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This chapter gives an informal introduction to hybrid dynamical sys-

tems and illustrates by simple examples the main phenomena that

are encountered due to the interaction of continuous and discrete dy-

namics. References to numerous applications show the practical im-

portance of hybrid systems theory.

1.1 What is a hybrid system?

Wherever continuous and discrete dynamics interact, hybrid systems arise.
This is especially profound in many technological systems, in which logic de-
cision making and embedded control actions are combined with physical pro-
cesses. To capture the evolution of these systems, mathematical models are
needed that combine in one way or another the dynamics of the continuous
parts of the system with the dynamics of the logic and discrete parts. These
mathematical models come in all kinds of variations, but basically consist of
some form of differential or difference equations on the one hand and automata
or other discrete-event models on the other hand. The collection of analysis
and synthesis techniques based on these models forms the research area of hy-
brid systems theory, which plays an important role in the multi-disciplinary
design of many technological systems that surround us.

1.1.1 Three reasons to study hybrid systems

The reasons to study hybrid systems can be quite diverse. Here we will provide
three sources of motivation, which are related to (i) design of technological
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systems, (ii) networked control systems, and (iii) physical processes exhibiting
non-smooth behavior.

Challenges of multi-disciplinary design. When designing a technological
system (Fig. 1.1) such as a wafer stepper, electron microscope, copier, robotic
system, fast component mounter, medical system, etc., multiple disciplines
need to make the overall design in close co-operation. For instance, the elec-
tronic design, mechanical design, and software design together have to result
in a consistent, functioning machine. The designs are typically made in parallel
by multiple groups of people, where the communication between these groups
is often hampered by lack of common understanding and common models. The
lack of common models complicates the making of cross-disciplinary design
decisions that may have advantages for one discipline, but disadvantages for
others. To make a good trade-off, the overall effect of such a design decision
has to be evaluated as early as possible. As the complexity of a technologi-
cal system with typically millions of lines of code and tens of thousands of
mechanical components gives rise to many cross-disciplinary design decisions,
a framework is required that supports efficient evaluation of design decisions
incorporating quantitative information and models from multiple disciplines.

Fig. 1.1. Examples of technological systems.

Hybrid systems theory studies the behavior of dynamical systems, including
the above mentioned technological systems, the modeling formalisms that
involve both continuous models such as differential or difference equations
describing the physical and mechanical part, and discrete models such as
finite state machines or Petri nets that describe the software and logical
behavior.
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This theory is one of the few scientific research directions that aim at
approaching the design problem of technological systems in a rigorous man-
ner and at developing a complete design framework. As such, hybrid systems
theory combines ideas originating in the computer science and the software
engineering disciplines on one hand, and systems theory and control engi-
neering on the other. This mixed character explains the terminology “hybrid
systems”, which was used in this context for the first time by Witsenhausen
in 1966 [Witsenhausen, 1966].

Hybrid systems theory is a relatively young research field as opposed to the
more conventional mono-disciplinary research areas such as mechanical, elec-
trical, or software engineering. The urgent need for multi-disciplinary design
and development methods for technological systems has spurred the growth of
hybrid systems theory in recent years. However, due to the inherent complex-
ity of hybrid systems, many issues still remain unsolved at present, at least
at the scale needed for industrial applications. The current status of hybrid
systems theory is surveyed in this handbook, which can be used as a start-
ing point for future developments in this appealing and challenging research
domain.

Adding communication: Networked control systems. Besides merging
software (discrete) and physical (continuous) aspects of systems, another im-
portant aspect of many technological systems is communication. Within one
single system, many subsystems interact through communication networks.
For systems-of-systems the coordination plays an even larger role, resulting
in extremely complicated networks of communication. One might think of
examples such as automated highways [Lygeros et al., 1998] and air-traffic
management [Tomlin et al., 1997]. As the many control, computation, com-
munication, sensing, or actuation actions take place through shared network
or processor resources, another dimension is added to the design of these sys-
tems. Within the context of these networked control systems the asynchronous
and event-driven nature of the data transmission caused by varying delays,
varying sampling intervals, package loss, etc., and the implementation of the
networks and protocols complicate their analysis and design even further. Also
in this domain hybrid systems theory plays an essential role as a foundation
to understand the behavior of these complex systems.

Physical processes modeled as hybrid systems. In the above mentioned
technological and networked systems, the digital and logic (embedded control)
aspects are typically brought in by design in order to control the physics and
mechanics of the system. However, hybrid system theory is not only useful
within these domains. Many physical processes exhibiting both fast and slow
changing behaviors, can often be well described by using (simple) hybrid mod-
els. For instance, in non-smooth mechanics [Brogliato, 1996], the evolution of
impacting rigid bodies can be captured in hybrid models. Indeed, as the im-
pacts occur at a much smaller time scale than the unconstrained motion, the
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behavior can be described well by introducing discrete events and actions in
a smooth model. The bouncing ball is a simple example demonstrating this.
Also the vector fields defining the behavior of the system might be different
over time as they depend crucially on the fact whether a contact is active
or not. The dynamics of a robot arm moving freely in space is completely
different from the situation in which it is striking the surface of an object.
Other examples in mechanics with hybrid behavior include motion systems
with friction models that distinguish between stick and slip modes, backlash
in gears, and dead zones in cog wheels.

Examples are not only found in the mechanical domain. Nowadays switches
such as thyristors and diodes are used in electrical networks for a wide variety
of applications in both power engineering and signal processing. Examples
include switched-capacitor filters, modulators, analog-to-digital converters,
power converters, and choppers. In the ideal case, diodes are considered as
elements with two (discrete) modes: the blocking mode and the conducting
mode. Mode transitions for diodes are governed by state events, where cur-
rents or voltages change their sign. This indicates that hybrid modeling and
analysis offer an attractive perspective on these switched circuits [Heemels
et al., 2002]. The DC-DC converter discussed in Section 1.3.3 forms a simple
example of this.

Also many biological and chemical systems can often be efficiently de-
scribed by hybrid models. For example, simulating moving bed processes,
which are a special kind of chromatographic separation processes, have to be
switched regularly among different structures in order to avoid that the sepa-
ration process will eventually stop. Like in DC-DC converters, the switching
is an integral part of the physical principle utilized in such processes. For the
analysis of these systems and for control design, the model has to be switched
accordingly, which demonstrates the necessity to extend continuous models
towards hybrid models.

1.1.2 Behavior of hybrid systems

The previous section indicates that multi-disciplinary design of technological
systems and the study of several non-smooth physical processes require the
understanding of the complex interaction between discrete dynamics and con-
tinuous dynamics. To provide some insight in this interaction, let us consider
the following example.

Example 1.1 Thermostat

As a textbook example of a simple hybrid system consider the regulation of the
temperature in a house. In a simplified description, the heating system is assumed
either to work at its maximum power or to be turned off completely. This is a
system that can operate in two modes: “on” and “off”. In each mode of operation
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(given by the discrete state q ∈ {on, off}) the evolution of the temperature T

can be described by a different differential equation. This is illustrated in Fig. 1.2
in which each mode corresponds to a node of a directed graph, while the edges
indicate the possible discrete state transitions. As such, this system has a hybrid
state (q, T ) consisting of a discrete state q taking the discrete values “on” and
“off” and a continuous state T taking values in the real numbers.

q(t) = on

Ṫ (t) = fon(T (t))
T (t) ≤ Tmax

q(t) = off

Ṫ (t) = foff(T (t))
T (t) ≥ Tmin

T (t) ≥ Tmax

T (t) ≤ Tmin

Fig. 1.2. Model of a temperature control system

Clearly, the value of the discrete state q affects the evolution of the continuous
state T as a different vector field is active in each mode. Vice versa, the switching
between the two modes of operations is controlled by a logical device (the embed-
ded controller) called the thermostat and depends on the value of the continuous
state T . The mode is changed from “on” to “off” whenever the temperature T

reaches the value Tmax (determined by the desired temperature). Vice versa, when
the temperature T reaches a minimum value Tmin, the heating is switched “on.”

This example already shows some of the main features of hybrid systems:

• The thermostat is a hybrid system because its state consists of a discrete state
q and a continuous state T .

• The continuous behavior of the system depends on the discrete state, i.e. de-
pending on whether the mode is “on” or “off” a different dynamics Ṫ (t) =
fon(T (t)) or Ṫ (t) = foff(T (t)), respectively, governs the evolution of the tem-
perature T .

• The changes of the discrete state q are determined by the continuous state T

and different conditions on T might trigger the change of the discrete state
(e.g. when the discrete state is “on,” T = Tmax triggers the mode change,
while T = Tmin triggers the change when the discrete state is “off.”) �

Although the thermostat example is rather simple, it already contains
some of the basic ingredients that are needed to properly model hybrid sys-
tems. A proper modeling format must involve (at least) the description of
the evolution of both continuous-valued signals (temperatures, positions, ve-
locities, currents, voltages, etc.) and discrete-valued signals (operation mode,
position of switch, alarm on or off, etc.) over time and their mutual influence
(see Fig. 1.3 for an abstraction of this perspective).

The system depicted in Fig. 1.3 has six types of signals:

• y(t) – a continuous output signal
• w(t) – a discrete output signal
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H y b r i d  
s y s t e m

u ( t )

v ( t ) w ( t )

y ( t )

x ( t ) ,  q ( t )

Fig. 1.3. Hybrid dynamical system

• x(t) – a continuous (n-dimensional) state vector
• q(t) – a discrete state
• u(t) – a continuous input signal
• v(t) – a discrete input signal.

The input and output signals may be scalar or vector-valued, but for explain-
ing the main idea of hybrid systems this distinction is not important.

Whereas the discrete signals (think about the “on” and “off” modes of the
thermostat example) are typically piecewise constant, the continuous signals
may change their value continuously or discontinuously. In the thermostat
example the continuous signal representing the temperature is only changing
continuously. There are no jumps (discontinuities) in the temperature. The
state of the hybrid system is described by the pair (x, q) consisting of the
continuous state vector x and the discrete state q. An important characteristic
of hybrid systems lies in the fact that this pair influences the future behavior
of the system. Moreover, the evolution of the system may also be influenced
by a continuous as well as a discrete input, which are denoted by u and v,
respectively, and one may receive some information on the hybrid state (x, q)
from the discrete and continuous outputs w and y, respectively.

x ( t )

q ( t )x 0 , q 0

t 1 t 2 t 3

3210

t 0

q 0

q

x 0

x

t

t

k

x ( t 2 )

x ( t  + )

x ( t    )

_

_ _

Fig. 1.4. Behavior of an autonomous hybrid system
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Figure 1.4 displays some typical behavior of an autonomous hybrid system
(i. e. an hybrid system without an input), where the scalar continuous state x
and the discrete state q are identical to the outputs. It shows that the evolution
consists of smooth phases in which the discrete state remains constant and the
continuous state changes continuously. At the transition times t1, t2, t3, . . . the
discrete state changes from its current value to a new value. Simultaneously,
the continuous state may jump as shown in the figure for the time t1. At time t1
the state changed abruptly from x(t−1 ) to x(t+1 ), where x(t

−

1 ) and x(t+1 ) denote
the (limit) values of x just before and just after the state jump, respectively. It
is important to realize that the transition times are not necessarily prescribed
by some clock (time events), but usually depend on both the discrete and
the continuous state. For instance, in the thermostat example these transition
times were determined by the temperature T reaching the values Tmin or Tmax

(state events). In summary:

The trajectory of hybrid systems is partitioned into several time intervals.
At the interval borders, the discrete state changes and/or jumps of the
continuous state occur, whereas within all intervals the continuous signals
change smoothly and the discrete state remains constant.

For hybrid system with inputs, the behavior also depends upon the input
signals. In this case the time instant at which the discrete state jumps, the
new discrete and continuous states that are assumed afterwards as well as the
continuous state evolution are all affected by these inputs.

1.1.3 Hybrid dynamical phenomena

Appropriate models for hybrid systems are often obtained by adding new
dynamical phenomena to the classical description formats of the mono-
disciplinary research areas. Indeed, continuous models represented by differen-
tial or difference equations, as adopted by the dynamics and control commu-
nity, have to be extended to be suitable for describing hybrid systems. On the
other hand, the discrete models used in computer science such as automata or
finite state machines, need to be extended by concepts like time, clocks, and
continuous evolution in order to capture the mixed discrete and continuous
evolution in hybrid systems. The hybrid system models explained in Part I of
this handbook combine both ideas. Here we will describe the phenomena one
has to add to the continuous models based on the differential equations

ẋ(t) = f(x(t)) (1.1)

Roughly speaking, as also argued in the previous discussion, four new
phenomena that are typical for hybrid systems are required to extend the
dynamics of purely continuous systems as in (1.1):
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• autonomous switching of the dynamics
• autonomous state jumps
• controlled switching of the dynamics
• controlled state jumps.

These phenomena are first explained for autonomous hybrid systems.

Autonomous switching of the dynamics reflects the fact that the
vector field f that occurs in (1.1) is changed discontinuously. The switching
may be invoked by a clock if the vector field f depends explicitly on the time
t:

ẋ(t) = f(x(t), t).

For instance, if periodic switching between two different modes of operation
is used with period 2T , we would have

ẋ(t) = f(x(t), t) :=

{

f1(x(t)), if t ∈ [2kT, (2k + 1)T ) for some k ∈ N,

f2(x(t)), if t ∈ [(2k + 1)T, (2k + 2)T ) for some k ∈ N.

This is an example of time-driven switching.
The switching can also be invoked when the continuous state x reaches

some switching set S. As the situation x(t) ∈ S is considered to be a state
event, this kind of switching is said to be event-driven. The thermostat exam-
ple provided an illustration of event-driven switching as the transition from
the “on” mode to the “off” mode was triggered by the temperature reaching
the value Tmax.

The following example also illustrates event-driven switching.

Example 1.2 Hybrid tank system

The tank systems shown in Fig. 1.5 illustrate two situations in which the
dynamics of a process changes in dependence upon the state (liquid level). The
tank in the left part of the figure is filled by the pump, which is assumed to deliver
a constant flow QP, and emptied by two outlet pipes, whose outflows Q1(t) and
Q2(t) depend upon the level h(t). As the flow Q2(t) vanishes if the liquid level
is below the threshold hp given by the position of the upper pipe, the dynamical
properties of the tank change if the level h(t) exceeds this threshold.

The dependence of the vector field upon the state can be simply written down.
For h(t) < hv, the differential equation is given by

ḣ(t) =
1

A
(QP −

√

2gh(t)) = f1(h(t)),

where g denotes the gravity constant. For h(t) ≥ hv this equation changes towards

ḣ(t) =
1

A
(QP −

√

2gh(t)−
√

2g(h(t)− hv)) = f2(h(t)).

Hence, the model can be written as
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Q p

h1(t)

hv

Q 1

Q 2

LC

Fig. 1.5. Hybrid tank systems

ḣ(t) =

{

f1(h(t)) if h(t) < hv

f2(h(t)) if h(t) ≥ hv,

which shows that the vector field switches between two different functions f1 and
f2 in dependence upon the state h(t) with the switching surface

S = {h ∈ R |h = hv}.

Now assume that the pump is switched on and off at different time instances
t1 and t2. Then the function f occurring in the differential equation changes at
these time points but this switching does not depend upon the state h(t), but is
time-driven.

The tank in the right part of Fig. 1.5 illustrates that autonomous switching
is a typical phenomenon introduced by safety measures. In the tank system the
level controller is equipped with a safety switch-off. If the liquid level is below
the corresponding threshold, the dynamics is given by the controlled tank. If
the level exceeds the threshold, the pump is switched off, which brings about a
corresponding switching of the differential equation of the tank. �

Switching among different dynamics has important consequences for the
behavior of the hybrid system. For instance, switching between two linear sta-
ble vector fields can result in an unstable overall system.

Autonomous state jumps constitute the second hybrid phenomenon.
At some time t̄, the state may jump from the value x(t̄−) towards the value
x(t̄+). An illustrative example is a bouncing ball. If the ball touches the
ground at time t̄, then its velocity is instantaneously reversed.

A simple representation of state jumps is given as follows. An autonomous
jump set is a set S on which a state jump is invoked (Fig. 1.6). Some relation
R, which often is called a reset map, determines where the state jumps goes
to:

(x(t̄−),x(t̄+)) ∈ R.

Here t̄ is the time instant at which the trajectory x(·) reaches the set S:
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x ( 0 )

x 1

x ( t  
+
)

x ( t    )

x 2

_

_ _

S

Fig. 1.6. Autonomous state jump

x(t̄) ∈ S.

The reset map may depend on the discrete state q(t̄−) of the hybrid sys-
tem just before the reset. Including such state jumps in a continuous system
described by the differential equation (1.1) results in the extended model

ẋ(t) = f(x(t)), for x(t) 6∈ S

(x(t−),x(t+)) ∈ R(q(t̄−)), for x(t) ∈ S.

Example 1.3 Reset oscillator

Consider the reset oscillator described by the affine state space model

d

dt

(

x1(t)

x2(t)

)

=

(

0 1

−1 2δ

)(

x1(t)

x2(t)

)

+

(

0

1

)

together with the reset map defined by

x1(t̄
+) = −x1(t̄

−),

where t̄ denotes any time instant at which the state is on the switching set

S = {x ∈ R
2 | x1 = 0, x2 < 0}.

Such reset systems find application, for instance, in data transmission over highly
disturbed communication channels and reset control systems.

Figure 1.7 shows the behavior of the reset oscillator for δ = 0.1. The left plot
includes the trajectory in the state space for the short time interval t ∈ [0, 10]. The
trajectory starts in the initial state x(0) = (0.2 0)T depicted by the small circle.
The switching surface S is hit in the point (−0.504, 0)T as indicated by the left
diamond. Next, a state jump occurs that brings the state to the right diamond.
The right plot shows the oscillator behavior for a longer time horizon.

The state jump has two consequences:

• Although the oscillator has an affine state space model, the behavior of the
reset oscillator is chaotic.

• Although the oscillator without state jump is an unstable system (with eigen-
values λ1,2 = 0.1± j0.995) the reset oscillator state remains bounded.
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Fig. 1.8. Trajectory of the reset oscillator: state trajectory x1(t) (upper part) and
destination state sequence x1(t̄

+
k ) of the state jumps (lower part)

The irregular (chaotic) behavior can be seen in Fig. 1.8, where in the upper plot
the state trajectory x1 is shown. The lower plot extracts the state jumps from
the evolution. The circles depict the points x1(t̄

+
k ) just after the occurrence of the

state jumps at the time instants t̄+k , (k = 0, 1, ...). Neither the temporal distance
t̄+k+1 − t̄+k between these jumps nor the endpoints x1(t̄

+
k ) show a regular behavior.

�

The above example shows that state jumps may considerably change the
dynamical properties of a system in comparison to the same system without
state jumps.

Controlled switching occurs if the system has a discrete input v that is
used to invoke the switching among different continuous dynamics. If the value
of the discrete input is changed at time t̄, then the vector field f(x(t), v(t))
changes abruptly at time t̄ as well.

Systems with discrete control inputs represent a relevant system class from
a practical point of view. The DC-DC converter is a simple example of such
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systems that will be used as running example throughout this handbook (cf.
Section 1.3.3).

Controlled state jumps are discontinuities in the state trajectory that
occur as a response to a control command. An example in which such a state
jump is necessary for satisfying performance requirements is the automatic
gearbox described in Section 1.3.2. A state jump in the gearbox controller
must be invoked whenever the gearing is changed in order to avoid a jump in
the acceleration of the vehicle.

1.2 Models of hybrid systems

Although many different models have been proposed in literature as will be
seen in the next chapters, the model ingredients (including the main dynamical
phenomena as seen in the previous section) are basically the same.

1.2.1 Model ingredients

The structure of hybrid systems introduced so far shows that every model of
a hybrid system has to define at least the following elements (Fig. 1.9):

• X – the continuous state space, for which often X = R
n holds,

• Q – the discrete state space, for example Q = {0, 1, 2, ..., Q},
• f – a set of vector fields describing the continuous dynamics for all q ∈ Q,
• Init – a set of initial values (q0,x0) of the hybrid state,
• δ – the discrete state transition function,
• G – a set of guards prescribing when a discrete state transition occurs.

To simplify the considerations, hybrid systems without external inputs are
investigated here.

The model elements lead to a graphical representation of the hybrid sys-
tem. The discrete part of the dynamics is modeled by means of a graph whose
vertices represent the discrete states (also called operation modes) and whose
edges represent state transitions. Every vertex is associated with the vector
field

f : Q× R
n → R

n

that belongs to the corresponding value q of the discrete state. It describes
the evolution of the continuous state if the discrete state is q(t):

ẋ(t) = f(q(t),x(t)).

The trajectories that can be obtained for all possible initial continuous states
is also called the set of activities .

Whereas the discrete state q influences the continuous dynamics by se-
lecting a specific vector field f(q, .), the influence of the continuous dynamics
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(q0,x0) ∈ Init

q0

ẋ = f(q0,x)

x ∈ Inv(q0)

q1

ẋ = f(q1,x)

x ∈ Inv(q1)

q2

ẋ = f(q2,x)

x ∈ Inv(q2)

G(q0, q1)

G(q1, q0)

G(q1, q2)

G(q2, q1)

G(q0, q2)

G(q2, q0)

R(q0, q1)

R(q1, q0)

R(q1, q2)

R(q2, q1)

R(q0, q2)

R(q2, q0)

Fig. 1.9. Schematic representation of a hybrid automaton with three discrete states.
Each node of the directed graph represents a mode (operating point) given by a
system of differential (or difference) equations. The arrows indicate the possible
discrete transitions that correspond to a change of the mode.

on the discrete state evolution is represented by a set of guards. A guard
describes a region in the state space X . If the state x is in this region, a dis-
crete state transition may occur. For example, in Fig. 1.9, the guard G(q0, q1)
poses a condition on the state x that has to be satisfied in order to invoke the
discrete state transition q0 → q1.

The change of the discrete state is described by the state transition func-
tion δ, which determines the discrete successor state q′ if the system is in a
given discrete state q. This function is graphically represented by the arrows
among the discrete states in Fig. 1.9. As the figure shows, the question of
which successor state is assumed depends upon the guard condition G that is
satisfied by the continuous state x at the switching time.

The model explained above can be extended by the following elements
in order to include state jumps and to improve the representation of the
interaction between the continuous and the discrete dynamics:

• R – Reset map defining the state jumps,
• Inv – Invariants.

Each mode has an invariant associated to it, which describes the conditions
that the continuous state has to satisfy at this mode. Invariants and guards
play complementary roles: whereas invariants describe when a transition must
take place (namely when otherwise the motion of the continuous state as
described in the set of activities would lead to violation of the conditions given
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by the invariant), the guards serve as “enabling conditions” that describe when
a particular transition may take place.

The reset map is, in general, a set-valued function that specifies how new
continuous states are related to previous continuous states for a particular
transition.

1.2.2 Model behavior

To provide insight in the evolution of the dynamical system defined above,
we give a short, rather informal description. The initial hybrid state (q0,x0)
of “trajectories” of a hybrid automaton lies in the initial set Init. From this
hybrid state the continuous state x evolves according to the differential equa-
tion

ẋ = f(q0,x) with x(0) = x0

and the discrete state q remains constant: q(t) = q0. The continuous evolution
can go on as long as x stays in Inv(q0). If at some point the continuous state x
reaches the guard G(q0, q1), we say that the transition (q0, q1) is enabled. The
discrete state may then change to q1, and the continuous state jumps from
the current value x− to a new value x+ with (x−,x+) ∈ R(q0, q1). After this
transition, the continuous evolution resumes according to the mode q1 and the
whole process is repeated. Note that the invariants and guards are related to
the switching sets and jumps sets introduced earlier, as all these concepts are
related to triggering discrete actions such as resets of the continuous states or
changes in the discrete state.

This framework leads to the behavior of a hybrid system as depicted in
Fig 1.4: continuous phases separated by events at which maybe multiple dis-
crete actions (jumps of the continuous state x and/or changes in the discrete
state q) take place. It is obvious that these systems may switch between many
operating modes where each mode is governed by its own vector field (Fig. 1.9).
Mode transitions are triggered by variables crossing specific thresholds (state
events) and by the elapse of certain time periods (time events) due to the in-
variants and guards. With a change of mode, discontinuities in the continuous
variables may occur as given by the reset map.

1.2.3 Hybrid automata

The model ingredients introduced above directly lead to one of the main
modeling formalisms used in hybrid systems theory: the hybrid automaton.
Below we provide an informal definition, where 2X denotes the power set of
X , i.e. the collection of all subsets of X :

A hybrid automaton H is an 8-tuple

H = (Q,X ,f , Init, Inv, E ,G,R)

with
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• Q = {q1, . . . , qk} is a finite set of discrete states (control locations);
• X is the continuous state space;
• f : Q× R

n → R
n is a vector field;

• Init ⊂ Q× R
n is the set of initial states ;

• Inv : Q → 2R
n

describe the invariants of the locations;
• E ⊆ Q×Q is the transition relation;
• G : E → 2R

n

is the guard condition;
• R : E → 2R

n

× 2R
n

is the reset map;

The hybrid state of the system H is given by (q,x) ∈ Q×X .
Based on the description of this general hybrid system model various ram-

ifications and extensions can be created as well as other more specific models
of hybrid systems such as piecewise affine systems, mixed logical dynamical
systems, complementarity systems, and so on. This handbook will provide
an overview of the available results for all these model classes and will also
pinpoint various open issues for future research. Before doing so, we will in-
troduce some running examples that will be used throughout the handbook
to illustrate the main ideas.

1.3 Running examples

This section introduces three simple examples that illustrate the main new
phenomena that are introduced by the interaction of continuous and discrete
dynamics. These examples will return frequently later on in this handbook.

1.3.1 Two-tank system

Process description. The two-tank system is a hybrid system with au-
tonomous switching. The main control task is to stabilize its state. The system
represents a simplified version of systems that are widely used in the process
industry to provide a costumer with a continuous liquid flow by maintaining
the liquid levels of the tanks at prescribed values.

This example consists of two coupled cylindrical tanks T1 and T2 connected
by pipes (Fig. 1.10). The water flow between the tanks and out of the tanks
can be controlled by the valves V1, V2, V3, V1L, and V2L, each of which can
only be completely opened or closed (on/off valves). The connection pipes
between the tanks are placed at the bottom of the tanks (with valve V2) and
at the height h0 above the bottom (with valve V1).

The maximum water level of each tank is denoted by hmax. All tanks have
the same cross-sectional area A and are located at the same level.

In a typical situation, the valves V1, V2, and V3 are opened and the valves
V1L and V2L closed. Liquid is filled into the left tank by the pump P1. Mea-
surements concern the levels h1(t) and h2(t) in tanks T1 and T2 respectively.
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T 1 T 2

P 1

V 1

V 2 LV 1 L

V 3V 2

u P 1

u 1

u 2 u 3

d 1 d 2

L

L L

L

Fig. 1.10. Two-tank system

Discrete sensors (denoted by L in the figure) yield a qualitative characteri-
zation of the liquid levels as low, medium, and high.

The system has both continuous and discrete inputs. The continuous input
is the inflow through the pump uP1(t) = QP1(t) and the discrete inputs are
the positions of the valves V1, V2, and V3, so that

u(t) = (uP1(t) u1(t) u2(t) u3(t))
T

holds. Disturbances affecting the system can be induced by changing the po-
sitions of the valves V1L and V2L.

Hybrid phenomena. The two-tank is a typical hybrid system, as it has
a continuous dynamics with state-dependent and controlled switching. If
the valve positions remain constant the continuous dynamics switches au-
tonomously between four discrete modes q(t) depending on whether or not
the liquid levels exceed the height h0 of the upper connection pipe. The dis-
crete system behavior is represented by the automaton shown in Fig. 1.11,
where each node represents one discrete operation mode.

Dynamical model. The two-tank system has two continuous state variables

x(t) = (h1(t) h2(t))
T , hi ∈ R

and four discrete states
q(t) ∈ {1, 2, 3, 4}

that depend on the levels as shown in Table 1.1. The nonlinear dynamics
follows from Torricelli’s law:
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q = 1

h 1 ( t ) < h 0
h 2 ( t ) < h 0

q = 2

h 1 ( t ) > h 0
h 2 ( t ) < h 0

q = 4

h 1 ( t ) > h 0
h 2 ( t ) > h 0

q = 3

h 1 ( t ) < h 0
h 2 ( t ) > h 0

Fig. 1.11. Discrete behavior of the two-tank system

Table 1.1. Discrete modes in dependence of the continuous states

q(t) h1(t) h2(t)

1 < h0 < h0

2 ≥ h0 < h0

3 < h0 ≥ h0

4 ≥ h0 ≥ h0

QVl

ij (t) = c · sgn(hi(t)− hj(t)) ·
√

2g· | hi(t)− hj(t) | · ul(t),

where QVl

ij (t) is the water flow from tank Ti into tank Tj through the pipe
with valve Vl, c the flow constant of the valves, ul(t) ∈{0,1} the position of
valve VL (0 means the valve is closed and 1 the valve is opened), and g the
gravity constant.

The change of water volume V (t) in a tank can be described by

V̇ (t) = ḣ(t) ·A =
∑

Qin(t)−
∑

Qout(t),

where
∑

Qin(t) is the sum of all inflows into the tank and
∑

Qout(t) the
sum of all outflows. By applying this equation to the two tanks, the following
nonlinear differential equations are obtained:

ḣ1(t) =
uP1

(t)−QV1

12 (t)−QV2

12 (t)−QV1L

L (t)

A

ḣ2(t) =
QV1

12 (t) +QV2

12 (t)−QV2L

L (t)−QV3

N (t)

A
.

The flow QV1

12 (t) depends on the mode q(t) as follows:
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QV1

12 (t) =















0, q(t) = 1

c · sgn(h1(t)− h0) ·
√

2g· | h1(t)− h0 | · u1(t), q(t) = 2

c · sgn(h0 − h2(t)) ·
√

2g· | h0 − h2(t) | · u1(t), q(t) = 3

c · sgn(h1(t)− h2(t)) ·
√

2g· | h1(t)− h2(t) | · u1(t), q(t) = 4.

The following equations hold in all four modes:

QV2

12 (t) = c · sgn(h1(t)− h2(t)) ·
√

2g· | h1(t)− h2(t) | · u2(t)

QV3

N (t) = c ·
√

2g · h2(t) · u3(t)

QViL

L = c ·
√

2g · hi(t) · di(t), i = 1, 2

where QV3

N (t) is the water flow exiting from tank T2 through the pipe with

valve V3, and QViL

L is the water flow exiting from tank Ti through the pipe
with valve ViL. If these differential and algebraic equations are associated with
the discrete model shown in Fig. 1.11, a hybrid automaton results as overall
model.

All relevant parameter values are given in Table 1.2.

Table 1.2. Parameter values and ranges of the two-tank system

Parameter Value

c 3.6e−5 m2

h0 0.3 m
hmax 0.6 m
A 0.0154 m2

g 9.81 m s−2

Qmax 0.1e−3 m3 s−1

Qualitative value Range

low [0...20] cm
medium [20...25] cm
high [25...60] cm

State Value

h1, h2 ∈ R cm
q ∈ {1, 2, 3, 4}

Input Possible value/range

u1, u2, u3 ∈ {0,1}
uP1 = QP1 ∈ [0, Qmax] m

3 s−1

Disturbance Value

d1, d2 ∈ {0,1}
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Fig. 1.12. Simulation results of the two-tank system

Hybrid behavior. Figure 1.12 shows the behavior of the two-tank sys-
tem with the initial state x0 = (0.25 0.45)T and constant inflow uP1(t) =
0.03 m3 s−1. Figure 1.12(a) depicts the trajectories of the tank levels and
Fig. 1.12(b) the related modes demonstrating the autonomous switching of
the system, when the height h0 is reached.

The two-tank system offers various possibilities to illustrate the main anal-
ysis and design concepts presented in the handbook. One potential question
is whether or not the system state depicted in Fig. 1.13 can be reached by an
appropriate control input.

T 1 T 2

Fig. 1.13. Is this a potential state of the two-tank system?

1.3.2 Automatic gearbox

Process description. The automatic gearbox is a switched system with a
discontinuous evolution of the continuous state. State jumps occur together
with controlled switching.

Automatic gearboxes are used to change gear ratios automatically. This
example presents an automatic transmission with four gears. It consists of the



20 Introduction to hybrid systems

gearbox and a controller comprised of a continuous and a discrete-event part
as depicted in Fig. 1.14.

G e a r b o x

p r ( q )

D i s c r e t e -

e v e n t  

C o n t r o l l e r

T , w
C o n t i n u o u s

C o n t r o l l e r

( &  M o t o r )
q

vv r e f

k r ( q )

C o n t r o l l e r

w m a x

w m i n

d

Fig. 1.14. Automatic gearbox

The gearbox and its controller interact dependent on the vehicle velocity
v(t). The continuous inputs of the gearbox are the torque u(t) = T (t) and
the angular velocity ω(t) of the motor. Disturbances d(t) are induced by the
road, e.g. by different coefficients of friction.

Hybrid phenomena and dynamical model. The automatic gearbox has
four discrete modes q(t)

q(t) ∈ {1, 2, 3, 4}

that affect the continuous dynamics by changing the transmission ration pr(q).
Table 1.3 presents all modes with their specific parameters pr(q) and kr(q),
where pr(1) > pr(2) > pr(3) > pr(4) holds. The mode is automatically changed
by the discrete inputs selected by the controller.

Table 1.3. Modes and specific parameter

q(t) Transmission ration Controller gain

1 pr(1) kr(1)
2 pr(2) kr(2)
3 pr(3) kr(3)
4 pr(4) kr(4)

The continuous part of the controller consists of a PI-controller with the
integrator state TI(t). To obtain a comfortable ride, restrictions are imposed
on the derivative of the acceleration v̈(t), which make it necessary to switch
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the controller parameters kr(q) dependent on the gearing q(t) and to impose
state jumps in the integrator state at the times when the gear is changed. In
Fig. 1.15 the switching scheme of the automatic gearbox is depicted.

q  =  1

p r  ( 1 )

k r  ( 1 )

q  =  2

p r  ( 2 )

k r  ( 2 )

q  =  4

p r  ( 4 )

k r  ( 4 )

q  =  3

p r  ( 3 )

k r  ( 3 )

h i g h

r

1

( 1 )
v

p
w=

l o w

r

1

( 2 )
v

p
w=

h i g h

r

1

( 3 )
v

p
w=h i g h

r

1

( 2 )
v

p
w=

l o w

r

1

( 3 )
v

p
w= l o w

r

1

( 4 )
v

p
w=

Fig. 1.15. Hybrid automaton of the automatic gearbox

Dynamical model. The gearbox is modeled here with only the velocity as
a continuous state variable

x(t) = (v(t) TI(t))
T.

The transmission influences the torque T (t) and the angular velocity ω(t) of
the motor according to

Tw(t) = p(q) T (t) = p(q) u(t)

ωw(t) =
1

p(q)
ω(t),

where Tw(t), ωw(t) are respectively the torque and the velocity of the wheels,
and p(q) denotes the transmission ratio of the gearbox, which is obtained from
the ratio pr(q) used in Table 1.5 by

pr(q) =
p(q)

r
,

where r is the wheel radius.
The relations between the torque and the force F (t) accelerating the vehi-

cle and between the velocity of the vehicle and the angular velocity are given
by

F (t) =
Tw(t)

r
v(t) = r ωw(t).



22 Introduction to hybrid systems

Applying Newton’s law of motion leads to the vehicle dynamics

mv̇(t) = F (t)− Fl(t)

and

v̇(t) =
pr(q)u(t)

m
−

c

m
v(t)2sign v(t)− g sin(d(t)),

where m is the mass of the vehicle and the latter two terms represent the load
force Fl(t) which is assumed to be proportional to the square of the velocity.
The disturbance d(t) is considered as the road angle.

Control tasks. A gear change should occur if ω(t) reaches a high or low
limit ωhigh and ωlow, respectively (Fig. 1.15). According to the relation ω(t) =
pr(q)v(t) the limits correspond to certain velocities of the vehicle. The mode
shifts are given by the switching sets

Sq,q+1 = {v ∈ R | v =
1

pr(q)
ωhigh}

Sq+1,q = {v ∈ R | v =
1

pr(q + 1)
ωlow},

where Sq,q+1 denotes a mode shift from mode q to q + 1 and Sq+1,q a mode
shift from mode q + 1 to q.

The continuous PI-control law with a compensation of the nonlinearities
is given by

u(t) = TP(t) + TI(t) +
c

pr(q)
v(t)2sign v(t),

with

TP(t) = kr(q)(vref(t)− v(t))

ṪI(t) =
kr(q)

TR
(vref(t)− v(t))

where TR is the integration time constant. Every time a new value of the set
point vref(t) is fixed by the driver, the integrator state TI(t) is put to zero
(controlled state jump).

The ride is comfortable if the acceleration is limited, which causes a restric-
tion on the gain kr(q), and if restrictions on the derivative of the acceleration
are imposed. If kr(q) takes a value out of the set

kr(q) ∈ {kr(1), kr(2), kr(3), kr(4)}

no abrupt changes of v̈(t) and v̇(t) occur due to a mode shift if

pr(q)kr(q) = pr(q + 1)kr(q + 1)

pr(q)TI(t̄
−) = pr(q + 1)TI(t̄

+), mode change q → q + 1

pr(q)TI(t̄
−) = pr(q − 1)TI(t̄

+), mode change q → q − 1.
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Fig. 1.16. Trajectory in the state space

This is called bumpless transfer.

Hybrid behavior. Figure 1.16 illustrates a trajectory in the state space
including jumps in the integrator state at the time the gear changes. The
desired velocity vref(t) is set to 30 m/s and the limits ωhigh and ωlow are
equal to 500 rad/s or 230 rad/s, respectively. Table 1.4 contains all relevant
parameter values.

Table 1.4. Parameter values of the automatic gearbox

Parameter Value

pr(1), pr(2), pr(3), pr(4) 50, 32, 20, 14
c 0.7 kg m−1

m 1500 kg
g 10 m s−2

kr(1), kr(2), kr(3), kr(4), 3.75, 5.86, 9.375, 13.39 N s
TR 40 s

State Value

v, TI ∈ R m s−1, Nm
v(0), TI(0) 14 m s−1, 0 Nm
q ∈ {1, 2, 3, 4}
q(0) 2

Input Value

u ∈ R Nm
vref 30 m s−1

ωhigh 500 rad s−1

ωlow 230 rad s−1

Disturbance Value

d ∈ [−π

2
, ..., π

2
] rad



24 Introduction to hybrid systems

1.3.3 DC-DC converter

Process description. The DC-DC converter is a switched system, where the
controlled switching is necessary for retaining its function of stabilizing the
output voltage. The system has to be stabilized at a limit cycle rather than
in an equilibrium state.

Power converters are widespread industrial devices used, for example, in
variable-speed DC motor drives, computer power supply, cell phones, and
cameras. The main functional principle lies in switching an electrical circuit
among different structures in order to transform a constant or slowly varying
DC voltage into a DC voltage that is independent of the load.

R ( t )

+

E

_

R LL

C

D

v ( t )

R C

_+ u 1 ( t ) S

i L ( t )

Fig. 1.17. Boost converter

This example deals with a boost converter, whose output voltage is higher
than the input voltage. The topology of a DC-DC boost converter is depicted
in Fig. 1.17. The circuit consists of a load R, a capacitor C, an inductor L,
a diode D, and a switch S. It has a fixed input voltage E and a variable
output voltage v(t). Moreover, RC and RL represent the series resistors of the
capacitor and the inductor.

In the on-state the switch is closed, resulting in an increase of the inductor
current iL(t). In the off-state the switch is open. The only path for the current
is through the flyback diode, the capacitor and the load, and then the current
ramps down. This situation results in transferring the energy accumulated in
the inductance during the on-state into the capacitor. The process repeats
cyclically, whereas the boost converter operates with the switching period TS

and the duty cycle d1(t), which corresponds to the ratio of activation duration
of an on-state mode to the period. The duty cycle is considered as the system
input u1(t) = d1(t) ∈ [0, 1].

Hybrid phenomena. The boost converter is a hybrid system with the three
operation modes

q(t) ∈ {1, 2, 3}
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summarized in Table 1.5. It is a second-order system with the continuous state
variables iL(t) and v(t)

x(t) = (iL(t) v(t))T.

The switching scheme of the converter expressed by an automaton is shown
in Fig. 1.18, where n denotes the cycle index.

Table 1.5. Modes of the boost converter

q(t) S iL(t)

1 closed iL > 0
2 opened iL > 0
3 opened iL = 0

q = 1 q = 2

t = ( n � 1 + u 1 ) T S

t = n T S

q = 3

i L = 0t = n T S

a u t o n o m o u s

s w i t c h i n g

Fig. 1.18. Hybrid automaton of the boost converter

If the current through the inductor never falls to zero the boost converter
operates in continuous conduction mode (CCM), in which the switch and
the diode are turned on and off in a cyclic and complementary manner and
merely the modes q = 1 and q = 2 are accessible. Switching to the third mode
occurs autonomously if the current falls to zero (discontinuous conduction
mode (DCM)).

Dynamical model. The affine state-space model of the converter

ẋ(t) = A(q)x(t) +B(q) (1.2)

is given with the following matrices:

• q(t) = 1 :
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A(1) =

(

−RL

L
0

0 − 1
(R+RC)C

)

B(1) =

(

1
L

0

)

E

• q(t) = 2 :

A(2) =

(

− 1
L

(

RL + RCR
R+RC

)

1
L

(

−1 + R
R+RC

)

R
(R+RC)C − 1

(R+RC)C

)

B(2) =

(

1
L

0

)

E

• q(t) = 3 :

A(3) =

(

0 0
0 − 1

(R+RC)C

)

B(3) =

(

0
0

)

E.

Fig. 1.19. Stationary behavior of the boost converter (left) and limit cycle (right)

Hybrid behavior. Figure 1.19 (left) shows the stationary behavior of iL(t)
and v(t) of the boost converter operating in CCM with a fixed input u1(t) =
0.5 and a constant disturbance R(t) = 10 Ω. In Fig. 1.19 (right) the stationary
behavior represented by a limit cycle is shown. All parameter values of the
converter are listed in Table 1.6.
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Table 1.6. Values of circuit components

Component Value

E 20 V
L 1 mH
RL 0.1 Ω
C 10 µF
RC 0.06 Ω
TS 0.1 ms

State Value

iL, v ∈ R A, V
q ∈ {1, 2, 3}

Input Value/range

u1 ∈ [0, 1]

Disturbance Values/ranges

R ∈ R Ω (10 Ω)

Bibliographical notes

There are several excellent introductions explaining the phenomena of hybrid dy-
namical systems, e.g. [Branicky, 2005].

Hybrid systems are dealt with in monographs, that all consider particular
subclasses of hybrid models, such as [van der Schaft and Schumacher, 2002] focus-
ing on complementarity systems, [Johansson, 2003] on piecewise linear systems,
[Schröder, 2003] on quantized systems and [Liberzon, 2003] on switched systems.
Collections of papers on hybrid systems, besides the proceedings of the annual con-
ferences on hybrid systems, can be found in [Engell et al., 2002], [R. Johansson,
2002], [Hristu-Varsakelis and Levine, 2005], and [C. Cassandras, 2007].

Example 1.3 illustrates hybrid system behavior by means of a chaotic oscillator,
which is described, for example, in [Saito, 1985; T. Tsubone, 1989].

The running examples represent rather simplified descriptions of real-world
applications of hybrid systems, which are developed on the basis of the references
[Blanke et al., 2006] for the two-tank system, [Middlebrook and Cuk, 1976] for the
DC-DC converter.





References

M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki. Diagnosis and Fault-
Tolerant Control. Springer-Verlag, Heidelberg, 2006.

M.S. Branicky. Introduction to hybrid systems. In D. Hristu-Varsakelis and
W.S. Levine (eds.), Handbook of Networked and Embedded Control Systems,
pages 91–116, Boston: Birkhauser, 2005.

B. Brogliato. Nonsmooth Impact Mechanics. Models, Dynamics and Control,
volume 220 of Lecture Notes in Control and Information Sciences. Springer,
London, 1996.

J. Lygeros C. Cassandras, editor. Stochastic Hybrid Systems. Taylor & Francis,
2007.

S. Engell, G. Frehse, and E. Schnieder, editors. Modelling, Analysis, and
Design of Hybrid Systems. Springer-Verlag, 2002.

W.P.M.H. Heemels, M.K. Camlibel, and J.M. Schumacher. On the dy-
namic analysis of piecewise-linear networks. IEEE Trans. on Circuits and
Systems–I: Fundamental Theory and Applications, 49(3):315–327, March
2002.

D. Hristu-Varsakelis and W. S. Levine, editors. Handbook of Networked and
Embedded Control Systems. Birkhäuser, 2005.
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