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Fuzzy Ant Colony Optimization for Optimal Control

Jelmer van Ast, Robert Bablkia, and Bart De Schutter

Abstract— Ant Colony Optimization (ACO) has proven to be Il. RELATION TO THE STATE OF THEART
a very powerful optimization heuristic for Combinatorial Opti-
mization Problems. While being very successful for various NP-

;:omplciteloptirtr)llizationl prtohplems, ACOis ”Olt Xi(\:’g"ylaplf’_'tiﬁab!e The state of the art related to the subjects covered in this
o control problems. In this paper a nove algorithm is :
introduced for the automated design of optimal control policies paper can be summarized as follows.

for continuous-state dynamic systems. The so called Fuzzy ACO 1) The original ACO algorithm in the form of the Ant
algorithm integrates the multi-agent optimization heuristic of  System has been introduced in [2] with the Ant Colony
ACO with a fuzzy partitioning _of the state space of the system. System in [3] and thé1AX -MIN Ant System in [4].
A simulated control problem is presented to demonstrate the The basic ACO algorithm and its variants have successfull
functioning of the proposed algorithm. ’ 9 3 S e y
been applied to various optimization problems [5], [6],
[7], [8]. A detailed description of ACO algorithms and its
applications can be found in the survey [1] and the book [5].
Ant Colony Optimization (ACO) is inspired by ants and 2 One of the rst real application of the ACO framework
their behavior of nding shortest paths from their nest g optimization problems in continuous search spaces is
sources of food. Without any leader that could guide the anffscriped in [9] and [10]. Earlier application of the ant
to optimal trajectories, the ants manage to nd these optimgetaphor to continuous optimization appears in [11], with
trajectories over time in a distributed fashion. In an ACGngre recent work like the Aggregation Pheromones System
algorithm, the metaphorical ants are agents programmed jp[1 2] and the Differential Ant-Stigmergy Algorithm in [13
nd an optimal combination of elements of a given set that _ .
- - . ) - 3) The rst application of ACO to the automated design
maximizes some utility function. The key ingredient in ACOOf optimal control policies for continuous-state dynamic

and its biological counterpart are the pheromones. With reg stems has been developed by the authors of this paper

. . S
ants, these are chemicals deposited by the ants and thlﬁfr[m]. The method however is hampered by the large

concentration encodes a map of trajectories, where stronge . ) .
. X . umber of bins needed to quantize the state space in order
concentrations represent better trajectories. ACO repiss . . .
to capture the dynamics of the original system. Thisse

the class of metaheuristic optimization methods that use th; . o .
o L of dimensionality is a phenomenon widely encountered when
concepts of distributed optimization and pheromone maps In

solving Combinatorial Optimization Problems [1]. an_ongmal_ly continuous-state §ystem needs to be repressen
. ) : using a nite number of quantized states.
This paper introduces an ACO-based algorithm for the o ]
automated design of optimal control policies for continstou ~ 4) There are only a few publications that combine ACO
state dynamic systems. The algorithm combines the concepf§h the concept of fuzzy control [15], [16], [17]. In all

of multi-agent optimization and fuzzy approximation of thethree publications fu.zzy controllers are obtained using);«C
state space in a novel approach. rather than presenting an actual fuzzy ACO algorithm, as

This paper is structured as follows. Section Il describe&troduced in this paper.
the relation of the subjects covered in this paper to the This paper contributes to the above four categories of the
state of the art. In Section I, the ACO heuristic is brie y state of the art. It contributes to 1) by further exploring
reviewed. Section IV presents some preliminaries on thé&e applicability of ACO and to 2) by presenting a novel
control problem and the fuzzy partitioning of the state spacapproach to the optimization in continuous spaces using
In Section V the Fuzzy ACO algorithm is introduced andACO. It presents an extension to the work mentioned in 3)
described in detail. Section VI demonstrates the funatigni by curbing the curse of dimensionality through the use of
of the Fuzzy ACO algorithm on a simple control problema parametric interpolation to retain a continuous stateespa
and Section VII concludes this paper. with a nite number of parameters, typically much smaller

than the number of quantized states that would be necessary

This research is nancially supported by Senter, MinistiyEzonomic ~ t0 achieve similar accuracy. The interpolation method of
Affairs of The Netherlands within the BSIK-ICIS project “B©rganizing  chojce isfuzzy approximation. Finally, the work in this paper
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I1l. ANT COLONY OPTIMIZATION each ant decides based on some probability distribution,
A. Framework for ACO Algorithms which solution component;; to add to its partial solution
spc- The probability pcf jjig for an antc on a vertexi to

ACO algorithms have been developed to solve hard comnoye to a vertey within its feasible neighborhool ; is:
binatorial optimization problems [1]. A combinatorial épt

mization problem can be represented as a tiéptehS ;Fi, L tijhij o _

whereS is the solution space with2 S a speci ¢ candi- pef Jjig = W’& 2 Nj; @)

date solution an® :S ! R, is a tness function assigning izn tit Tl

strictly positive values to candidate solutions, wherehbig with a and b determining the relative importance &;

values correspond to better solutions. The purpose of tlaad tij respectively. The neighborhool; is the set of

algorithm is to nd a solutions , or set of solutionsS , not yet visited vertices that are connected to the veitex
s 2S S that maximizes the tness function. The By moving from vertexi to vertex j, each ant adds the
solution's is then called an optimal solution arll is associated solution componeny to its partial solutionsp
called the set of optimal solutions. until it reaches its terminal vertex and completes its cdei

In ACO, the combinatorial optimization problem is repre-solution. This candidate solution is evaluated using tmess
sented as a graph consisting of a set of vertices and a setffiction F(s) and the resulting value is used to update the
arcs connecting the vertices. A particular solutsoconsists pheromone levels by:
of solution components, which are denotedchyand which o
are pairs of a vertex and an arc. Here the sSEsi:’yidEnotes iy (1 ntj+r a D) @
that this solution component consists of a verteand an 525 upd
arc that connects this vertex to another verfeR particular  with r 2 (0;1) the evaporation rate an8 ,pq the set of
solution s is thus a concatenation of solution componentssolutions that are eligible to be used for the pheromone
and forms a tour from the initial vertex to the terminalupdate, which will be explained further on in this section.
vertex. How the terminal vertices are de ned depends on thehe pheromone depoditij(s) is computed as:
problem considered. For instance, in the traveling salasma
problent, there are multiple terminal vertices, namely for Dtij(s) =
each ant the terminal vertex is equal to its initial vertex,
after visiting all other cities (i.e. vertices) exactly @dor  The pheromone levels are a measure of how desirable it
the application to control problems, as considered in thig to add the associated solution component to the partial
paper, the terminal vertex corresponds to the desiredysteadolution. In order to incorporate forgetting, the pheromon
state. Two values are associated with the arcs: a pheromgegels decrease by some factor in each iteration. In this way
trail variabletj; and a heuristic variablhij. The pheromone it can be avoided that the algorithm prematurely converges t
trail represents the acquired knowledge about the optimglihoptimal solutions. In the next iteration, each ant repea
solution over time and the heuristic variable provides ampri the previous steps, but now the pheromone levels have been
information about the quality of the solution componer,,i. updated and can be used to make better decisions about
the quality of moving to a nod¢ from a nodei. In the case which vertex to move to. After some stopping criterion has
of the traveling salesman problem, the heuristic variablaseen reached, the pheromone levels encode the solution of
typically represent the distance between the respectiire pghe optimization problem.
of cities. In general, the heuristic variables represeﬁtmts There exist various rules to COﬂStrL&Lpd, of which the
term quality measure of the solution component, while thghost standard one is to use all the candidate solutions found
task is to acquire a concatenation of solution componeats thn the trial S yiy2. This update rule is typical for the rst ACO
overall form the optimal solution. The pheromone variablegigorithm, called the Ant System (AS) [2]. Other update sule
basically encode the measure of the long-term quality afave shown to outperform the AS update rule. Most notably,
adding the solution component. The trade-off between thegige two most successful ACO variants in practice, the Ant
two parameters is important for the performance of ACO. Colony System (ACS) [3] and th1AX -MIN Ant
System [4] respectively use ti@&obal Best and thelteration
Best update rule. These methods result in a strong bias of the

The basic ACO algorithm works as follows. A set lf pheromone trail reinforcement towards solutions that have
ants is randomly distributed over the vertices. The hdaristbeen proven to perform well and additionally reduce the
variables are set to encode the prior knowledge by favoringpmputational complexity of the algorithm. An important
the choice of some vertices over others. For each cant
the partial solutiorsp;c is initially empty and all pheromone 2|n ACO literature, thg term trial is selo!om used. It is ra;hge_rm from

. P . - the reinforcement learning (RL) community [18]. In our opinibiis also a
variables are set to some initial valig. In each iteration, more appropriate term for ACO and we will use it to denote the phthe
algorithm from the initialization of the ants over the staface until the

1in the traveling salesman problem, there is a set of citiesected by  global pheromone update step. The corresponding term faalartrACO
roads of different lengths and the problem is to nd the sexeeof cities s iteration and the set of all candidate solutions foundanheiteration is

that takes the traveling salesman to all cities, visitinghezity exactly once denoted asS . In this paper, equivalently to RL, we prefer to use the
and bringing him back to its initial city with a minimum lengtfi the tour. ~ word iteration to indicate one interaction step with theteys

F(s)  if cij2s
0 ;  otherwise

B. The Ant System and Ant Colony System



element from the ACS algorithm is the local pheromonatates and an input to the system may drive its state to one
update rule, which occurs while iterating through the triabin, or another. In [14], a variation to the AS algorithm

and is de ned as follows: is introduced that is capable of solving an optimal control
- 1 vt 3 problem in this manner. However, the number of bins needed
tij (1 gtij+ go; ®) to accurately capture the dynamics of the original system

whereg2 (0;1) is a parameter similar to, ij is the index May become very large even for simple systems with only
of the solution component just added, ahgis the initial two state variables. Moreover, the time complexity of the
value of the pheromone trail. The effect of (3) is that during®CO algorithm grows exponentially with the number of bins,
the trial visited solution components are made less atact Making the algorithm infeasible for realistic systems.

for other ants to take, in that way promoting the exploration A much better alternative is not to quantize the state space
of other, less frequently visited, solution componentsthis ~ at all, but to approximate it by a smooth parameterized
paper, the introduced Fuzzy ACO algorithm is based on tH&nction approximator. In that case, there is still a nite

AS combined with the local pheromone update rule of ACSIumber of parameters, but this number is typically much
smaller compared to using crisp quantization. The universa

IV. CONTROL PROBLEM AND FUZZY APPROXIMATION  function approximator that is used in this paper is the fuzzy
A. The Optimal Control Problem approximator.

Assume we have a nonlinear system, characterized byCa Fuzzy Approximation

state vectox = X1 Xz i X, '. Also assume that the  With fuzzy approximation, the domain of each state vari-
state can be controlled by an inputand can be measured aple is partitioned using membership functions. We de ree th
at discrete time steps, with a sample tiffig and that the membership functions for the state variables to be trizargul
system dynamics in discrete-time can be denoted as:  shaped, such that the membership degrees for any value of
- . . the state on the domain always sum up to one. Only the
X(k+ 1) = T uk); centers of the membership functions have to be stored. Let
with k the discrete time index. The optimal control problemA; denote the membership functions fey, with a; their

guadratic cost function: Ng the number of membership functions feg. Similarly,
K 1 the membership functions can be de ned for the other state
J= & e'(k+ 1)Qe(k+ 1)+ uT(K)Ru(k); (4) Vvariables inx, but for the sake of notation, the discussion
k=0 in this paper limits the number to two, without loss of

generality. Note that in the example in Section VI, the order
the system is four.

t The membership degree & and B; are respectively
denoted bym,(xi(k)) and ng;(x2(k)) for a specic value

of the state at tim&. The degree of ful lIment is computed
by multiplying the two membership degrees:

with e(k+ 1) = x(k+ 1) xg the error at time&+ 1 andQ and
R positive de nite matrices of appropriate dimensions. Theof
problem is to nd a nonlinear mapping from states to inpu
u(k) = g(x(k)) that, when applied to the system»p results
in a sequence of state-action paitg0);x(1)), (u(1);x(2)),
25 (UK 1);xg) that minimizes this cost function. The
quadratic cost function in (4) is minimized if the goal is bij(x(K)) = m (xa(K)) ni;(x2(K)):
reached in minimum time given the dynamics of the system .
and restrictions on the size of the input. The matriQezsnd Let thg vector of all degre.es of fulliment for a certain
. - state at timek be denoted by:

R balance the importance of speed versus the aggressiveness
of the controller. b(x(K)) =[ b11(x(K)) b12(x(k)) :::  bing (X(K))

In the case of an ACO implementation, only a nite set
of input values, called the action set, can be used. The Oa(x(k) sz(X(?) o b ()
goal is then actually to nd the nonlinear mapping of states D (XK ®)
to the action set that minimizes (4). which is a vector containing;; for all combinations ofij.

L Each element will be associated to a vertex in the graph

B. Quantization Issues used by the Fuzzy ACO algorithm introduced in this paper.

For a system with a continuous-valued state space, optost of the steps taken from the AS and ACS algorithms
timization algorithms like ACO can only be applied if thefor dealing with theb(x(k)) vectors from (5) need to be
state space is quantized. The most straightforward way teconsidered. This is the subject of the following section.
do this is to divide the state space into a nite number of
bins, such that each state value is assigned to exactly one
bin. These bins can be enumerated and used as the verti@esOutline of the Algorithm
in the ACO graph. It is easy to see that the state transitionsIn the original paper on ACO for optimal control [14],
are stochastic. Namely, each bin corresponds to a rangetbé continuous state variables were quantized into a nite

V. Fuzzy ACO FOROPTIMAL CONTROL



number of bins, called the quantized states. All combieut as being the terminal vertex. Rather there has to be
nations of these quantized states for the different state ned a set of membership functions that can be used to
variables corresponded to the nodes in the graph and tHetermine to what degree the goal state has been reached.
arcs corresponded to transitions from one quantized state These membership functions can be used to express the
another. Because of the quantization, the resulted systsn wWinguistic fuzzy term of the state beingose to the goal.
transformed into a stochastic decision problem. Howevelf this has been satis ed, the ant has terminated its trial.
the pheromones were associated to these arcs as usual._In
the fuzzy case, the state space is partitioned by membersf(ﬁp
functions, as described in Section IV-C and the combination Some of the parameters are similarly initialized as with the
of the indices to these membership functions for the differe ACS. The global and local pheromone trail decay factors are
state variables correspond to the nodes in the constructisat to a preferably small value, respectively? (0;1) and
graph. With the fuzzy interpolation, the system remains g2 (0;1). There will be no heuristic parameter associated to
deterministic decision problem, but the transition frond@o the arcs in the construction graph, so only an exponential
to node now does not directly correspond to a state transitioweighting factor for the pheromone trail > 0 needs to
The pheromones are associated to the arcs as usual, butliechosen. Increasing leads to more biased decisions to-
updating needs to take into account the degree of ful limerivards the one corresponding to the highest pheromone level.
of the associated membership functions. This updating withoosinga = 2 or 3 appears to be an appropriate choice.
be described in Sections V-E and V-F. Furthermore, some control parameters for the algorithnd nee
In [14], the vertex to vertex transitions of an ant are noto be chosen, such as the maximum number of iterations per
deterministic. In Fuzzy ACO, an ant is not assigned to #ial, Knax, and the maximum number of trial3nax. The
certain vertex at a certain time, but to all vertices aceuydi latter one can be set to, e.g., 100 trials, where the former on
to some degree of ful llment at the same time and a transitiodepends on the sample tirfieand a guess of the time needed
from vertex to vertex is not trivial either. Because of thas, to get from the initial state to the goal optimallfguess A
solution component;; does not contain pairs of vertex-nextgood choice forKmax would be to take about 10 times the
vertex, but of state-action. For this reason, a pherontgne expected number of iterationgyess Ts 1. Specic to the
is now denoted as;, with i the index of the vertex (i.e. the fuzzy implementation, the number of membership functions
corresponding element df) andu the action. For the sake and the spacing over the state domain need to be determined.
of notation, no distinction will be made between the actudfurthermore, the pheromones are initializedtgas= to for
input u(k) and the index of the input (the action) all i;u, wheretg is a small, positive value, which, according
Similar to the de nition of the vector of all degrees of to [3] can be chosen @ = (n Lgyesy 1, With n the number
ful liment in (5), the vector of all pheromones for a certain of nodes and gy essa guess of the optimal tour length. Finally
actionu at timek is denoted as: the number of ant® must be chosen large enough such that
L= tw®) ta®) o tagu(K) T the complete state space can be visited frequently enough.

B. Outline of a Trial D. Fuzzy Action Selection

In the following sections, the fuzzy action selection and The action is chosen randomly according to the probability
the local and global pheromone update are explained fstribution:
more detail. Two more elements in this algorithm need . T tak)
special attention, namely the initialization of the antgl an pefujbe(k)g(k) = be (k) Ay tR(K)’ ®6)

the determination whether an ant has reached the goal.

When using a Global Best pheromone update rule in a\{s{here all operations are performed element-wise, except fo

optimal control problem, all ants have to be initialized tgfhe inner producy). Note that When_bc contains exactly
e 1 and for the rest only zeros, this would correspond to

the same state, as starting from states that require less ti ) ; ) .
and less effort to reach the goal would always result in e crisp case, where the state is quantized to a set of bins
and (6) then reduces to the original case in (1).

better Global Best solution. Ultimately, initializing amta

exactly in the goal state would be the best possible solutiga | gcal Pheromone Update

and no other solution, starting from more interesting state

would get the opportunity to update the pheromones in theI

global pheromone update phase. In order to nd a contrcﬁ)

policy from any initial state to the goal state, the Global

Best update rule cannot be used. Simply using all solutions ty tu(@ bB)+((1 gtu+ glo)b

of all ants_ in the updatmg, like in the original AS_ z_zll_gquth_m = ty(1 gb)+ to(gh): @)

the resulting algorithm does allow for random initializati

of the ants over the state space and is therefore used in thbere all operations are performed element-wise.

Fuzzy ACO algorithm. As all ants update the pheromone levels associated with
Regarding the terminal condition for the ants, with thahe state just visited and the action just taken in parallel,

fuzzy implementation, none of the vertices can be pointedne may wonder whether or not the order in which the

Parameter Setting

The standard local pheromone update from the ACS
gorithm from (3) can be modied to the fuzzy case as
llows:



updates are done matters, when the algorithm is executed &i. EXAMPLE: NAVIGATION WITH VARIABLE DAMPING

a standard CPU, where all operations are done in series. If itThjs section presents an example application of the Fuzzy
would matter, there would be a serious aw in the algorithmaco algorithm to a continuous-state dynamic system. The
With crisp quantization, the ants may indeed sometimes Vighynamic system under consideration is a simulated two-
the same state and with fuzzy quantization, the ants M@mensional (2D) navigation problem and similar to the one
very well share some of the membership functions with @escribed in [19]. Note that it is not our purpose to demon-
membership degree larger than zero. We will show that igyrate the superiority of Fuzzy ACO over any other method

both cases, the order of updates in series does not in uengs this speci ¢ problem. Rather we want to demonstrate the
the nal value of the pheromones after the joint update. "’Functioning of the algorithm.

the original, crisp case, the local pheromone update from (3

may be rewritten as follows: A. Problem Formulation
0 A vehicle, modeled as a point-mass of 1kg, has to be
t; (1 9gtij+ gto steered to the origin of a two-dimensional surface from any
=(1 g(tij to)+ to: given initial position in an optimal manner. The vehicle ex-
periences a damping that varies non-linearly over the serfa
After n updates, the pheromone level is reduced to: The state of the vehicleisde ned & ¢1 vi € Vo |,
with c1; ¢ andvs; v the position and velocity in the direction
ti(j") (1 9)"(tij to)+ to; (8) of each of the two principal axes respectively. The control

. ) . input to the systemu = u; up is a two-dimensional
which shows that the order of the update is of no in uencggrce. The dynamics are:

to the nal value of the pheromone level. 3

3 2
For the fuzzy case a similar derivation can be made. In 0 1 0 0 00
general, after all the ants have performed the update, the x = go b(cyicz) 0 0 éx+ §1 %U?
pheromone vector is reduced to: 0 0 0 1 0
0 0 0  Db(cy;co) 0 1
fu O f1 gbg(ty to)+ to; (9)  where the dampindy(c1;c) in the experiments is modeled
caf 12::Mg by an afne sum of two Gaussian functions, with means

where again all operations are performed element-wises THO:  2:3) and(4:7;1) and standard deviatior(@:5;1:5) and
result also reveals that the nal values of the pheromones af1:%2) respectively. The damping prole can be seen in
invariant with respect to the order of updates. Furthermor&!9- 1(0), where darker shading means more damping.
also note that whetb, contains exactly one 1 and for thep Fyzzy ACO Setup and Parameters

rest only zeros, corresponding to the crisp case, the fuzzy

. The cores of the membership functions of the positions
Io_ca_l pheromc_me updatg from either (7) or (9) reduces to thcel;cz are chosen to bé 5 35, 2. 0:50:052 3:5:5q
original case in respectively (3) or (8).

and those for the velocitieg;;v, aref 2; 0:5;0;0:5;2g.
The action set contains of 25 actions, namely the cross-

F. Global Pheromone Update product of the seté 1; 0:5;0;0:5;1g for both dimensions.
The global pheromone update step is similar to (2) witd he local and global pheromone decay factors are respec-
the pheromone deposit de ned as: tively g= 0:01 and/ = 0:1. Furthermorea = 3 and the
number of ants is 2000. The sampling tim@js 0:2 and the
Dt = J Xs)b(x) ; if ¢Cij252 Sia ants are randomly initialized over the complete state space
') 0 ; otherwise at the start of each trial. An ant terminates its trial when it

position and velocity in both dimensions are within a bound
with J(s) the cost of the sequence of states and actiongf 0:25 and 0:05 from the goal respectively.

according to (4). ) )

As explained in Section V-B, for optimal control problems,C: Simulation Results
the appropriate update rule is to use all solutions by ak ant The convergence of the Fuzzy ACO algorithm is depicted
in the trial S yia. In the fuzzy case, the solutios® Sy in Fig. 1(a). It shows that the relative variation of the pyli
consist of sequences of states and actions and the states isaalready very low after about 20 trials. A slice of resulted
be fuzzied so that they are represented by sequences péblicy for zero velocity is depicted together with the danpi
vectors of degrees of ful limenb. Instead of one pheromone pro le in Fig. 1(b). The policy shows the mapping of the
level, in the fuzzy case a set of pheromone levels are updatpdsitions in both dimensions to the input on a ne grid.
to a certain degree. It can be easily seen that as this upd&ig. 1(c) presents the trajectories of the vehicle for vasio
process is just a series of pheromaleposits, the nal value initial positions and zero initial velocity. It shows thdtet
of the pheromone levels relates to the sum of these depositshicles manage to drive quickly to the goal, while avoiding
and is invariant with respect to the order of these depositthe regions of stronger damping to a certain extent. However
This is also the case for this step in the AS or ACS algorithnthe trajectories are only close to optimal. Especially for t
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Fig. 1.

case where the vehicle starts in the bottom-left corner,

sampling instances.

Results.

thes]

optimality of the trajectory can be questioned as the vehicl

drives straight to the goal, without avoiding the region

larger damping at all. These results demonstrate that

algorithm is capable of converging quickly, but only to

suboptimal policy with the settings used in the experime
VII. CONCLUSIONS ANDFUTURE WORK

This paper has introduced the Fuzzy ACO algorithm

of
thp]
a
nts
[10]

for

optimal control problems, which combines the framework oft1]
the AS and ACS algorithms with a fuzzy partitioning of the
state space. The applicability of this algorithm to optimal
control problems with continuous-valued states is oudline 12]
and demonstrated on the non-linear control problem of twé-
dimensional navigation with variable damping. The results

show convergence of the algorithm to a suboptimal po
that drives the vehicle to the goal for any initial state.Urat

Iic¥13]

research must further develop the algorithm to deal with

suboptimality in a better way and to theoretically prove
convergence.
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