one day to the next based on the travel time difference.

B. Route choice control using MPC

In MPC for route choice control the goal is to determine

the control inputs c that optimize some cost function J

over a given prediction period of Np days ahead, given

the current state of the network, the future demand, and a

model of the system, and subject to operational and other

constraints. This results in a sequence of optimal control

inputs c∗(d),c∗(d + 1), . . . ,c∗(d + Np − 1). To reduce the

computational complexity often a control horizon Nc (Nc <
Np) is introduced and the control sequence is constrained to

vary only for the first Nc days, after which the control inputs

are set to stay constant, i.e., c(d + j) = c(d +Nc − 1) for

j = Nc, . . . ,Np −1.

MPC uses a receding horizon approach, i.e., of the optimal

control signal sequence only the first sample c∗(d) is applied

to the system. Next, at day d +1, the procedure is repeated

given the new state of the system, and a new optimization

is performed for days d + 1 up to d +Np. Of the resulting

control signal again only the first sample is applied, etc.

The above MPC problem results in nonlinear nonconvex

real-valued optimization problems that can be solved using

multi-start local search methods (like SQP, pattern search,

etc. [12]) or (semi-)global optimization methods (like genetic

algorithms or simulated annealing [12]). Note that these

approaches in principle only yield a suboptimal solution

since — in particular for larger networks or longer control

horizons — it is in practice often not tractable to find the

global optimum of the optimization problems that arise in

MPC for route choice control.

In [11] we have addressed this problem by considering

a limited set of discrete values for the control inputs and

by considering linear cost functions, which allowed us to

transform the MPC optimization problem into a mixed inte-

ger linear programming (MILP) problem, for which efficient

solvers exist that guarantee to find the global optimum [9].

Unfortunately, this approach cannot be applied directly any

longer in the case of time-varying demands. However, by

making an approximation in the way the average time in the

queue is computed, we can still transform the problem into an

MILP problem, as will be explained in the next section. The

solution of this MILP problem can then be used as a good

initial starting point for a nonlinear optimization algorithm

applied to the original MPC optimization problem.

III. APPROXIMATE SOLUTION USING MIXED INTEGER

LINEAR PROGRAMMING

In this section we show that for linear or piecewise affine

cost functions the MPC route choice optimization problem

can be approximated by an MILP problem. In particular, we

will consider the case of outflow control only (so there is no

speed control).

A. Rules for creating mixed integer linear inequalities

To approximate and to formulate the route choice control

problem described above as an MILP problem, we will

have to remove the nonlinearities from the model. This is

done by introducing an approximation in the way the area

is computed in the case of Figure 4(b) and by recasting

the nonlinear equations into linear ones. To perform the

latter transformations we use the following equivalences [13],

where δ , δ1, and δ2 represent binary-valued scalar variables,

y a real-valued scalar variable, and f a real-valued scalar

function defined on a bounded set X with upper and lower

bounds U f and L f for the function values:

P1: [ f (x)6 0]↔ [δ = 1] is true if and only if
{

f (x)6U f (1−δ )
f (x)> ε +(L f − ε)δ ,

where ε is a small positive number (typically the

machine precision),

P2: y = δ f (x) is equivalent to














y 6U f δ
y > L f δ
y 6 f (x)−L f (1−δ )
y > f (x)−U f (1−δ ) .

P3: δ = δ1δ2 is equivalent to






−δ1 +δ 6 0

−δ2 +δ 6 0

δ1 +δ2 −δ 6 1 .

B. Transformation of the model equations

For the sake of simplicity we assume that the outflow

limits can only have two non-zero values Qr,a and Qr,b

(note however that an extension to more than two values

is straightforward) and we consider control for route 1 only.



Later on we will see that in the model equations the

factor 1
Qr(d)

will appear. This factor can be represented by

introducing binary variable as follows. If we define

∆r =
1

Qr,b
−

1

Qr,a
,

then we can select Qr,a or Qr,b on route r for day d by

introducing a binary variable δr(d) and setting

1

Qr(d)
=

1

Qr,a
+∆rδr(d) . (6)

Let us now first rewrite the equations for the evolution of

Nveh
1 (for Nveh

2 a similar reasoning holds). If we define

m1(d, i+1) =
Nveh

1 (d, t ′1,i+1(d))

Q1(d)
,

then it follows from (3) that

m1(d, i+1) = max

(

0,
Nveh

1 (d, t ′1,i(d))

Q1(d)
+

(

β (d)Di(d)

Q1(d)
−1

)

(ti+1 − ti)

)

= max

(

0,m1(d, i)+

(

β (d)Di(d)

Q1(d)
−1

)

(ti+1 − ti)

)

(7)

with m1(d,0) = 0 (cf. (2)).

We will now transform (7) into mixed-integer linear equa-

tions. If we substitute (6) into (7) we get an expression of

the form1

m1(d, i+1) = max
(

0,m1(d, i)+a1,iβ (d)+

a2,iδ1(d)β (d)+a3,i

)

(8)

with a1,i =
Di(d)
Q1,a

(ti+1 − ti), a2,i = Di(d)∆1(ti+1 − ti), and

a3,i = −ti+1 + ti. By introducing an extra variable y1(d) =
δ1(d)β (d) and using Property P2 with f (x) = β (d), L f = 0,

and U f = 1, (8) can be transformed into a system of linear

inequalities together with the nonlinear equation

m1(d, i+1) = max
(

0,m1(d, i)+a1,iβ (d)+a2,iy1(d)+a3,i

)

.

Now we define binary variables δ3,i(d) such that δ3,i(d) = 1

if and only if m1(d, i)+a1,iβ (d)+a2,iy1(d)+a3,i > 0. Using

Property P1 this equivalence can be recast as a system of

linear inequalities. Then we get

m1(d, i+1) = δ3,i(d)(m1(d, i)+a1,iβ (d)+a2,iy1(d)+a3,i) .

By introducing extra variables y2,i(d) = δ3,i(d)m1(d, i),
y3,i(d) = δ3,i(d)β (d), and y4,i(d) = δ3,i(d)y1(d), and using

Property P2 we obtain again a system of linear inequalities

together with the equation

m1(d, i+1) = y2,i(d)+a1,iy3,i(d)+a2,iy4,i(d)+a3,iδ3,i(d) ,

which is a linear equation.

1For the sake of simplicity of notation we will not explicitly include the
argument d in the parameters a1,i, a2,i, etc.

Nveh
1 (d, ·)

tt ′1,i t ′1,i+1t ′1,i +T1,i

Fig. 5. The area of the hashed triangle will be approximated by the area
of the shaded triangle.

Now we make the following approximation (see Figure

5): We always take expression (4) for A1,i(d), resulting in

τ
queue
1 (d)

=
1

2

∑n−1
i=0

(

Nveh
1 (d, t ′1,i(d))+Nveh

1 (d, t ′1,i+1(d))
)

(ti+1 − ti)

Q1(d)T

=
1

2T

n−1

∑
i=0

(

m1(d, i)+m1(d, i+1)
)

(ti+1 − ti) .

Since this expression is linear in m1, it follows from (1) that

τ1(d) is also linear in m1. Similarly, τ2(d) can be written as

a linear expression in m2 by introducing the additional real-

valued auxiliary variables y5(d), y6,i(d), y7,i(d), y8,i(d), and

binary auxiliary variables δ4,i(d) and δ5,i(d) = δ4,i(d)δ2(d)
(cf. Property P3) for i = 0, . . . ,n−1).

Finally, we consider (5). If we define

γ(d) = β (d)+κ(τ2(d)− τ1(d)) (9)

η(d) = max(0,γ(d)) , (10)

then we have

β (d +1) = min(η(d),1) . (11)

Note that (9) is already linear in β , τ1, and τ2. Now consider

(10). If we define the binary variable δ6(d) such that δ6(d) =
1 if and only if γ(d)> 0 (note that this equivalence can be

recast as a system of linear inequalities via Property P2), we

get η(d) = δ6(d)γ(d), which can in its turn also be expressed

as a system of linear inequalities using Property P2.

Consider (11) and define the binary variable δ7(d) such

that δ7(d) = 1 if and only if η(d)≤ 1. This equivalence can

be recast as a system of linear inequalities via Property P2.

It is easy to verify that now we have

β (d +1) = min(η(d),1) = δ7(d)η(d)+1−δ7(d) ,

which after introducing the auxiliary variable z(d) =
δ7(d)η(d) (this equivalence can also be recast as a system

of linear inequalities via Property P1), results in the linear

equation

β (d +1) = z(d)+1−δ7(d) .

If we now collect all variables for day d in one vector

w(d), we can express β (d+1) as an affine function of w(d):
β (d + 1) = aw(d) + b for a properly defined vector a and

scalar b, where w(d) satisfies a system of linear equations

Cw(d) = e, Fw(d) 6 g, which corresponds to the various

linear equations and constraints introduced above.



C. Cost function

In order to be able to transform the approximate route

choice control problem into an MILP problem, the cost

function should be linear or piecewise affine. Possible goals

of the controller that allow for such cost functions are

reaching desired travel times on each of the routes, reaching

a desired flow on one of the routes, or minimizing the flow on

a route (with as constraint, e.g., a maximum allowed travel

time on the other route — see also Section III-D).

Define Dtot(d + j) = ∑n−1
i=0

ti+1−ti
T

Di(d + j). The MPC cost

function for a minimum flow on route 2 is given by:

J(d) =
Np

∑
j=1

(1−β (d + j))Dtot(d + j) ,

which is indeed linear.

Let τdesired
1 (d + j) and τdesired

2 (d + j) denote the desired

flow on respectively route 1 and route 2 at day d + j. The

problem of reaching desired travel times on each of the routes

is then given by

min

Np

∑
j=1

w1|τ1(d + j)− τdesired
1 (d + j)|+

w2|τ2(d + j)− τdesired
2 (d + j)|

with w1,w2 > 0. This cost function is piecewise affine, but

it can be rewritten as

min

Np

∑
j=1

w1φ1(d + j)+w2φ2(d + j)

s.t.

φr(d + j)> τr(d + j)− τdesired
r (d + j)

φr(d + j)>−τr(d + j)+ τdesired
r (d + j)

for j = 1, . . . ,Np and for r = 1,2 .

which is a linear programming problem. It is easy to verify

that for the optimal solution of this problem, we have φ ∗
r (d+

j)=max
(

τ∗r (d+ j)−τdesired
r (d+ j),−τ∗r (d+ j)+τdesired

r (d+
j)
)

= |τ∗r (d + j)− τdesired
r (d + j)| for all j and for r = 1,2.

Using a reasoning similar to the one used above it is

easy to show that the MPC cost function corresponding to

reaching a piecewise constant desired flow profile on route 2

(with the same time intervals [ti, ti+1) as those of the demand

profile D) using the 1-norm or the ∞-norm also results

in a linear programming problem (see also [11]). Using

Properties P1 and P2 one can also recast the outflow control

problem with a (general) piecewise affine cost function as

an MILP problem.

D. Constraints

Because minimizing, e.g., the flow on route 2 will result

in a higher flow and thus a longer travel time on route 1,

it might be useful to add a constraint on the travel time on

route 1:

τ1(d + j)6 τmax
1 (d + j) for j = 0, . . . ,Np −1 , (12)

TABLE I

PIECEWISE CONSTANT DEMAND PATTERN USED IN THE EXAMPLE

time interval (min) 0–20 20–40 40–60 60–80 80–100

demand (veh/h) 2000 6000 8000 5000 0

where τmax
1 (d+ j) denotes the maximal travel time on route

1 on day d + j. Note that (12) is a linear constraint.

An alternative constraint is to have a minimal or maximal

flow on a given route. For route 2 this would result in

Fmin
2 (d + j)6 (1−β (d + j))Di(d + j)6 Fmax

2 (d + j) ,

for i = 0, . . . ,n−1 and for j = 1, . . . ,Np, where Fmin
2 (d + j)

and Fmax
2 (d + j) denote respectively the minimal and maxi-

mal allowed flow on route 2 on day d+ j. This constraint is

also linear.

E. Overall mixed integer linear programming problem

If we collect the linear objective function and all the linear

constraints introduced above into one big problem, we get

an MILP problem in the variables w(d),w(d+1), . . . ,w(d+
Np − 1), β (d +Np), φ1(d + 1), . . . ,φ1(d +Np), and φ2(d +
1), . . . ,φ2(d +Np).

Recently several efficient branch-and-bound MILP meth-

ods [9] have become available. Moreover, there exist several

commercial and free solvers for MILP problems such as, e.g.,

CPLEX, Xpress-MP, GLPK, or lp solve (see [14], [15] for

an overview). In principle, — i.e., when the algorithm is not

terminated prematurely due to time or memory limitations,

— these algorithms guarantee to find the global optimum

of the MILP problem. This optimum could then be used

as initial starting point for the original route choice MPC

optimization problem.

IV. SIMULATION EXAMPLE

We now illustrate the possibilities of the MPC approach

for day-to-day route choice by an example. Consider the

simple network with two routes given in Figure 1 and with

the following parameters: κ = 0.5, l1 = 3 km, l2 = 6 km,

v1(d) = v2(d) = 100 km/h. This means that in the absence

of control route 1 is preferred by the drivers, because it has

the lowest free-flow travel time. Outflow control is applied

on both routes, with the maximum allowed flow limit equal

to 5000 veh/h, and a minimum outflow limit of 1000 veh/h.

The prediction horizon is 5 days, and we simulate a period

of 40 days. On each day 100 minutes are simulated. The

demand pattern is equal for all days, and given in Table I.

The initial turning rate β (0) is 0.6.

The goal of the controller is to reach a desired flow

of 2500 veh/h on route 1. For this particular scenario, the

optimal turning rate in steady state can be computed analyt-

ically. Indeed, minimizing ∑4
i=0

ti+1−ti
T

|βDi −2500| yields an

optimal steady-state turning rate β ∗ = 0.4167.

We have simulated the traffic in the network with different

optimization strategies for the controller. Table II gives an

overview of the results. The first simulation is done without

control, i.e., when the outflow is not limited and equal to its



maximal value of 5000 veh/h. Next, we have compared three

approaches which all use SQP (implemented via the function

fmincon of the Matlab Optimization Toolbox), but with a

different number of random initial points. When the number

of randomly selected initial points increases, the performance

increases, but the computation time also becomes larger.

The computation time can be reduced by computing an

initial point with MILP, which can then be used as initial

point for one run of the SQP algorithm. This reduces the

computation time, and even improves the performance. To

show that the SQP run is really necessary, we also have

performed a simulation with MILP only. This simulation runs

very fast, but the improvement of the performance is very

low. The average turning rates obtained with the different

controllers are given in the last column of Table II. When

MILP optimization is used as initial point, the value of the

turning rate returned by SQP corresponds to the analytically

computed optimal value.

V. CONCLUSIONS

We have considered a method based on model predictive

control (MPC) to steer day-to-day route choice in traffic

networks towards an optimal situation using existing traffic

control measures like outflow control and variable speed

limits. In general, this results in nonlinear nonconvex op-

timization problems. However, for a linear or a piecewise

affine cost function the MPC optimization problem can be

approximated and recast as a mixed integer linear program-

ming (MILP) problem, for which efficient solvers exist.

The optimal solution of the MILP problem can then be

used as initial starting point for the original route choice

MPC optimization problem. The proposed approach has been

illustrated by means of a simulation example with outflow

limit control where the goal of the controller was to obtain

a desired flow on one of the routes.

Some topics for future are: extending the proposed ap-

proach to more complex networks with multiple origins,

destinations, route choice locations, and routes, as well as

including additional traffic control measures and assessing

the scalability of the proposed approach.
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TABLE II

COMPUTATION TIME, COST, RELATIVE IMPROVEMENT (W.R.T. THE UNCONTROLLED CASE), AND AVERAGE TURNING RATES FOR DIFFERENT

OPTIMIZATION SCENARIOS

control method comp. time2(s) cost (veh/h) % improvement av. turning rate

no control 0 383 0 0.728
SQP, 1 init. point 18 223 41.7% 0.407
SQP, 10 init. points 167 223 41.8% 0.412
SQP, 20 init. points 364 223 41.8% 0.412
SQP, MILP init. point 15 221 42.1% 0.417
MILP 6 293 23.6% 0.578


