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Steady-State and N-Stages Control for Isolated Controlled Intersections

Jack Haddad, Bart De Schutter, David Mahalel, and Per-Olof Gutman

Abstract— In this paper a simplified isolated controlled in-
tersection is introduced. Discrete-event piecewise affine (PWA)
and discrete-event max-plus models are proposed to formulate
the optimization problem for the switching sequences. Two
control problems are considered: steady-state control and N-
stages control. The formulated discrete-event PWA and max-
plus problems are converted to be solved by linear program-
ming (LP), mixed-integer programming (MIP), and mixed-
integer linear programming (MILP). In the special case when
the criterion is a strictly monotonous and linear function of
the queue lengths, the steady-state control problem is solved
analytically.

I. INTRODUCTION

Transportation networks over the world are becoming

more and more congested. Congestion has several effects

on travelers, businesses, agencies, and cities. One significant

element is the value of the additional time and wasted fuel.

The congestion in USA’s metropolitan areas is increasing

continuously, e.g. in 2005 congestion (based on wasted time

and fuel) cost about $ 78.2 billion or an average of $ 707 per

traveler [24].

As traffic becomes more congested, utilization of the

available infrastructure and increasing the capacity are an

essential goal, which can be achieved by traffic control and

management. The urban transportation network consists of

number of signalized intersections. The congestion is not

distributed equally between all the signalized intersections.

There is usually a group of intersections that are more

congested than others. These intersections are called critical

intersections. Increasing the capacity of critical intersections

will increase the total throughput flow of the network, and

as a result the network capacity will be increased and the

delays will decrease.

Different models, methods, and strategies have been pro-

posed and applied for controlling urban isolated signalized

intersections [1], [2], [14], [17], [18], [20], [21], [23], [26].

These researches aim to minimize delays or to maximize

the intersection capacity. Some recent research considers the

isolated intersection in the urban traffic network as a hybrid

system [8], [9], [11], [19] and others propose the game theory

approach [27] to model signalized intersections.
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In [6], the optimal acyclic (or N-stages) control was dealt

with, where the Extended Linear Complementary Problem

(ELCP), which is a mathematical programming problem,

was used. In this paper, we introduce the steady-state and

N-stages control problems and study the design of optimal

traffic signal switching time sequences for a traffic signal

controlled intersection through discrete-event models: max-

plus and PWA (piecewise affine).

The paper is organized as follows. After describing the

problem definition in Section II, the discrete-event models of

an isolated intersection and the formulation of the optimal

problems are given in Section III. The control problem for

steady-state and N-stages control is dealt with in Sections

IV and V respectively, which is followed by conclusions and

topics for future research.

II. PROBLEM DEFINITION

In this paper, a typical simplified isolated intersection

will be dealt with1. As shown in Fig. 1, there are two

movements (m1 and m2), where each movement has a traffic

signal that can be green or red. There is a traffic conflict in

the intersection area between the two movements, therefore

they cannot travel simultaneously and the traffic signal will

be opposite, i.e. when movement m1 has a green light

movement m2 has a red light and vice versa.

A given movement will encounter intertwined green and red

periods. A cycle is defined as a pair of one green and one

red period, and may change over time.

1

2m

m

Fig. 1. Simplified isolated controlled intersection

In this case there are two movements m1 and m2, therefore

the evolution of the queue lengths will be considered only for

these two movements. The length of queue movement i at

time t, which is the number of vehicles stopping behind the

stop line in the intersection, is denoted by qi(t) [veh]. Let

farr,i(t), fdep,i(t) be, respectively, the arrival rate [veh/s]
and the departure rate [veh/s] for queue i at time t. The

1Extension to more complex arrangements or setups is possible.



queue length growth rate αi(t) [veh/s] for queue i at time

t is given by αi(t) = farr,i(t)− fdep,i(t).
The following assumptions are made:

• A1: The arrival and departure rates in the isolated

intersection are known and constant within each cycle2.

• A2: When the traffic signal is green, the departure rate

is bigger than the arrival rate, i.e. fdep,i(t) > farr,i(t),
and when the traffic signal is red, the departure rate

is equal to zero, fdep,i(t) = 0, and the arrival rate is

farr,i(t) ≥ 0.

• A3: The queue lengths (number of vehicles) are approx-

imated by real numbers.

• A4: Each movement will have only one green signal

per cycle.

For the isolated controlled intersection with a constant

traffic arrival and departure rates, we determine the control

traffic signals that optimize the given control objective or

criterion. We also formulate the stability conditions for the

optimal traffic signal solution in the two control cases:

steady-state and N-stages control.

III. DISCRETE MODELS FOR ISOLATED CONTROLLED

INTERSECTIONS

A variety of models [10], [22] are based on the store-

and-forward approach of modeling traffic networks that was

first suggested by [15], [16]. This approach enables the

simplification of the mathematical description of the traffic

flow process without the use of switched variables. In this

paper we consider the isolated controlled intersection as

switching systems, as was done in [5], [6], [7].

Optimizing traffic signal switching sequences will be done

through two models: discrete-event max-plus and discrete-

event PWA.

A. Basic model

Let k be the index of the cycle. By assumption A4, in

the cycle sequence each movement (m1 or m2) will have

only one green signal per cycle. For each cycle of the cycle

sequence we want to determine two decision variables: the

cycle time, Tcyc,k [s], and gk [%] the proportion of the green

time of movement m1 in cycle k. The cycle time is expressed

as number of seconds and the proportion of the green time

is expressed as a percentage of the cycle time.

The evolution of the system begins at time t0. This implies

that the state of the queue length i at time t is given by

qi(t) = qi(t0) +

∫ t

t0

αi(t)dt (1)

There are two switching times for cycle k: t2k+1 and t2k+2

(see Fig. 2). Without loss of generality, let the green light

for movement m1 start at t2k, which coincides with the start

of the cycle time. Hence, t2k+1 is the end of the green

light for movement m1 (or the start of the green light for

movement m2) and t2k+2 is the end of the green light for

movement m2 (or the start of the green light for movement

2Also averaged values can be considered.

m1 in the next cycle time). The cycle time duration Tcyc,k

is equal to t2k+2 − t2k. By assumption A1 the arrival rate
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Fig. 2. Traffic signal switching sequences for movements m1 and m2

of queue i in phase 2k (i.e. the time period between t2k and

t2k+1), farr,i(t2k), and the departure rate of queue i in phase

2k, fdep,i(t2k), are known and constant. The same holds

for phase 2k + 1: the arrival rate of queue i, farr,i(t2k+1),
and the departure rate of queue i, fdep,i(t2k+1), are known

and constant. This means, for example, that the growth rate

αi(t2k) = farr,i(t2k)− fdep,i(t2k) has a constant rate value

between the two discrete event time t2k and t2k+1.

The relations between the time sequences are the following,

t2k+1 = t2k + gk · Tcyc,k (2)

t2k+2 = t2k + Tcyc,k (3)

B. Formulation of an optimal discrete-event max-plus prob-

lem

The value of the queue length for movement m1 in cycle

k at the switching time instant t2k+1 is given by

q1(t2k+1) = max(q1(t2k) + α1(t2k) · gk · Tcyc,k, 0) (4)

and at the switching time instant t2k+2 is given by

q1(t2k+2) = q1(t2k+1) + α1(t2k+1) · (1− gk) · Tcyc,k (5)

Recall that the signal light for movement m2 is opposite to

m1, therefore the value of the queue lengths for movement

m2 in cycle k are given by

q2(t2k+1) = q2(t2k) + α2(t2k) · gk · Tcyc,k (6)

q2(t2k+2) = max(q2(t2k+1)+α2(t2k+1)

· (1− gk) · Tcyc,k, 0)
(7)

We now consider the following problem: for a given number

of cycles N and starting time t0 (recall that the starting time

should also coincide with the start of green signal for m1), we

compute an optimal switching time sequence t1, t2, . . . , t2N
that minimizes a given performance criterion J . There are

variety of criteria that can be chosen, e.g. average queue

length, maximal queue length, and delay over all queues.

Two new variables are defined T1(k) [s] and T2(k) [s], where

T1(k) = gk ·Tcyc,k and T2(k) = (1−gk)·Tcyc,k. Substituting



these variables into (4) - (7) leads to the following Discrete-

event Max-Plus (DMP) problem:

min
T1(0), T2(0),

T1(1), T2(1), · · · ,

T1(N − 1), T2(N − 1)

J (8)

subject to

q1(t2k+1) = max(q1(t2k) + α1(t2k) · T1(k), 0) (9)

q1(t2k+2) = q1(t2k+1) + α1(t2k+1) · T2(k) (10)

q2(t2k+1) = q2(t2k) + α2(t2k) · T1(k) (11)

q2(t2k+2) = max(q2(t2k+1) + α2(t2k+1) · T2(k), 0) (12)

for k = 0, 1, 2, . . . , N − 1.

The optimization problem is formulated by minimization of

the criterion J over N cycles. Hence, the number of variables

to be determined is 2N .

C. Formulation of an optimal discrete-event PWA problem

The max operator in (9) and (12) can be rewritten in such

a way that PWA equations are obtained. This leads to the

Discrete-event PWA (DPWA) problem:

min
T1(0), T2(0),

T1(1), T2(1), · · · ,

T1(N − 1), T2(N − 1)

J (13)

subject to

q1(t2k+1) =











q1(t2k) + α1(t2k) · T1(k)

if q1(t2k) + α1(t2k) · T1(k) ≥ 0,

0 if q1(t2k) + α1(t2k) · T1(k) < 0,

(14)

q1(t2k+2) = q1(t2k+1) + α1(t2k+1) · T2(k) (15)

q2(t2k+1) = q2(t2k) + α2(t2k) · T1(k) (16)

q2(t2k+2) =











q2(t2k+1) + α2(t2k+1) · T2(k)

if q2(t2k+1) + α2(t2k+1) · T2(k) ≥ 0,

0 if q2(t2k+1) + α2(t2k+1) · T2(k) < 0,

(17)

for k = 0, 1, 2, . . . , N − 1.

IV. STEADY-STATE CONTROL

In order to develop and to implement dynamic models

for controlling the traffic system, which can be helpful in

decreasing congestion, first the steady-state control problem

will be solved. The optimal solution and the feasibility

condition for the steady-state control are useful in the control

theory for the N-stages control problem, e.g., the steady-

state solution can be the initial solution for the optimization

process for the N-stages control problem.

In the steady-state control problem it is assumed that after

some time, denoted by τ0 (k = 0), the system will be in a

steady-state mode. In the steady-state mode the cycle time

and the green time will be constant, i.e. the traffic flows at

the intersection and the evolution of the queues at the stop

lines will be cyclic. Hence, only one cycle and two switching

times (τ1 and τ2) are required to calculate the optimal cyclic

switching sequences in the steady-state mode. The queue

length for movement i at the start of the cycle will be equal

to the queue length at the start of the next cycle:

q1(τ0) = q1(τ2) (18)

q2(τ0) = q2(τ2) (19)

In the following, two cases will be distinguished depend-

ing on the properties of the criterion J . The first case is

when the criterion J is a strictly monotonous3 function of

the queue lengths (i.e. of q1(τ1), q2(τ1), q1(τ2) and q2(τ2)),
such as average queue length, positively weighted sum of

queue lengths, or average travel time. The second case is

when the criterion J is not a strictly monotonous function of

the queue lengths, such as maximum queue length, weighted

sum of queue lengths with some weights equal to zero, or

maximal travel time.

A. The criterion is a strictly monotonous function of the

queue lengths

Now we show that for a criterion that is a strictly

monotonous function of the queue lengths the optimal cyclic

switching sequences problem and the feasibility condition for

the steady-state control can be formulated through a discrete-

event max-plus model, and solved analytically for a strictly

monotonous and linear criterion.

1) Formulation of an optimal cyclic discrete-event max-

plus problem: The formulation is based on the DMP problem

(8) - (12). The cyclic queue lengths equations (18) - (19) are

added to the DMP problem and then we optimize it over

only one cycle time (N = 1 and k = 0). Therefore, the

number of decision variables will decrease to two: T1(0) and

T2(0). For simplicity we write T1(0) and T2(0) as T1 and

T2, respectively. We also assume that a lower bound T (with

T > 0) for the sum of T1 and T2 is given, i.e. T1+T2 ≥ T .

The Cyclic Discrete-event Max-Plus (CDMP) problem is

then defined as follows:

min
T1,T2

J (20)

subject to

q1(τ1) = max(q1(τ0) + α1(τ0) · T1, 0) (21)

q1(τ2) = q1(τ1) + α1(τ1) · T2 (22)

q2(τ1) = q2(τ0) + α2(τ0) · T1 (23)

q2(τ2) = max(q2(τ1) + α2(τ1) · T2, 0) (24)

T1 + T2 ≥ T (25)

and (18), (19)

Note that for scalars a, b, c ∈ R we have a = max(b, c)
implies a ≥ b and a ≥ c. In a similar way the CDMP

problem can be rewritten in such a way that the max
equations are “relaxed” to linear inequality equations. But

3The function J is strictly monotonous if for all queue length vectors with
q̂ ≤ q̃ and with q̂i < q̃i for at least one index i, we have J(q̂) < J(q̃).



first, the cyclic queue lengths equations (18) and (19) are

substituted into (21) and (23) respectively,

q1(τ1) = max(q1(τ2) + α1(τ0) · T1, 0) (26)

q2(τ1) = q2(τ2) + α2(τ0) · T1 (27)

The max equations (24) and (26) can be relaxed into linear

inequality equations as follows,

q1(τ1) ≥ q1(τ2) + α1(τ0) · T1 (28)

q1(τ1) ≥ 0 (29)

q2(τ2) ≥ q2(τ1) + α2(τ1) · T2 (30)

q2(τ2) ≥ 0 (31)

This leads to the “Relaxed” Cyclic Discrete-event Max-Plus

(R-CDMP) problem:

min
T1,T2

J (32)

subject to

(22), (25), (27), (28), (29), (30), (31)

Proposition 1: If the criterion J is a strictly monotonous

function of the queue lengths, then any optimal solution of

the R-CDMP problem is also an optimal solution of the

CDMP problem.

Proof: The proof is done by contradiction.

Let q̃ =
(

q̃1(τ1), q̃1(τ2), q̃2(τ1), q̃2(τ2)
)

and T̃ =
(

T̃1, T̃2

)

be an optimal solution of the R-CDMP problem such that

(21) is not satisfied, i.e.

q̃1(τ1) > max(q̃1(τ2) + α1(τ0) · T̃1, 0) (33)

or equivalently

q̃1(τ1) > q̃1(τ2) + α1(τ0) · T̃1 (34)

q̃1(τ1) > 0 (35)

and such that q̃2(τ1), q̃2(τ2) satisfy (24) (note that we

consider the case (34) and (35), but the proof for other cases

is similar).

Now we replace q̃1(τ1) and q̃1(τ2) by

q̂1(τ1) = q̃1(τ1)− ε (36)

q̂1(τ2) = q̃1(τ2)− ε (37)

where ε > 0. The other variables stay the same, i.e. q̂2(τ1),
q̂2(τ2), and T̂ are equal to q̃2(τ1), q̃2(τ2), and T̃ , respectively.

In the following we verify that (q̂, T̂ ) is also a feasible

solution of the R-CDMP problem as long as q̂1(τ1) ≥ 0
(i.e. (29)) is satisfied. We fill out q̂1(τ1) and q̂1(τ2) into (34)

and obtain q̃1(τ1)− ε > q̃1(τ2)− ε+ α1(τ0) · T̃1 for any ε,

which implies q̂1(τ1) ≥ q̂1(τ2)+α1(τ0) · T̂1 (i.e. (28) holds).

Since the variables q̂2(τ1), q̂2(τ2), and T̂ are assumed to be

unchanged, they imply (25), (27), (30), and (31).

Equation (22) implies q̃1(τ2)− ε = q̃1(τ1)− ε+ α1(τ1) · T̃2

or equivalently q̂1(τ2) = q̂1(τ1) + α1(τ1) · T̂2.

Now we select ε such that q̂1(τ1) = 0. Then (q̂, T̂ ) is a

feasible solution of the R-CDMP problem. Recall that the

criterion J is a strictly monotonous function of the queue

lengths. Since q̂ ≤ q̃ and q̂i < q̃i for some i due to

(36) and (37), this implies J(q̂, T̂ ) < J(q̃, T̃ ) which is in

contradiction with the fact that (q̃,T̃ ) is an optimal solution

of the R-CDMP problem.
Hence, the optimal solution of the R-CDMP problem

should satisfy (21) and as a consequence the optimal solution

of the R-CDMP problem is also an optimal solution of the

CDMP problem.
So in the sequel we consider the R-CDMP problem instead

of the CDMP problem.
2) Feasibility condition: In this section, the existence

condition for the steady-state control is derived based on

the R-CDMP problem.

We can eliminate q1(τ2) and q2(τ1) from the constraints of

the R-CDMP problem by substituting (22) and (27) into (28)

and (30) respectively, resulting in

− α1(τ0) · T1 ≥ α1(τ1) · T2 (38)

− α2(τ1) · T2 ≥ α2(τ0) · T1 (39)

If T1 = 0, then it is implied from (38) and (39) that T2 = 0,

and vice versa. But this is a contradiction with (25) and

the fact that T > 0. Hence, we will have T1 6= 0 and

T2 6= 0. However, it follows from assumptions A1 and

A2 that α1(τ0) < 0 and α2(τ1) < 0 where α1(τ1) > 0
and α2(τ0) > 0. Hence, from (38) and (39) we obtain the

following feasibility condition:

α1(τ1)

−α1(τ0)
≤

−α2(τ1)

α2(τ0)
(40)

3) Analytic solution for linear criterion: Now we show

that if the criterion J is a strictly monotonous linear function

of the queue lengths, then the R-CDMP problem can be

solved analytically.
As an example, let the weighted average queue length over

all the queues be our criterion function J ,

J =

2
∑

i=1

wi

1

τ2 − τ0

∫ τ2

τ0

qi(t)dt (41)

where wi > 0 for all i.
Based on assumption A1 we write the following integral as:

∫ tk+1

tk

qi(t)dt =
(tk+1 − tk)

2
(qi(tk) + qi(tk+1)) (42)

Recall that τ2 − τ0 = T1 + T2 and qi(τ0) = qi(τ2).
Substituting these equations and (42) into (41), we obtain

the following criterion J which is strictly monotonous linear

function of the queue lengths

J =

2
∑

i=1

wi

2
(qi(τ1) + qi(τ2)) (43)

Note that J is strictly monotonous in the queue lengths due

to the fact that wi > 0 for all i.
We eliminate q1(τ2) and q2(τ1) in the objective function

by substituting (22) and (27) into (43), which leads to

J =
1

2
(2w1q1(τ1) + 2w2q2(τ2)

+ w1α1(τ1) · T2 + w2α2(τ0) · T1)
(44)
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Fig. 3. Analytic solution for the linear programming problem

Looking at the R-CDMP problem with the linear criterion

(44), the optimal solutions of the queue lengths q1(τ1) and

q2(τ2) must be equal to zero in order to minimize J , i.e.

q∗1(τ1) = 0 (45)

q∗2(τ2) = 0 (46)

Therefore, we obtain the following linear programming (LP)

problem

min
T1,T2

J =
1

2
(w2α2(τ0) · T1 + w1α1(τ1) · T2) (47)

subject to

−α1(τ0) · T1 ≥ α1(τ1) · T2 (48)

−α2(τ1) · T2 ≥ α2(τ0) · T1 (49)

T1 + T2 ≥ T (50)

The solution of this problem depends on the slope of

the linear objective function (see Fig. 3). If w2α2(τ0) <
w1α1(τ1) the optimal solution will be point A, and when

w2α2(τ0) > w1α1(τ1) the optimal solution will be point B.

In the case when w2α2(τ0) = w1α1(τ1) all points between

A and B are optimal solutions for the problem. Points A and

B are equal to

(T1, T2)A =

(

−Tα2(τ1)

α2(τ0)− α2(τ1)
,

Tα2(τ0)

α2(τ0)− α2(τ1)

)

(51)

(T1, T2)B =

(

−Tα1(τ1)

α1(τ0)− α1(τ1)
,

Tα1(τ0)

α1(τ0)− α1(τ1)

)

(52)

B. The criterion is not a strictly monotonous function of the

queue lengths

When the criterion J is not a strictly monotonous func-

tion of the queue lengths, the Cyclic Discrete-event PWA

(CDPWA) problem can be formulated based on the DPWA

problem (13) - (17). The cyclic queue lengths equations (18)

and (19) are then added to the DPWA problem and then it

is optimized over one cycle time (i.e. N = 1 and k = 0).

The PWA equations can be transformed into mixed integer

equations by introducing additional auxiliary variables as

follows (cf. [4]). To perform these transformations we use the

following equivalences, where δ represents a binary valued

scalar variable, y a real valued scalar variable, and f a

function defined on a bounded set X with upper and lower

bounds M and m for the function values:

[f(x) ≤ 0] ⇔ [δ = 1] is true iff

{

f(x) ≤ M(1− δ),

f(x) ≥ ε+ (m− ε)δ,

where ε is a small tolerance (typically the machine preci-

sion),

y = δf(x) is equivalent to



















y ≤ Mδ,

y ≥ mδ,

y ≤ f(x)−m(1− δ),

y ≥ f(x)−M(1− δ).

Now the CDPWA problem can be solved by mixed-integer

programming (MIP) algorithms [3], [13] for a nonlinear

criterion J and by a mixed-integer linear programming

(MILP) algorithms [12], [25] for a criterion J that is a linear

(but not strictly monotonous) function of the queue lengths.

V. N-STAGES CONTROL

In the N-stages control problem we consider a finite

number of switchings in the optimization procedure. Now

we specifically consider the following problem: for a given

integer N and a given starting time t0 we want to compute

an optimal switching sequence consisting of N cycles.

For the simplified isolated controlled intersection we formu-

late the problem for the following two cases.

A. The criterion is a strictly monotonous function of the

queue lengths

We use the DMP problem (8) - (12) to solve the optimal

problem for N-stages control when the criterion J is a strictly

monotonous function of the queue lengths. In this case, each

max equation can be relaxed to two inequality equations,

which leads to the “Relaxed” Discrete-event Max-Plus (R-

DMP) problem

min
T1(0), T2(0),

T1(1), T2(1), · · · ,

T1(N − 1), T2(N − 1)

J (53)

subject to

q1(t2k+1) ≥ q1(t2k) + α1(t2k) · T1(k) (54)

q1(t2k+1) ≥ 0 (55)

q2(t2k+2) ≥ q2(t2k+1) + α2(t2k+1) · T2(k) (56)

q2(t2k+2) ≥ 0 (57)

and (10), (11) (58)

for k = 0, 1, 2, . . . , N − 1.

Proposition 2: If the criterion J is a strictly monotonous

function of the queue lengths, then any optimal solution of

the R-DMP problem is also an optimal solution of the DMP

problem.

Proof: See the proof of Proposition 3.3 of [6] which

also applies here.

So the R-DMP problem can be solved by linear program-

ming when the criterion J is a strictly monotonous linear

function of the queue lengths.



B. The criterion is not a strictly monotonous function of the

queue lengths

When the criterion J is not a strictly monotonous function

of the queue lengths, the DPWA problem can be used to

solve the optimal problem for N-stages. In this case the

PWA equations can also be transformed into mixed integer

inequalities (see Section IV-B) and can then be solved by

using MIP approaches.

VI. CONCLUSIONS AND FUTURE RESEARCH

For the simplified isolated controlled intersection we can

compute the optimal switching sequences for the steady-state

and N-stages control problems by solving a linear program-

ming problem, a mixed-integer programming problem, or a

mixed-integer linear programming problem.

A feasibility condition for the steady-state control has

been derived when the criterion J is a strictly monotonous

function of the queue lengths. It is shown that if in addition

the criterion is linear the problem can be solved analytically.

When the criterion J is not strictly monotonous the problem

can be recast as a mixed-integer linear or nonlinear program-

ming problem.

The N-stages control problem can be solved by linear pro-

gramming if the criterion J is linear and strictly monotonous.

When the criterion is not strictly monotonous the control

problem can be solved by mixed-integer programming.

As shown in this paper, the model of a signalized inter-

section can be rewritten as a piecewise affine system. Con-

ducting stability analysis of such a system using Lyapunov

functions is a topic for future research. Another topic for

future research is the formulation of the control problem for

signalized isolated intersections by optimal periodic control.
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