
Delft University of Technology
Delft Center for Systems and Control

Technical report 09-001

Fuzzy ant colony optimization for optimal
control∗

J. van Ast, R. Babuška, and B. De Schutter

If you want to cite this report, please use the following reference instead:
J. van Ast, R. Babuška, and B. De Schutter, “Fuzzy ant colony optimization for
optimal control,” Proceedings of the 2009 American Control Conference, St. Louis,
Missouri, pp. 1003–1008, June 2009.

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/09_001.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/09_001.html


Fuzzy Ant Colony Optimization for Optimal Control

Jelmer van Ast, Robert Babuška, and Bart De Schutter

Abstract— Ant Colony Optimization (ACO) has proven to be
a very powerful optimization heuristic for Combinatorial Opti-
mization Problems. While being very successful for various NP-
complete optimization problems, ACO is not trivially applicable
to control problems. In this paper a novel ACO algorithm is
introduced for the automated design of optimal control policies
for continuous-state dynamic systems. The so called Fuzzy ACO
algorithm integrates the multi-agent optimization heuristic of
ACO with a fuzzy partitioning of the state space of the system.
A simulated control problem is presented to demonstrate the
functioning of the proposed algorithm.

I. INTRODUCTION

Ant Colony Optimization (ACO) is inspired by ants and

their behavior of finding shortest paths from their nest to

sources of food. Without any leader that could guide the ants

to optimal trajectories, the ants manage to find these optimal

trajectories over time in a distributed fashion. In an ACO

algorithm, the metaphorical ants are agents programmed to

find an optimal combination of elements of a given set that

maximizes some utility function. The key ingredient in ACO

and its biological counterpart are the pheromones. With real

ants, these are chemicals deposited by the ants and their

concentration encodes a map of trajectories, where stronger

concentrations represent better trajectories. ACO represents

the class of metaheuristic optimization methods that use the

concepts of distributed optimization and pheromone maps in

solving Combinatorial Optimization Problems [1].

This paper introduces an ACO-based algorithm for the

automated design of optimal control policies for continuous-

state dynamic systems. The algorithm combines the concepts

of multi-agent optimization and fuzzy approximation of the

state space in a novel approach.

This paper is structured as follows. Section II describes

the relation of the subjects covered in this paper to the

state of the art. In Section III, the ACO heuristic is briefly

reviewed. Section IV presents some preliminaries on the

control problem and the fuzzy partitioning of the state space.

In Section V the Fuzzy ACO algorithm is introduced and

described in detail. Section VI demonstrates the functioning

of the Fuzzy ACO algorithm on a simple control problem

and Section VII concludes this paper.

This research is financially supported by Senter, Ministry of Economic
Affairs of The Netherlands within the BSIK-ICIS project “Self-Organizing
Moving Agents” (grant no. BSIK03024)

Jelmer van Ast, Robert Babuška, and Bart De Schutter are with
the Delft Center for Systems and Control of the Delft University of
Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (email:
j.m.vanast@tudelft.nl, r.babuska@tudelft.nl,
b@deschutter.info). Bart De Schutter is also with the Marine and
Transport Technology Department of the Delft University of Technology.

II. RELATION TO THE STATE OF THE ART

The state of the art related to the subjects covered in this

paper can be summarized as follows.

1) The original ACO algorithm in the form of the Ant

System has been introduced in [2] with the Ant Colony

System in [3] and the MA X -MI N Ant System in [4].

The basic ACO algorithm and its variants have successfully

been applied to various optimization problems [5], [6],

[7], [8]. A detailed description of ACO algorithms and its

applications can be found in the survey [1] and the book [5].

2) One of the first real application of the ACO framework

to optimization problems in continuous search spaces is

described in [9] and [10]. Earlier application of the ant

metaphor to continuous optimization appears in [11], with

more recent work like the Aggregation Pheromones System

in [12] and the Differential Ant-Stigmergy Algorithm in [13].

3) The first application of ACO to the automated design

of optimal control policies for continuous-state dynamic

systems has been developed by the authors of this paper

in [14]. The method however is hampered by the large

number of bins needed to quantize the state space in order

to capture the dynamics of the original system. This curse

of dimensionality is a phenomenon widely encountered when

an originally continuous-state system needs to be represented

using a finite number of quantized states.

4) There are only a few publications that combine ACO

with the concept of fuzzy control [15], [16], [17]. In all

three publications fuzzy controllers are obtained using ACO,

rather than presenting an actual fuzzy ACO algorithm, as

introduced in this paper.

This paper contributes to the above four categories of the

state of the art. It contributes to 1) by further exploring

the applicability of ACO and to 2) by presenting a novel

approach to the optimization in continuous spaces using

ACO. It presents an extension to the work mentioned in 3)

by curbing the curse of dimensionality through the use of

a parametric interpolation to retain a continuous state space

with a finite number of parameters, typically much smaller

than the number of quantized states that would be necessary

to achieve similar accuracy. The interpolation method of

choice is fuzzy approximation. Finally, the work in this paper

is different from that described in 4) as it presents an ACO

algorithm that operates on the membership degrees of the

ants to find the optimal pheromone map corresponding to the

fuzzy partitioning of the state space, rather than optimizing

the membership functions themselves, or the linguistic rules.



III. ANT COLONY OPTIMIZATION

A. Framework for ACO Algorithms

ACO algorithms have been developed to solve hard com-

binatorial optimization problems [1]. A combinatorial opti-

mization problem can be represented as a tuple P = 〈S ,F〉,
where S is the solution space with s ∈S a specific candi-

date solution and F : S →R+ is a fitness function assigning

strictly positive values to candidate solutions, where higher

values correspond to better solutions. The purpose of the

algorithm is to find a solution s∗, or set of solutions S ∗,

s∗ ∈ S ∗ ⊆ S that maximizes the fitness function. The

solution s∗ is then called an optimal solution and S ∗ is

called the set of optimal solutions.

In ACO, the combinatorial optimization problem is repre-

sented as a graph consisting of a set of vertices and a set of

arcs connecting the vertices. A particular solution s consists

of solution components, which are denoted by ci j and which

are pairs of a vertex and an arc. Here the subscript i j denotes

that this solution component consists of a vertex i and an

arc that connects this vertex to another vertex j. A particular

solution s is thus a concatenation of solution components,

and forms a tour from the initial vertex to the terminal

vertex. How the terminal vertices are defined depends on the

problem considered. For instance, in the traveling salesman

problem1, there are multiple terminal vertices, namely for

each ant the terminal vertex is equal to its initial vertex,

after visiting all other cities (i.e. vertices) exactly once. For

the application to control problems, as considered in this

paper, the terminal vertex corresponds to the desired steady-

state. Two values are associated with the arcs: a pheromone

trail variable τi j and a heuristic variable ηi j. The pheromone

trail represents the acquired knowledge about the optimal

solution over time and the heuristic variable provides a priori

information about the quality of the solution component, i.e.,

the quality of moving to a node j from a node i. In the case

of the traveling salesman problem, the heuristic variables

typically represent the distance between the respective pair

of cities. In general, the heuristic variables represent a short-

term quality measure of the solution component, while the

task is to acquire a concatenation of solution components that

overall form the optimal solution. The pheromone variables

basically encode the measure of the long-term quality of

adding the solution component. The trade-off between these

two parameters is important for the performance of ACO.

B. The Ant System and Ant Colony System

The basic ACO algorithm works as follows. A set of M

ants is randomly distributed over the vertices. The heuristic

variables are set to encode the prior knowledge by favoring

the choice of some vertices over others. For each ant c,

the partial solution sp,c is initially empty and all pheromone

variables are set to some initial value τ0. In each iteration,

1In the traveling salesman problem, there is a set of cities connected by
roads of different lengths and the problem is to find the sequence of cities
that takes the traveling salesman to all cities, visiting each city exactly once
and bringing him back to its initial city with a minimum length of the tour.

each ant decides based on some probability distribution,

which solution component ci j to add to its partial solution

sp,c. The probability pc{ j|i} for an ant c on a vertex i to

move to a vertex j within its feasible neighborhood Ni is:

pc{ j|i}=
τα

i j η
β
i j

∑l∈Ni
τα

il η
β
il

,∀ j ∈Ni, (1)

with α and β determining the relative importance of ηi j

and τi j respectively. The neighborhood Ni is the set of

not yet visited vertices that are connected to the vertex i.

By moving from vertex i to vertex j, each ant adds the

associated solution component ci j to its partial solution sp

until it reaches its terminal vertex and completes its candidate

solution. This candidate solution is evaluated using the fitness

function F(s) and the resulting value is used to update the

pheromone levels by:

τi j← (1−ρ)τi j +ρ ∑
s∈Supd

∆τi j(s), (2)

with ρ ∈ (0,1) the evaporation rate and Supd the set of

solutions that are eligible to be used for the pheromone

update, which will be explained further on in this section.

The pheromone deposit ∆τi j(s) is computed as:

∆τi j(s) =

{

F(s) , if ci j ∈ s

0 , otherwise

The pheromone levels are a measure of how desirable it

is to add the associated solution component to the partial

solution. In order to incorporate forgetting, the pheromone

levels decrease by some factor in each iteration. In this way

it can be avoided that the algorithm prematurely converges to

suboptimal solutions. In the next iteration, each ant repeats

the previous steps, but now the pheromone levels have been

updated and can be used to make better decisions about

which vertex to move to. After some stopping criterion has

been reached, the pheromone levels encode the solution of

the optimization problem.

There exist various rules to construct Supd, of which the

most standard one is to use all the candidate solutions found

in the trial Strial
2. This update rule is typical for the first ACO

algorithm, called the Ant System (AS) [2]. Other update rules

have shown to outperform the AS update rule. Most notably,

the two most successful ACO variants in practice, the Ant

Colony System (ACS) [3] and the MA X -MI N Ant

System [4] respectively use the Global Best and the Iteration

Best update rule. These methods result in a strong bias of the

pheromone trail reinforcement towards solutions that have

been proven to perform well and additionally reduce the

computational complexity of the algorithm. An important

2In ACO literature, the term trial is seldom used. It is rather a term from
the reinforcement learning (RL) community [18]. In our opinion it is also a
more appropriate term for ACO and we will use it to denote the part of the
algorithm from the initialization of the ants over the state space until the
global pheromone update step. The corresponding term for a trial in ACO
is iteration and the set of all candidate solutions found in each iteration is
denoted as Siter. In this paper, equivalently to RL, we prefer to use the
word iteration to indicate one interaction step with the system.



element from the ACS algorithm is the local pheromone

update rule, which occurs while iterating through the trial

and is defined as follows:

τi j← (1− γ)τi j + γτ0, (3)

where γ ∈ (0,1) is a parameter similar to ρ , i j is the index

of the solution component just added, and τ0 is the initial

value of the pheromone trail. The effect of (3) is that during

the trial visited solution components are made less attractive

for other ants to take, in that way promoting the exploration

of other, less frequently visited, solution components. In this

paper, the introduced Fuzzy ACO algorithm is based on the

AS combined with the local pheromone update rule of ACS.

IV. CONTROL PROBLEM AND FUZZY APPROXIMATION

A. The Optimal Control Problem

Assume we have a nonlinear system, characterized by a

state vector x =
[

x1 x2 . . . xn

]T
. Also assume that the

state can be controlled by an input u and can be measured

at discrete time steps, with a sample time Ts, and that the

system dynamics in discrete-time can be denoted as:

x(k+1) = f (x(k),u(k)),

with k the discrete time index. The optimal control problem

is to control the state of the system from any given initial

state x(0)= x0 to a desired goal state x(K)= xg in an optimal

way, where optimality is defined by minimizing the following

quadratic cost function:

J =
K−1

∑
k=0

eT(k+1)Qe(k+1)+uT(k)Ru(k), (4)

with e(k+1) = x(k+1)−xg the error at time k+1 and Q and

R positive definite matrices of appropriate dimensions. The

problem is to find a nonlinear mapping from states to input

u(k) = g(x(k)) that, when applied to the system in x0 results

in a sequence of state-action pairs (u(0),x(1)), (u(1),x(2)),
. . ., (u(K − 1),xg) that minimizes this cost function. The

quadratic cost function in (4) is minimized if the goal is

reached in minimum time given the dynamics of the system

and restrictions on the size of the input. The matrices Q and

R balance the importance of speed versus the aggressiveness

of the controller.

In the case of an ACO implementation, only a finite set

of input values, called the action set U , can be used. The

goal is then actually to find the nonlinear mapping of states

to the action set that minimizes (4).

B. Quantization Issues

For a system with a continuous-valued state space, op-

timization algorithms like ACO can only be applied if the

state space is quantized. The most straightforward way to

do this is to divide the state space into a finite number of

bins, such that each state value is assigned to exactly one

bin. These bins can be enumerated and used as the vertices

in the ACO graph. It is easy to see that the state transitions

are stochastic. Namely, each bin corresponds to a range of

states and an input to the system may drive its state to one

bin, or another. In [14], a variation to the AS algorithm

is introduced that is capable of solving an optimal control

problem in this manner. However, the number of bins needed

to accurately capture the dynamics of the original system

may become very large even for simple systems with only

two state variables. Moreover, the time complexity of the

ACO algorithm grows exponentially with the number of bins,

making the algorithm infeasible for realistic systems.

A much better alternative is not to quantize the state space

at all, but to approximate it by a smooth parameterized

function approximator. In that case, there is still a finite

number of parameters, but this number is typically much

smaller compared to using crisp quantization. The universal

function approximator that is used in this paper is the fuzzy

approximator.

C. Fuzzy Approximation

With fuzzy approximation, the domain of each state vari-

able is partitioned using membership functions. We define the

membership functions for the state variables to be triangular-

shaped, such that the membership degrees for any value of

the state on the domain always sum up to one. Only the

centers of the membership functions have to be stored. Let

Ai denote the membership functions for x1, with ai their

centers for i = 1, . . . ,NA, with NA the number of membership

functions for x1. Similarly for x2, denote the membership

functions by Bi, with bi their centers for i = 1, . . . ,NB, with

NB the number of membership functions for x2. Similarly,

the membership functions can be defined for the other state

variables in x, but for the sake of notation, the discussion

in this paper limits the number to two, without loss of

generality. Note that in the example in Section VI, the order

of the system is four.

The membership degree of Ai and Bi are respectively

denoted by µAi
(x1(k)) and µBi

(x2(k)) for a specific value

of the state at time k. The degree of fulfillment is computed

by multiplying the two membership degrees:

βi j(x(k)) = µAi
(x1(k)) ·µB j

(x2(k)).

Let the vector of all degrees of fulfillment for a certain

state at time k be denoted by:

β (x(k)) =[β11(x(k)) β12(x(k)) . . . β1NB
(x(k))

β21(x(k)) β22(x(k)) . . . β2NB
(x(k))

. . . βNANB
(x(k))]T, (5)

which is a vector containing βi j for all combinations of i j.

Each element will be associated to a vertex in the graph

used by the Fuzzy ACO algorithm introduced in this paper.

Most of the steps taken from the AS and ACS algorithms

for dealing with the β (x(k)) vectors from (5) need to be

reconsidered. This is the subject of the following section.

V. FUZZY ACO FOR OPTIMAL CONTROL

A. Outline of the Algorithm

In the original paper on ACO for optimal control [14],

the continuous state variables were quantized into a finite



number of bins, called the quantized states. All combi-

nations of these quantized states for the different state

variables corresponded to the nodes in the graph and the

arcs corresponded to transitions from one quantized state to

another. Because of the quantization, the resulted system was

transformed into a stochastic decision problem. However,

the pheromones were associated to these arcs as usual. In

the fuzzy case, the state space is partitioned by membership

functions, as described in Section IV-C and the combination

of the indices to these membership functions for the different

state variables correspond to the nodes in the construction

graph. With the fuzzy interpolation, the system remains a

deterministic decision problem, but the transition from node

to node now does not directly correspond to a state transition.

The pheromones are associated to the arcs as usual, but the

updating needs to take into account the degree of fulfillment

of the associated membership functions. This updating will

be described in Sections V-E and V-F.

In [14], the vertex to vertex transitions of an ant are not

deterministic. In Fuzzy ACO, an ant is not assigned to a

certain vertex at a certain time, but to all vertices according

to some degree of fulfillment at the same time and a transition

from vertex to vertex is not trivial either. Because of this, a

solution component ci j does not contain pairs of vertex-next

vertex, but of state-action. For this reason, a pheromone τi j

is now denoted as τiu with i the index of the vertex (i.e. the

corresponding element of β ) and u the action. For the sake

of notation, no distinction will be made between the actual

input u(k) and the index of the input (the action) u.

Similar to the definition of the vector of all degrees of

fulfillment in (5), the vector of all pheromones for a certain

action u at time k is denoted as:

τu(k) =
[

τ1u(k) τ2u(k) . . . τNANBu(k)
]T

.

B. Outline of a Trial

In the following sections, the fuzzy action selection and

the local and global pheromone update are explained in

more detail. Two more elements in this algorithm need

special attention, namely the initialization of the ants and

the determination whether an ant has reached the goal.

When using a Global Best pheromone update rule in an

optimal control problem, all ants have to be initialized to

the same state, as starting from states that require less time

and less effort to reach the goal would always result in a

better Global Best solution. Ultimately, initializing an ant

exactly in the goal state would be the best possible solution

and no other solution, starting from more interesting states

would get the opportunity to update the pheromones in the

global pheromone update phase. In order to find a control

policy from any initial state to the goal state, the Global

Best update rule cannot be used. Simply using all solutions

of all ants in the updating, like in the original AS algorithm,

the resulting algorithm does allow for random initialization

of the ants over the state space and is therefore used in the

Fuzzy ACO algorithm.

Regarding the terminal condition for the ants, with the

fuzzy implementation, none of the vertices can be pointed

out as being the terminal vertex. Rather there has to be

defined a set of membership functions that can be used to

determine to what degree the goal state has been reached.

These membership functions can be used to express the

linguistic fuzzy term of the state being close to the goal.

If this has been satisfied, the ant has terminated its trial.

C. Parameter Setting

Some of the parameters are similarly initialized as with the

ACS. The global and local pheromone trail decay factors are

set to a preferably small value, respectively ρ ∈ (0,1) and

γ ∈ (0,1). There will be no heuristic parameter associated to

the arcs in the construction graph, so only an exponential

weighting factor for the pheromone trail α > 0 needs to

be chosen. Increasing α leads to more biased decisions to-

wards the one corresponding to the highest pheromone level.

Choosing α = 2 or 3 appears to be an appropriate choice.

Furthermore, some control parameters for the algorithm need

to be chosen, such as the maximum number of iterations per

trial, Kmax, and the maximum number of trials, Tmax. The

latter one can be set to, e.g., 100 trials, where the former one

depends on the sample time Ts and a guess of the time needed

to get from the initial state to the goal optimally, Tguess. A

good choice for Kmax would be to take about 10 times the

expected number of iterations Tguess · T
−1

s . Specific to the

fuzzy implementation, the number of membership functions

and the spacing over the state domain need to be determined.

Furthermore, the pheromones are initialized as τiu = τ0 for

all i,u, where τ0 is a small, positive value, which, according

to [3] can be chosen as τ0 = (n ·Lguess)
−1, with n the number

of nodes and Lguess a guess of the optimal tour length. Finally

the number of ants M must be chosen large enough such that

the complete state space can be visited frequently enough.

D. Fuzzy Action Selection

The action is chosen randomly according to the probability

distribution:

pc{u|β c(k)}(k) = β T
c (k) ·

τα
u (k)

∑l∈U τα
l (k)

, (6)

where all operations are performed element-wise, except for

the inner product (·). Note that when β c contains exactly

one 1 and for the rest only zeros, this would correspond to

the crisp case, where the state is quantized to a set of bins

and (6) then reduces to the original case in (1).

E. Local Pheromone Update

The standard local pheromone update from the ACS

algorithm from (3) can be modified to the fuzzy case as

follows:

τu←τu(1−β )+((1− γ)τu + γτ0)β

= τu(1− γβ )+ τ0(γβ ), (7)

where all operations are performed element-wise.

As all ants update the pheromone levels associated with

the state just visited and the action just taken in parallel,

one may wonder whether or not the order in which the



updates are done matters, when the algorithm is executed on

a standard CPU, where all operations are done in series. If it

would matter, there would be a serious flaw in the algorithm.

With crisp quantization, the ants may indeed sometimes visit

the same state and with fuzzy quantization, the ants may

very well share some of the membership functions with a

membership degree larger than zero. We will show that in

both cases, the order of updates in series does not influence

the final value of the pheromones after the joint update. In

the original, crisp case, the local pheromone update from (3)

may be rewritten as follows:

τ
(1)
i j ←(1− γ)τi j + γτ0

= (1− γ)(τi j− τ0)+ τ0.

After n updates, the pheromone level is reduced to:

τ
(n)
i j ← (1− γ)n(τi j− τ0)+ τ0, (8)

which shows that the order of the update is of no influence

to the final value of the pheromone level.

For the fuzzy case a similar derivation can be made. In

general, after all the ants have performed the update, the

pheromone vector is reduced to:

τu← ∏
c∈{1,2,...,M}

{1− γβ c}(τu− τ0)+ τ0, (9)

where again all operations are performed element-wise. This

result also reveals that the final values of the pheromones are

invariant with respect to the order of updates. Furthermore,

also note that when β c contains exactly one 1 and for the

rest only zeros, corresponding to the crisp case, the fuzzy

local pheromone update from either (7) or (9) reduces to the

original case in respectively (3) or (8).

F. Global Pheromone Update

The global pheromone update step is similar to (2) with

the pheromone deposit defined as:

∆τi j =

{

J−1(s)β (x) , if ci j ∈ s ∈Strial

0 , otherwise,

with J(s) the cost of the sequence of states and actions,

according to (4).

As explained in Section V-B, for optimal control problems,

the appropriate update rule is to use all solutions by all ants

in the trial Strial. In the fuzzy case, the solutions s ∈Strial

consist of sequences of states and actions and the states can

be fuzzified so that they are represented by sequences of

vectors of degrees of fulfillment β . Instead of one pheromone

level, in the fuzzy case a set of pheromone levels are updated

to a certain degree. It can be easily seen that as this update

process is just a series of pheromone deposits, the final value

of the pheromone levels relates to the sum of these deposits

and is invariant with respect to the order of these deposits.

This is also the case for this step in the AS or ACS algorithm.

VI. EXAMPLE: NAVIGATION WITH VARIABLE DAMPING

This section presents an example application of the Fuzzy

ACO algorithm to a continuous-state dynamic system. The

dynamic system under consideration is a simulated two-

dimensional (2D) navigation problem and similar to the one

described in [19]. Note that it is not our purpose to demon-

strate the superiority of Fuzzy ACO over any other method

for this specific problem. Rather we want to demonstrate the

functioning of the algorithm.

A. Problem Formulation

A vehicle, modeled as a point-mass of 1 kg, has to be

steered to the origin of a two-dimensional surface from any

given initial position in an optimal manner. The vehicle ex-

periences a damping that varies non-linearly over the surface.

The state of the vehicle is defined as x=
[

c1 v1 c2 v2

]T
,

with c1,c2 and v1,v2 the position and velocity in the direction

of each of the two principal axes respectively. The control

input to the system u =
[

u1 u2

]T
is a two-dimensional

force. The dynamics are:

ẋ =









0 1 0 0

0 −b(c1,c2) 0 0

0 0 0 1

0 0 0 −b(c1,c2)









x+









0 0

1 0

0 0

0 1









u,

where the damping b(c1,c2) in the experiments is modeled

by an affine sum of two Gaussian functions, with means

(0,−2.3) and (4.7,1) and standard deviations (2.5,1.5) and

(1.5,2) respectively. The damping profile can be seen in

Fig. 1(b), where darker shading means more damping.

B. Fuzzy ACO Setup and Parameters

The cores of the membership functions of the positions

c1,c2 are chosen to be {−5,−3.5,−2,−0.5,0,0.5,2,3.5,5}
and those for the velocities v1,v2 are {−2,−0.5,0,0.5,2}.
The action set contains of 25 actions, namely the cross-

product of the sets {−1,−0.5,0,0.5,1} for both dimensions.

The local and global pheromone decay factors are respec-

tively γ = 0.01 and λ = 0.1. Furthermore, α = 3 and the

number of ants is 2000. The sampling time is Ts = 0.2 and the

ants are randomly initialized over the complete state space

at the start of each trial. An ant terminates its trial when its

position and velocity in both dimensions are within a bound

of ±0.25 and ±0.05 from the goal respectively.

C. Simulation Results

The convergence of the Fuzzy ACO algorithm is depicted

in Fig. 1(a). It shows that the relative variation of the policy

is already very low after about 20 trials. A slice of resulted

policy for zero velocity is depicted together with the damping

profile in Fig. 1(b). The policy shows the mapping of the

positions in both dimensions to the input on a fine grid.

Fig. 1(c) presents the trajectories of the vehicle for various

initial positions and zero initial velocity. It shows that the

vehicles manage to drive quickly to the goal, while avoiding

the regions of stronger damping to a certain extent. However,

the trajectories are only close to optimal. Especially for the



10

Trial
50 60 70 80 90403020

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
o
li

c
y
 v

a
ri

a
ti

o
n

(a) Convergence of the algorithm in terms of the
fraction of cores of the membership functions for
which the policy changed at the end of the trial.

c2 [m]

c
1

[m
]

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(b) A slice of the resulting policy for zero
velocity. It shows the control input for a fine
grid of positions. The damping profile is shown,
where darker shades mean more damping.

c2 [m]

c
1

[m
]

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(c) Trajectories of the vehicle under the resulted
policy for various initial positions and zero ve-
locity. The markers indicate the positions at the
sampling instances.

Fig. 1. Results.

case where the vehicle starts in the bottom-left corner, the

optimality of the trajectory can be questioned as the vehicle

drives straight to the goal, without avoiding the region of

larger damping at all. These results demonstrate that the

algorithm is capable of converging quickly, but only to a

suboptimal policy with the settings used in the experiments.

VII. CONCLUSIONS AND FUTURE WORK

This paper has introduced the Fuzzy ACO algorithm for

optimal control problems, which combines the framework of

the AS and ACS algorithms with a fuzzy partitioning of the

state space. The applicability of this algorithm to optimal

control problems with continuous-valued states is outlined

and demonstrated on the non-linear control problem of two-

dimensional navigation with variable damping. The results

show convergence of the algorithm to a suboptimal policy

that drives the vehicle to the goal for any initial state. Future

research must further develop the algorithm to deal with

suboptimality in a better way and to theoretically prove its

convergence.

REFERENCES

[1] M. Dorigo and C. Blum, “Ant colony optimization theory: a survey,”
Theoretical Computer Science, vol. 344, no. 2-3, pp. 243–278, Novem-
ber 2005.

[2] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization
by a colony of cooperating agents,” IEEE Transactions on Systems,

Man, and Cybernetics, Part B, vol. 26, no. 1, pp. 29–41, 1996.
[3] M. Dorigo and L. Gambardella, “Ant Colony System: a cooperative

learning approach to the traveling salesman problem,” IEEE Transac-

tions on Evolutionary Computation, vol. 1, no. 1, pp. 53–66, 1997.
[4] T. Stutzle and U. Hoos, “MAX MIN Ant System,” Journal of Future

Generation Computer Systems, vol. 16, pp. 889–914, 2000.
[5] M. Dorigo and T. Stützle, Ant Colony Optimization. Cambridge, MA,

USA: The MIT Press, 2004.
[6] P. K. Jain and P. K. Sharma, “Solving job shop layout problem

using ant colony optimization technique,” in Proceedings of the IEEE

International Conference on Systems, Man and Cybernetics, Big
Island, HI, USA, October 2005, pp. 288–292.

[7] M. T. Islam, P. Thulasiraman, and R. K. Thulasiram, “A parallel ant
colony optimization algorithm for all-pair routing in MANETs,” in
Proceedings of the International Symposium on Parallel and Dis-

tributed Processing (IPDPS 2003), Nice, France, April 2003.

[8] Y. Hsiao, C. Chuang, and C. Chien, “Computer network load-
balancing and routing by ant colony optimization,” in Proceedings

of the IEEE International Conference on Networks (ICON 2004),
Singapore, November 2004, pp. 313–318.

[9] K. Socha and C. Blum, “An ant colony optimization algorithm for
continuous optimization: application to feed-forward neural network
training,” Neural Computing & Applications, vol. 16, no. 3, pp. 235–
247, May 2007.

[10] K. Socha and M. Dorigo, “Ant colony optimization for continuous
domains,” European Journal of Operational Research, vol. 185, no. 3,
pp. 1155–1173, 2008.

[11] G. Bilchev and I. C. Parmee, “The ant colony metaphor for searching
continuous design spaces,” in Selected Papers from AISB Workshop

on Evolutionary Computing, ser. Lecture Notes in Computer Science,
T. Fogarty, Ed., vol. 993. London, UK: Springer-Verlag, April 1995,
pp. 25–39.

[12] S. Tsutsui, M. Pelikan, and A. Ghosh, “Performance of aggregation
pheromone system on unimodal and multimodal problems,” in Pro-

ceedings of the 2005 Congress on Evolutionary Computation (CEC

2005), September 2005, pp. 880–887.
[13] P. Korosec, J. Silc, K. Oblak, and F. Kosel, “The differential ant-

stigmergy algorithm: an experimental evaluation and a real-world
application,” in Proceedings of the 2007 Congress on Evolutionary

Computation (CEC 2007), September 2007, pp. 157–164.
[14] J. M. van Ast, R. Babuška, and B. De Schutter, “Ant colony opti-

mization for optimal control,” in Proceedings of the 2008 Congress

on Evolutionary Computation (CEC 2008), Hong Kong, China, June
2008, pp. 2040–2046.

[15] J. Casillas, O. Cordón, and F. Herrera, “Learning fuzzy rule-based
systems using ant colony optimization algorithms,” in Proceedings of

the ANTS’2000. From Ant Colonies to Artificial Ants: Second Inter-

antional Workshop on Ant Algorithms. Brussels (Belgium), September
2000, pp. 13–21.

[16] B. Zhao and S. Li, “Design of a fuzzy logic controller by ant
colony algorithm with application to an inverted pendulum system,” in
Proceedings of the IEEE International Conference on Systems, Man

and Cybernetics, 2006, pp. 3790–3794.
[17] W. Zhu, J. Chen, and B. Zhu, “Optimal design of fuzzy controller

based on ant colony algorithms,” in Proceedings of the IEEE Interna-

tional Conference on Mechatronics and Automation, 2006, pp. 1603–
1607.

[18] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-

tion. Cambridge, MA: MIT Press, 1998.
[19] L. Busoniu, D. Ernst, B. De Schutter, and R. Babuška, “Continuous-

state reinforcement learning with fuzzy approximation,” IEEE Trans-

actions on Systems, Man and Cybernetics, Part C, vol. 38, pp. 156–
172, 2008.


