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Receding horizon approaches for route choice control

of automated baggage handling systems

Alina N. Tarău, Bart De Schutter, and Hans Hellendoorn

Abstract— State-of-the-art baggage handling systems trans-
port luggage in an automated way using destination coded
vehicles (DCVs). These vehicles transport the bags at high
speeds on a “mini” railway network. Currently, the networks
are simple and the performance of the system is limited. In the
research we conduct, more complex networks are considered.
In order to optimize the performance of the system we compare
several predictive control methods that can be used to route the
DCVs through the track network. More specifically, we consider
centralized, decentralized, and distributed model predictive
control (MPC). To assess the performance of the proposed
control approaches, we consider a simple benchmark case study,
in which the methods are compared for several scenarios. The
results indicate that the best performance of the system is
obtained when using centralized MPC. However, centralized
MPC becomes intractable when the number of junctions is
large due to the high computational effort this method requires.
Decentralized and distributed MPC offer a balanced trade-off
between computation time and optimality.

I. INTRODUCTION

The baggage handling system (BHS) of an airport is one

of the most important factors that determine the airport’s

efficiency and reliability. The first objective of a BHS is to

transport all the checked-in or transfer bags to the corre-

sponding end points1 before the planes have to be loaded.

However, due to the airports’ logistics, an end point is

allocated to a plane at a given time before the departure

of the plane. Hence, the BHS performs optimally if each of

the bags to be handled arrives at its given end point in a

specific time window.

Currently, the fastest way to transport the luggage is to

use destination coded vehicles (DCVs). A DCV is a metal

cart with a plastic tub on top. These carts transport the bags

at high speeds on a “mini” railway network.

Controllers that solve the low-level control problems (such

as coordination and synchronization when loading the bags

onto a DCV and when unloading a DCV, or velocity control

for each DCV such that collisions are avoided) are already

present in the system. In this paper we consider higher-

level control problems the route choice control of DCVs

such that the performance of the system is optimized. Since

we need the bags at their end point within a given time
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1An end point is the place where the bags are lined up, waiting to be
loaded onto the plane.

end points

unloading stations

loading stations

track network
(black box)

loading conveyorsDCVs
buffer of

L1 L2 LL

U1 U2 UU

Fig. 1. Baggage handling system using DCVs.

window, we cannot use solutions found in literature for

solving the shortest-path or shortest-time problems (see e.g.

[1], [2]). Also, we do not solve the problem of scheduling

and routing automated guided vehicles as in e.g. [3]. In this

paper we compare advanced control methods that can be used

to solve our routing problem viz. centralized, decentralized,

and distributed model predictive control.

The paper is organized as follows. In Section II, a

continuous-time event-driven model of the system is pre-

sented. Afterwards, in Section III, the global performance

index is elaborated. In Section IV, we propose advanced

control methods for computing the route of each DCV in

a centralized, a decentralized2, and a distributed3 manner.

The analysis of the simulation results and the comparison

of the proposed control methods are elaborated in Section

V. Finally, in Section VI, conclusions are drawn and the

directions for future research are presented.

II. EVENT-DRIVEN MODEL

To illustrate our approaches we consider a DCV-based

BHS as sketched in Figure 1. This system operates as

follows: given a dynamic demand of bags (identified by

their unique code) and a buffer of empty DCVs for each

loading station, together with the network of tracks, the

optimal route of each DCV (from a given loading station

to the corresponding unloading station) has to be computed

subject to operational and safety constraints such that the

performance of the system is optimized.

We consider a BHS with L loading stations and U un-

loading stations as depicted in Figure 1. Accordingly, we

define the L-tuple T = (tarrival,1, tarrival,2, . . . , tarrival,L) that

2If the local control actions are computed without any communication or
coordination between the local controllers, the control approach is said to
be decentralized.

3If the local control actions are computed considering also communication
and coordination between neighboring controllers, then the control approach
is said to be distributed.
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Fig. 2. Incoming and outgoing links at a junction. The switch-in and
switch-out are positioned on link 1.

comprises the sequences of bag arrival times tarrival,ℓ =
[tarrival,ℓ,1 . . . tarrival,ℓ,Nℓ

]T with ℓ ∈ {1,2, . . . ,L} and Nℓ the

number of bags that will arrive at loading station Lℓ during

the entire simulation period. We also consider that the track

network has S junctions S1, S2,. . . , SS. Note that without

loss of generality we can assume that each junction has

maximum 2 incoming links and maximum 2 outgoing links,

both indexed by l ∈ {0,1} as sketched in Figure 2. Each

junction has a switch going into the junction (called switch-

in hereafter) and a switch going out of the junction (called

switch-out hereafter).

There are five types of events that can occur:

• loading a new bag into the system

• unloading a bag that arrives at its end point

• updating the position of the switch-in

• updating the position of the switch-out

• updating the speed of a DCV.

The model of the BHS is an event-driven one consisting of

a continuous part describing the movement of the individual

vehicles transporting the bags through the network, and of

the discrete events listed above.

Let X be the number of bags that BHS has to handle and

Xcrt the number of bags that entered the track network up

to the current time instant tcrt ≤ t0 +Tmax with t0 the initial

simulation time and Tmax the maximum simulation period.

Let DCVi denote the DCV that transports the ith bag that

entered the track network up to the current time instant, i≤
Xcrt. Assuming that the velocity of each DCV is piecewise

constant, the model of the BHS is given by the algorithm

below.

According to the model, for each bag that has to be

handled, we compute the time instants when the bag en-

ters and exits the track network. Let tload,i denote the

time instant when the ith bag that entered the track

network is loaded onto a DCV and let tunload,i denote

the time instant when the same bag is unloaded at the

corresponding end point. Consequently, we denote the

model of the BHS as t = M (T ,x(t0),u), where t =
[tload,1 . . . tload,X tunload,1 . . . tunload,X ]

T, x(t0) is the initial state

of the system (i.e. position of switches and position and

speed of DCVs at time instant t0), and u is the route control

sequence.

Algorithm 1. Model of the BHS

1: tcrt← t0
2: while tcrt ≤ t0 +Tmax do

3: for ℓ= 1 to L do

4:
τload,ℓ ← time that will pass until the next

loading event of Lℓ

5: end for

6: for ℓ= 1 to U do

7:
τunload,ℓ ← time that will pass until the next

unloading event of Uℓ

8: end for

9: for s = 1 to S do

10:
τswitch in,s ← time that will pass until the next

switch-in4 event at Ss

11:
τswitch out,s ← time that will pass until the next

switch-out5 event at Ss

12: end for

13: for i = 1 to Xcrt do

14:

τspeed update,i ← time that will pass until

the next speed-update

event of DCVi

15: end for

16:

τmin ←min( min
ℓ=1,...,L

τload,ℓ, min
ℓ=1,...,U

τunload,ℓ,

min
s=1,...,S

τswitch in,s, min
s=1,...,S

τswitch out,s,

min
i=1,2,...,Xcrt

τspeed update,i)

17: tcrt← tcrt + τmin

18: take action (i.e. load, unload, switch-in update, switch-

out update, speed-update)

19: update the state of the system

20: end while

If multiple events occur at the same time, then we take all

these events into account when updating the state of the

system (i.e. the position and the speed of DCVs, and the

position of switch-in and switch-out at junctions) at step 19.

The system obeys to operational constraints derived from

the mechanical and design limitations of the system such as:

C1: the speed of each DCV is bounded between 0 and vmax

C2: the position of a switch at a junction can change after

minimum τx > 0 time units in order to avoid chattering

These constraints are denoted as C (vmax,τx)≤ 0.

III. GLOBAL PERFORMANCE INDEX

In this section is defined the global performance index J

that will be used in this paper.

Since the BHS performs successfully if all the bags are

transported to the corresponding end point before a given

time instant, from a central point of view, the primary ob-

jective is the minimization of the overdue time. A secondary

objective is the minimization of the additional storage time

at the end point. This objective is required due to the intense

utilization of the end points in a busy airport. Hence, one

way to construct the objective function Jpen,i corresponding

to the ith bag that entered the network, i ∈ {1,2, . . . ,X}, is

to penalize the overdue time and the additional storage time.

Accordingly, as sketched in Figure 3, we define the following

penalty for DCVi:

Jpen,i(t) = σi max(0, t− tload plane,i)+

λ1 max(0, tload plane,i− τmax storage,i− t) (1)

where tload plane,i is the time instant when the end point closes

and the bags are loaded onto the plane, σi is the static priority

of the bag on DCVi (the flight priority), and τmax storage,i
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Fig. 3. Objective function Jpen,i.

is the maximum possible time window for which the end

point corresponding to DCVi is open for that specific flight.

The weighting parameter λ1 ≤ 1 represents the relative cost

between buying additional storage space at the end points

and the cost of customers that have their baggage delayed.

In order to minimize the energy consumption we also in-

clude the dwell time. Then we obtain the following objective

function:

Ji(t) = Jpen,i(t)+λ2(t− tload,i) (2)

where λ2 is a small weight factor (λ2≪ λ1).

The final performance index is given by Jtot =

∑X
i=1 Ji(tunload,i). Note that the objective function Ji(tunload,i)

depends on the arrival time of DCVi at its corresponding end

point, and implicitly it depends on the routes of all the X

bags to be handled.

IV. CONTROL APPROACHES

In this section we determine the route of each DCV

transporting a bag. We assume that the velocity of each

DCV is always at its maximum, vmax, unless overruled by

the local on-board collision avoidance controller. These col-

lision avoidance controllers ensure a minimum safe distance

between DCVs and also hold DCVs at switching points, if

required.

A. Centralized model predictive control

Model predictive control (MPC) is an on-line model-based

predictive control design method (see e.g [4], [5], [6]). In

the basic MPC approach, given a horizon N, at step k, the

future control sequence u(k + 1),u(k + 2), . . . ,u(k + N) is

computed by solving a discrete-time optimization problem

over a period [tk, tk + TsN], where tk = t0 + kTs with Ts

the sampling time, so that a cost criterion is optimized

subject to the operational constraints. MPC uses a receding

horizon approach. So, after computing the optimal control

sequence, only the first control sample is implemented, and

subsequently the horizon is shifted. Next, the new state of

the system is measured or estimated, and a new optimization

problem at time tk+1 is solved using this new information.

In this way, also a feedback mechanism is introduced.

We define now a variant of MPC, where k is not a

time index, but a bag index. In this context bag step k

denotes the time instant when the kth bag entered the track

network. Also, the horizon N corresponds to the number

of bags that we let enter the track network after bag step

k. Computing the control u(k + j), with j ∈ {1,2, . . . ,N}

consists in determining the route of DCVk+ j. Assume that

there is a fixed number R of possible routes from a loading

station to an unloading station. The R routes are indexed

1,2, . . . ,R. Let r(i) ∈ {1,2, . . . ,R} denote the route of DCVi.

We assume that, at bag step k the route is selected once

for each DCV without being adjusted after the decision has

been made. Now let r(k) denote the future route sequence

for the next N bags entering the network after bag step k,

r(k) = [r(k+1)r(k+2) . . . r(k+N)]T.

The total performance function of the centralized MPC is

defined as JCMPC,k,N(r(k)) = ∑k+N
i=1 Ji(t̂unload,i) where t̂unload,i

is the estimated arrival time of DCVi depending on the routes

of the first k+N bags that entered the network. Accordingly,

the MPC optimization problem at bag step k is defined as

follows:

P1: min
r(k)

JCMPC,k,N(r(k))

subject to

t = M (T ,x(tk),r(k))
C (vmax,τx)≤ 0

Centralized MPC can compute on-line the route of each DCV

in the network, but it requires large computational efforts

as will be illustrated in Section V. Therefore, we will also

propose decentralized and distributed control approaches that

offer a trade-off between the optimality of the performance

of the controlled system and the time required to compute

the solution.

B. Decentralized model predictive control

In decentralized model predictive route choice control we

consider local subsystems, each consisting of a junction Ss

with s ∈ {1,2, . . . ,S}, its incoming and its outgoing links.

For the sake of simplicity of notation, in the remainder of

this subsection, we will not explicitly indicate the subscript

s for variables that refer to junction Ss.

Our prediction model is a simulation of the local system.

In the prediction model we index the bags that successively

cross Ss during the entire simulation period [t0, t0 + Tmax]
as b1,b2, . . . ,bNbags

, where Nbags is the number of bags that

cross Ss during [t0, t0 +Tmax]. The optimization is performed

at every junction Ss over the next N ≤ Nbags bags that pass

the junction. Note that when we solve the local optimiza-

tion problem we consider only the bags that travel on the

incoming links of Ss at the current time instant.

Every time a bag has crossed the junction we update the

local control. So, assume that bag bk has crossed Ss. The

time instant at which this happens is denoted by tcross Ss,bk
.

For the sake of simplicity of notation, we will not explicitly

include the time argument when specifying the control laws

and related variables since they always refer to tcross Ss,bk
.

Next we compute the control sequence6 u(k) = [usw in(k+
1) . . . usw in(k + N)usw out(k + 1) . . . usw out(k + N)]T corre-

sponding to the next N bags bk+1,bk+2, . . . ,bk+N that will

6For junctions with only one incoming link we have u(k) = [usw out(k+
1) . . . usw out(k+N)]T, while for junctions with only one outgoing link we
have u(k) = [usw in(k+1) . . . usw in(k+N)]T.



cross the junction by solving an optimization problem. The

control decisions usw in(k+1), . . . ,usw in(k+N) of the switch

into Ss determine the order in which the bags cross the junc-

tion and the corresponding time when the bags bk+1, . . . ,bk+N

enter Ss. The control decision usw out(k+ j) for j = 1,2, . . . ,N

of the switch out of Ss influences the route that bag bk+ j will

take.

When solving the local MPC optimization problem, we

will use a local performance index JDMPC,k,N . The local

performance index is computed via a simulation of the local

system for the next N bags that will cross the junction. This

goes as follows. At bag step k ≥ 0, the initial state of the

local system consists of the positions of the DCVs traveling

in the local system and the positions of the switch-in and

switch-out of Ss at the time instant when bag k crossed the

junction (if k = 0 we consider the initial state of the local

system at time instant t0). Next, at bag step k, we compute

the release rate of each outgoing link of Ss. The computation

of the release rate is required due to the fact that we use a

local simulation as prediction. Recall that the outgoing links

of Ss are indexed by l ∈{0,1}. Then let nl denote the number

of DCVs that left the outgoing link l within the time window

[tcross Ss,bk
− τq, tcross Ss,bk

], of length τq time units. Then the

fixed release rate of link l for the prediction model at bag

step k is given by ζl,k =
nl

τq
. However, for links that connect

Ss with unloading stations, the release rate is by definition

unbounded. The control of the switch-out usw out(k+ j) with

j ∈ {1,2, . . . ,N} represents the position of switch-out when

bag bk+ j will cross Ss, determining the next junction towards

which bag bk+ j will travel. Let us call this junction Snext,k+ j

(note that in fact Snext,k+ j is a function of usw out(k+ j)). For

each possible route r ∈Rnext,k+ j, where Rnext,k+ j is the set

of routes from Snext,k+ j to the corresponding end point of

bag bk+ j, we estimate the time that the DCV transporting

bag bk+ j needs to reach its end point via route r as follows:

t̂unload,k+ j,r = tleave local system,k+ j + τapprox,r

where tleave local system,k+ j is the time instant (predicted by the

local simulation model) at which bag bk+ j leaves the link

Ss→ Snext,k+ j for the release rate ζusw out(k+ j),k, and τapprox,r

is the static time period that the DCV carrying bag bk+ j

would need to travel the route r ∈Rnext,k+ j with vmax. Then

the local objective function JDMPC,k,N(u(k)) is defined as:

JDMPC,k,N(u(k)) =
N

∑
j=1

Jk+ j(t̂
∗
unload,k+ j)

with t̂∗unload,k+ j = argmin
{t̂unload,k+ j,r |r∈Rnext,k+ j}

Jk+ j(t̂unload,k+ j,r).

So, in decentralized route choice MPC, at step k, where k

is the number of DCVs passing junction Ss, the future control

sequence of the switches u(k) is computed by solving an

optimization problem over a horizon of N bags traveling on

the incoming links of Ss so that the local performance func-

tion JDMPC,k,N(u(k)) is optimized subject to the operational

constraints. Accordingly, the MPC optimization problem at

junction Ss and bag step k is defined as follows:

a

level κ−1

level κlevel κ

level κ +1 level κ +1

level κ +1 level κ +1

level κ +2level κ +2

Ss1
Ss2

Ss3 Ss4

Ss5
Ss6

Fig. 4. Levels of parallel computation.

P2: min
u(k)

JDMPC,k,N(u(k))

subject to

t = M ((T ,x(tk),u(k))) when considering only

Ss with its incoming and outgoing links

C (vmax,τx)≤ 0

After computing the future control only usw in(k + 1) and

usw out(k + 1) are applied. Next the state of the system is

updated. At bag step k+1, a new optimization will be then

solved over the next N bags.

The main advantage of decentralized MPC consists in a

smaller computation time than the one needed when using

centralized control due to the fact that we now compute in

parallel the solution of a smaller and simplified optimization

problem.

C. Distributed model predictive control

One may increase the performance of the decentralized

control proposed above by implementing a distributed ap-

proach that uses additional communication and coordination

between neighboring junctions. Data will be communicated

between consecutive levels of influence. A level of influence

κ consists of junctions for which we compute the local

control in parallel. Let us now assign levels of influence to

each junction in the network. We assign influence level 1 to

each junction in the network connected via a direct link to a

loading station. Next, we consider all junctions connected by

a link to some junction with influence level 1, and we assign

influence level 2 to them. In that way we recursively assign

an influence level to each junction with the constraint that

at most 2 influence levels are assigned to a given junction7

(see Figure 4 where {s1,s2,s3,s4,s5,s6} ⊆ {1,2, . . . ,S}).
In this section we consider that the communication of the

future actions is performed downstream. This means that the

local controller of each junction on influence level κ = 1

solves the local optimal control problem P2 as described in

Section IV-B. Furthermore, for each junction on the same

influence level κ > 1, the intended switch control sequence

of the junctions on influence level κ − 1 is communicated.

So, the junctions on influence level κ use as additional

information the expected arrival time of the bags sent from

influence level κ − 1. Then we compute for each junction

on influence level κ the local solution of P2 over a horizon

7The constraint that at most κmax influence levels are assigned to a
junction influences the computational complexity.



of N bags traveling on the incoming links of the junction

or coming from the neighboring junctions on influence level

κ−1.

The computation of the local control is performed accord-

ing to the following algorithm where K is the largest level

of influence assigned in the network.

Algorithm 2. Distributed computation of local control

1: for κ = 1 to K do

2: compute in parallel local switching sequences for

influence level κ taking into account the control on

influence level κ−1

3: end for

Every time a bag crosses a junction we update the local

control of all junctions. Recall that the controllers of the

junctions on level κ have to wait for the completion of the

computation of the switching sequences of the controllers on

the previous level before starting to compute their future con-

trol action. Therefore, when comparing with decentralized

MPC, such distributed MPC may improve the performance

of the system, but at the cost of higher computation time due

to the required synchronization and iteration in computing

the control actions.

D. Optimization methods

When using centralized MPC, at each bag step k, the future

route sequence r(k+1),r(k+2), . . . ,r(k+N) is computed by

solving P1 over a horizon of N bags so that JtotCMPC,N(r(k))
is minimized subject to the system’s dynamics and the

operational constraints. So, the control has an integer rep-

resentation. Therefore, to solve the optimization problem P1

one could use e.g. genetic algorithms, simulated annealing,

or tabu search [7], [8], [9].

Recall that when using decentralized or distributed MPC,

the control variables for switch-in and switch-out at junction

Ss, represent the positions 0 or 1 that the switch-in and

switch-out of Ss should have when the DCV carrying bag i

will pass the junction. Hence, also in these cases, the control

variable has an integer representation. In order to solve the

optimization problem P2 one can use integer optimization

once more.

V. CASE STUDY

In this section we compare the proposed control methods

based on a simulation example.

A. Set-up

We consider the network of tracks depicted in Figure 5

with 6 loading stations, 1 unloading station, and 10 junctions.

We have considered this network because on the one hand it

is simple, allowing an intuitive understanding of and insight

in the operation of the system and the results of the control,

and because on the other hand, it also contains all the relevant

elements of a real set-up.

We assume that the velocity of each DCV varies between

0 m/s and vmax = 20 m/s, being controlled by on-board colli-

sion avoidance controllers. The lengths of the track segments

are indicated in Figure 5.
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Fig. 5. Case study for a DCV-based BHS.

In order to faster assess the efficiency of our control

method we assume that we do not start with an empty

network but with a network already populated by DCVs

transporting bags.

B. Scenarios

For the calibration of the weighting parameters we have

defined 27 scenarios, each consisting of a stream of 120 bags.

We have also considered different classes of demand

profiles at each loading station and different initial states

of the system where 60 DCVs evenly distributed on links

are already transporting bags in the network, running from

loading stations L1,L2, . . . ,L6 to junctions S4,S2,S1,S3,S7,

from S1 to S2, and from S1 to S3. Their position at t0 and

their static priorities (σi) are assigned randomly. In scenarios

1, . . . ,6 it is considered that all the bags have to be loaded

onto the same plane. In scenarios 7, . . . ,27, we consider that

the group of bags transported by DCVs through the network

before t0 have to be loaded onto plane A. The rest of the bags

have to be loaded onto plane B. Moreover, plane A departs

earlier than plane B. Also, in scenarios 1, . . . ,18 we analyze

the performance of the BHS when the last bag that enters the

system can arrive in time at the corresponding end point if

the DCV has an average speed of 12m/s, while in scenarios

19, . . . ,27, we examine the situation where the transportation

of the bags is very tight (the last bag that enters the system

can only arrive in time at the corresponding end point if the

shortest path is used and its DCV is continuously running

with maximum speed).

C. Results

To solve the optimization problems P1 and P2 we have

chosen the genetic algorithm of the Matlab optimization tool-

box Genetic Algorithm and Direct Search implemented via

the function ga with multiple runs since simulations show

that this optimization technique gives good performance,

with the shortest computation time.

Based on simulations we now compare, for the given

scenarios, the proposed control methods. In Figure 6 we plot
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Fig. 6. Comparison of the proposed control approaches.

the results obtained when using centralized, decentralized,

and respectively distributed MPC.

Clearly the best performance of the system is obtained

when using centralized switch control. However, centralized

control becomes intractable in practice when the number

of junctions is large due to the large computation time8

required. The simulations indicate that both decentralized

MPC and distributed MPC offer a balanced trade-off between

computation time and optimality. However, the results con-

firm that the communication of the intended control action

between neighboring junction may increase the performance

of the system, but at the cost of bigger computational effort.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have considered the baggage handling

process in large airports using destination coded vehicles

(DCVs) running at high speeds on a “mini” railway network.

A fast event-driven model of the continuous-time baggage

handling process has been determined. In particular we

consider the route choice control problem for each DCV

transporting bags on the track network. In order to optimize

the performance of the system, we have compared three

8The simulations were performed on a 3.0 GHz P4 with 1 GB RAM.

predictive control methods that can be used to route the

DCVs through the network. These approaches are central-

ized, decentralized, and distributed model predictive control

(MPC).

The results show that the best performance of the system

is obtained using centralized control. Moreover, centralized

MPC is not tractable in practice due to the large com-

putational effort that this method requires. Decentralized

and distributed MPC offer a balanced trade-off between the

optimality and the time required to compute the route for

each DCV.

In future work we will analyze more variants of distributed

control, where e.g. we combine the downstream optimization

with the upstream coordination, and assess the scalability

and benefits that can be obtained by using such distributed

control. We will also apply the proposed approaches to real-

life case studies.
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[5] F. Allgöwer, T. Badgwell, S. Qin, J. Rawlings, and S. Wright, “Nonlin-

ear predictive control and moving horizon estimation – an introductory
overview,” in Advances in Control: Highlights of ECC’99. London,
UK: Springer, 1999, pp. 391–449.

[6] E. Camacho and C. Bordons, Model Predictive Control in the Process

Industry. Berlin, Germany: Springer-Verlag, 1995.
[7] C. Reeves and J. Rowe, Genetic Algorithms - Principles and Perspec-

tives: A Guide to GA Theory. Norwell, Massachusetts, USA: Kluwer
Academic Publishers, 2002.

[8] K. Dowsland, “Simulated annealing,” in Modern heuristic techniques

for combinatorial problems, C. Reeves, Ed. New York, USA: John
Wiley & Sons, Inc., 1993, ch. 2, pp. 20–69.

[9] F. Glover and F. Laguna, Tabu Search. Norwell, Massachusetts, USA:
Kluwer Academic Publishers, 1997.


