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Coordinated Distributed Model Predictive Reach Control

of Irrigation Canals

Rudy R. Negenborn, Peter-Jules van Overloop, and Bart De Schutter

Abstract— Irrigation canals are large-scale systems, covering
vast geographical areas, and consisting of many interconnected
canal reaches that interact with control structures such as
pumps and gates. The control of such irrigation canals is
usually done in a manual way, in which a human operator
travels along the irrigation canal to adjust the settings of the
gates and pumps in order to obtain a desired water level. In
this paper we discuss how distributed model predictive control
(MPC) can be applied to determine autonomously what the
settings of these control structures should be. In particular,
we propose the application of a distributed MPC scheme for
control of the West-M irrigation canal in Arizona. We present
a linearized model representing the dynamics of the canal, we
propose a distributed MPC scheme that uses this model as
a prediction model, and we illustrate the performance of the
scheme in simulation studies on a nonlinear simulation model
of the canal.

Index Terms— Distributed control, model predictive control,
large-scale systems, irrigation canals.

I. INTRODUCTION

Irrigation canals are used for transporting water from

source nodes, such as lakes, large rivers, etc., to sink nodes,

such as small rivers and pipes that transport water to agri-

cultural fields of farmers. Irrigation canals consist of many

connected canal reaches, the inflow or outflow of which can

be controlled by adjusting structures such as overshot or

undershot gates, activating pumps, filling or draining water

reservoirs, and controlled flooding of water meadows or of

emergency water storage areas [1].

In the near future the importance of efficient and reliable

irrigation management systems for delivering water to users

will keep on increasing, among others due to the effects of

global warming (more heavy rain during the spring season,

but possibly also drier summers).

Due to the large scale of irrigation networks, control of

such networks in general cannot be done in a centralized

way, in which from a single location measurements from the

whole system are collected and actions for the whole system

are determined. Instead, control is typically decentralized

over several local control bodies, each controlling a particular

part of the network [2]. Currently, coordination between such

decentralized local control bodies is either non-existing, or
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takes place at a very slow time scale, i.e., years, in the form

of agreements laid out in contracts.

In order to improve the operation of irrigation systems

the controllers of different parts of the irrigation network

should cooperate and coordinate their local water manage-

ment actions on a daily, hourly, or even minute basis, such

that predictions or forecasts of expected water consumption,

future rain fall, future droughts, future arrival of increased

water flow via rivers, etc. can be taken into account using

various weather and hydrological sensors, and prediction

models. Model predictive control (MPC) is a control strategy

that enables such a control framework.

In [3] an MPC scheme is proposed that is used by a

single controller to determine in a centralized way the set-

points for local flow controllers in an irrigation canal. In

[4] we made a first attempt to implement a distributed

MPC scheme to take over this task. In that paper, a highly

simplified model of the so-called West-M irrigation canal is

studied. The assumption is made that local PI controllers are

present to control the control gates and that constraints on the

minimum and maximum water levels and on the minimum

and maximum gate positions do not have to be taken into

account. In [4], MPC controllers are then designed for each

individual control structure. In addition, simulation studies

are carried out only on a linearized model of the system.

In this paper, we make a next step for obtaining a

distributed MPC controller that can be used in practice. We

consider control of a validated, nonlinear model of the West-

M canal using a distributed MPC scheme. Hereby, it is not

assumed that local PI controllers are present. Instead, the

changes in the positions of gates are determined directly. In

addition, operational constraints on the water levels and gate

positions are taken into account. Moreover, we design MPC

controllers for controlling parts of an irrigation canal consist-

ing of several, instead of single, canal reaches and control

structures. Furthermore, we perform simulation studies on

the nonlinear, instead of a linear, system.

This paper is organized as follows. In Section II, we briefly

outline the distributed MPC scheme that we employ. In

Section III, we discuss a linearized model of the dynamics of

the West-M irrigation canal, and set up the distributed MPC

control scheme for control of this system. In Section IV,

we illustrate the potential of the proposed approach through

simulation studies on a nonlinear simulation model of the

canal. Section V concludes the paper and contains directions

for future research.



II. DISTRIBUTED MODEL PREDICTIVE CONTROL

In distributed MPC the control of a system is divided over

several controllers. An individual controller on the one hand

obtains measurements from and determines actions for its

part of the network, and on the other hand communicates

with other controllers in order to obtain coordination and

to improve the overall network performance. To actually

determine which actions to take, each controller uses MPC.

In [5] we have proposed a distributed MPC scheme for

control of general transportation networks. Irrigation canals

are a particular type of transportation networks, and there-

fore this scheme is also suitable for distributed control of

irrigation canals. Below, we briefly outline the scheme and

the assumptions made on the system under control.

A. Dynamics

Consider a network divided into n subnetworks. It is

assumed that the dynamics of subnetwork i ∈ {1, . . . , n} are

given by a deterministic linear discrete-time time-invariant

model (possibly obtained after symbolic or numerical lin-

earization of a nonlinear model in combination with dis-

cretization):

xi(k + 1) = Aixi(k) +B1,iui(k)

+B2,idi(k) +B3,ivi(k) (1)

yi(k) = Cixi(k) +D1,iui(k)

+D2,idi(k) +D3,ivi(k), (2)

where at control step k, for subnetwork i, xi(k) ∈ R
nxi

are the local states, ui(k) ∈ R
nui are the local inputs,

di(k) ∈ R
ndi are the local known or measureable exogenous

inputs, yi(k) ∈ R
nyi are the local outputs, vi(k) ∈ R

nvi

are the remaining variables influencing the local dynamical

states and outputs, and Ai ∈ R
nxi

×nxi , B1,i ∈ R
nxi

×nui ,

B2,i ∈ R
nxi

×ndi , B3,i ∈ R
nxi

×nvi , Ci ∈ R
nyi

×nxi , D1,i ∈
R

nyi
×nui , D2,i ∈ R

nyi
×ndi , D3,i ∈ R

nyi
×nvi determine

how the different variables influence the local states and

outputs of subnetwork i. The vi(k) variables represent the

influence of other subnetworks on subnetwork i, and are

therefore equal to some of the variables of models rep-

resenting dynamics of neighboring subnetworks. So-called

interconnecting input variables win,ji(k) ∈ R
nwin,ji are the

variables of subnetwork i that are influenced by subnetwork

j, i.e., a selection of vi(k). So-called interconnecting output

variables wout,ji(k) ∈ R
nwout,ji are the variables of sub-

network i that influence a neighboring subnetwork j, i.e.,

a selection of xi(k), ui(k), and yi(k). Fig. 1 illustrates

the relations between the variables of the models of two

subnetworks.

Let subsystem i be connected to mi neighboring sub-

systems. Let the set of indices of the mi subsystems con-

nected to subsystem i be denoted by the neighbors set

Ni = {ji,1, . . . , ji,mi
}. Define the interconnecting inputs and

outputs for the control problem of controller i at control step

di

ui

vi

xi

yi

dj

uj

vj

xj

yj

win,ji

wout,ji win,ij

wout,ij

Fig. 1. Illustration of the relation between the models and variables of two
subnetworks i and j.

k as:

win,i(k) = vi(k) (3)

wout,i(k) = Ki

[

xT
i (k) uT

i (k) yT
i (k)

]T
, (4)

where Ki is an interconnecting output selection matrix

that contains zeros everywhere, except for a single 1 per

row corresponding to a local variable that corresponds to

an interconnecting output variable. The variables win,i(k),
wout,i(k) are partitioned such that:

win,i(k) =
[

wT
in,ji,1i

(k), . . . ,wT
in,ji,mi

i(k)
]T

(5)

wout,i(k) =
[

wT
out,ji,1i

(k), . . . ,wT
out,ji,mi

i(k)
]T

. (6)

The interconnecting inputs to the control problem of con-

troller i with respect to controller j must be equal to the inter-

connecting outputs from the control problem of controller j
with respect to controller i, since the variables of both control

problems model the same quantity. For controller i this thus

gives rise to the following interconnecting constraints:

win,ji(k) = wout,ij(k) (7)

wout,ji(k) = win,ij(k), (8)

for all j ∈ Ni.

B. Assumptions

It is assumed that each of the subnetworks i ∈ {1, . . . , n}
is controlled by a control controller i that:

• has a prediction model of the form (1)–(2) of the

dynamics of subnetwork i;
• can measure or estimate the state xi(k) of its subnet-

work;

• can estimate exogenous inputs di(k + l) of its sub-

network over a certain horizon of length N , for l =
{0, . . . , N − 1};

• can communicate with neighboring controllers.

C. Control objectives

It is assumed that the controllers are cooperative, meaning

that the individual controllers strive for the best overall

network performance. In addition, it is assumed that the

objectives of the controllers can be represented by convex

functions Jlocal,i, for i ∈ {1, . . . , n}, which are typically lin-

ear or quadratic. Such functions are commonly encountered,

in particular for systems that can be represented by (1)–(2).



D. Distributed MPC scheme

The distributed MPC scheme that we employ comprises

at control step k the following steps:

1) For i = 1, . . . , n, controller i makes a measurement of

the current state of the subnetwork xi(k) and estimates

the expected exogenous inputs di(k + l), for l =
0, . . . , N − 1.

2) The controllers cooperatively solve their control prob-

lems in the following serial iterative way1:

a) Set the iteration counter s to 1 and initialize the

Lagrange multipliers λ̃
(s)

in,ji(k), λ̃
(s)

out,ij(k) arbitrar-

ily.

b) For i = 1, . . . , n, one controller i after an-

other determines x̃
(s)
i (k + 1), ũ

(s)
i (k), w̃

(s)
in,ji(k),

w̃
(s)
out,ji(k) as solutions of the following optimiza-

tion problem:

min Jlocal,i (x̃i(k + 1), ũi(k), ỹi(k))

+
∑

j∈Ni

J
(s)
inter,i (w̃in,ji(k), w̃out,ji(k)) , (9)

subject to the local dynamics (1)–(2) and (3)–(4)

of subsystem i over the horizon, the current state

xi(k), and the known exogenous inputs d̃i(k).
The additional performance criterion Jinter,i in (9)

at iteration s is defined as

J
(s)
inter,i (w̃in,ji(k), w̃out,ji(k)) =

[

λ̃
(s)

in,ji(k)

−λ̃
(s)

out,ij(k)

]T
[

w̃in,ji(k)
w̃out,ji(k)

]

+
γc

2

∥

∥

∥

∥

[

w̃in,prev,ij(k)− w̃out,ji(k)
w̃out,prev,ij(k)− w̃in,ji(k)

]
∥

∥

∥

∥

2

2

,

where ‖a‖2 is the 2-norm of vector a. Further-

more, w̃in,prev,ij(k) = w̃
(s)
in,ij(k) and w̃out,prev,ij(k)

= w̃
(s)
out,ij(k) is the information computed at the

current iteration s for each controller j ∈ Ni

that has solved its problem before controller i in

the current iteration s. In addition, w̃in,prev,ij(k)

= w̃
(s−1)
in,ij (k) and w̃out,prev,ij(k) = w̃

(s−1)
out,ij (k) is

the information computed at the previous iteration

s− 1 for the other controllers. The constant γc is

a positive scalar that penalizes the deviation from

the interconnecting variable iterates that were

computed by the controllers before controller i in

the current iteration and by the other controllers

during the last iteration. The results w̃
(s)
in,ji(k)

and w̃
(s)
out,ji(k) of the optimization are sent to

controller j.

c) Update the Lagrange multipliers,

λ̃
(s+1)

in,ji (k) = λ̃
(s)

in,ji(k)

+ γc

(

w̃
(s)
in,ji(k)− w̃

(s)
out,ij(k)

)

. (10)

1The tilde notation is used to represent variables over the prediction
horizon. E.g., ũi(k) = [ui(k)

T, . . . ,ui(k +N − 1)T]T.

Send λ̃
(s+1)

in,ji (k) to controller j and receive the

multipliers from controller j to be used as

λ̃
(s+1)

out,ij (k).
d) Move on to the next iteration s + 1 and repeat

steps 2b–2c. The iterations stop when the follow-

ing stopping condition is satisfied:
∥

∥

∥

∥

∥

∥

∥

∥









λ̃
(s+1)

in,err,j1,11(k)
...

λ̃
(s+1)

in,err,jn,mnn(k)









∥

∥

∥

∥

∥

∥

∥

∥

∞

≤ γǫ, (11)

with λ̃
(s+1)

in,err,ji(k) = λ̃
(s+1)

in,ji (k) − λ̃
(s)

in,ji(k), and

where γǫ is a small positive scalar and ‖ · ‖∞
denotes the infinity norm.

3) The controllers implement the actions until the begin-

ning of the next control step.

Under the assumptions that we have made on the objective

functions and prediction models the solution of this scheme

converges to the solution that a centralized MPC controller

would have obtained for a sufficiently small γǫ, see [5].

In the next section we discuss how the presented approach

can be used for controlling irrigation canals.

III. CONTROL OF AN IRRIGATION CANAL

Let an irrigation canal be controlled by n controllers. Each

controllers controls the water levels and control structures

in several connected canal reaches. Let there be m canal

reaches. Let the set of canal reaches that controller i ∈
{1, . . . , n} controls be denoted by Ri. Below we describe

for a particular controller the dynamics of the canal reaches

it considers, the operational constraints it has to take into

account, and the formulation of its control goals.

A. Subnetwork dynamics

The subnetwork of controller i consists of several inter-

connected canal reaches that are usually separated by control

structures, such as undershot gates. Next, we model these

components.

1) A single canal reach: The dynamics of canal reaches

can be described in detail using a system of hyperbolic partial

differential equations called the Saint Venant equations [6].

Although a model obtained using such a detailed representa-

tion is desirable for simulation, for control this high level of

detail is usually not necessary and in addition undesired for

computational reasons. Therefore, instead of representing the

reach dynamics with the Saint Venant equations, we employ

the integrator delay model [7], [1], similarly as in [3]. This

model has shown to adequately capture relevant dynamics

[7], and it reduces computations required for simulation of

the dynamics (and consequently model-based optimization)

significantly.

The integrator delay model is a linear discrete-time model,

which models how the water level in the canal changes over

time. Let time be discretized into control steps k ∈ N0

(where N0 are the positive natural numbers) and let the

continuous time between two control steps k and k + 1



replacements

qin,r

qout,r

dg,r
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qin,ext,r

qout,ext,r

hr
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Fig. 2. Illustration of canal reach r and its associated variables.

correspond to Tc ∈ R
+ (s) (where R

+ are the positive real

numbers). Each canal reach is considered to have an inflow

from an upstream canal reach as illustrated in Figure 2. Let

this inflow into reach r be given by qin,r(k) ∈ R
+ (m3/s).

A canal reach has an outflow to a downstream canal reach.

Let qout,r(k) ∈ R
+ (m3/s) denote this outflow. In addition

to this inflow and outflow due to upstream and downstream

canal reaches there can be additional local inflow (e.g., due to

rainfall) and outflow (e.g., due to outflow caused by farmers).

Let such inflow be represented by qext,in,r(k) ∈ R
+ (m3/s)

and such outflow by qext,out,r(k) ∈ R
+ (m3/s). The inflow

qext,in,r(k) and outflow qext,out,r(k) are assumed to be known

or predicted accurately in advance.

Depending on how the inflows and outflows change over

time, the levels of the water in reaches will change. Instead

of considering the levels of the water at each location in

the reaches, the integrator delay model only considers the

level hr(k) ∈ R
+ (m) of the water at the downstream end of

a reach r, since this is usually the place where offtakes are

located. In addition to the amount of inflow and outflow, also

the surface of the reach influences how much the level of the

water will change. Let er(k) ∈ R (m) denote the deviation of

the level of the water in canal reach r from a given reference

water level for that canal reach, i.e., er(k) = hr(k)− href,r,

and let the surface of reach r be cr ∈ R
+ (m2). It takes

some time for a change in the inflow of reach r to result

in a change of the water level at the downstream end of the

reach. Let this delay be kd,r ∈ N0 control steps for reach r.

Using the variables defined above, the model describing

how the level of the water in a single canal reach changes

from one control step k to the next control step k + 1 is

given by:

er(k + 1) = er(k) +
Tc

cr
qin,r(k − kd,r)−

Tc

cr
qout,r(k)

+
Tc

cr
qext,in,r(k)−

Tc

cr
qext,out,r(k),

or,

er(k + 1) = er(k) + ∆er(k) +
Tc

cr
∆qin,r(k − kd,r)

−
Tc

cr
∆qout,r(k) +

Tc

cr
∆qext,in,r(k)−

Tc

cr
∆qext,out,r(k), (12)

where ∆er(k), ∆qin,r(k), ∆qout,r(k), ∆qext,in,r(k), and

∆qext,out,r(k) represent changes in the values of the respective

variables from k − 1 to k.

2) Undershot gates: By adjusting the gate position of

undershot gates flows can be altered. Sometimes a local

flow controller is present that accepts flow set-points and

after that autonomously adjusts the gate position in order to

meet the set-points. However, such a local flow controller is

not always present and we therefore explicitly include the

gate position of undershot gates in the model. In order to do

this, the discharge formula of an undershot gate is linearized.

Under free-flow conditions, the discharge for such a gate at

the upstream end of reach r depends on the water level hr−1

at the downstream end of the upstream reach r−1 and on the

opening of the gate dg,r of reach r. The linearized discharge

can be written down as [3]:

qin,r(k) = qin,r(k − 1) + Ce,r(k)∆hr−1(k)

+ Cu,r(k)∆dg,r(k),

with

Ce,r(k) =
gcw,rWs,rµrdg,r(k)

√

2g(hr−1(k)− (zs,r + µrdg,r(k)))

Cu,r(k) = cw,rWs,rµr

√

2g(hr−1(k)− (zs,r + µrdg,r(k)))

−
gcw,rWs,rµ

2
rdg,r

√

2g(hr−1(k)− (zs,r + µrdg,r(k)))
,

where for reach r, cw,r is a calibration coefficient, Ws,r is

the width of the gate (m), µr is the contraction coefficient,

hr−1(k) is the downstream level of the upstream canal reach

r − 1 (m), g the gravitational acceleration (m/s2), zs,r the

crest level of the gate (m), and dg,r(k) the gate opening (m).

Hence, the following relation for the change in the discharge

can be obtained:

∆qin,r(k) = Ce,r(k)∆er−1(k) + Cu,r(k)∆dg,r(k). (13)

A similar relation is obtained for the downstream discharge

as follows:

∆qout,r(k) = Ce,r+1(k)∆er(k) + Cu,r+1(k)∆dg,r+1(k).
(14)

3) Dependencies on neighboring reaches: The canal

reaches controlled by a single controller are connected to

one another. By (13) and (14) we observe that in order

to evaluate the model of canal reach r, the values of the

variables ∆er−1(k) and hr−1(k) of the upstream canal reach

r−1 and of the variable ∆dg,r+1(k) of the downstream canal

reach r + 1 have to be known.

B. Operational constraints

Several operational constraints have to be satisfied with

respect to the operation of canal reach r:

• There is a maximum value for the change in the gate

position, both upwards and downwards, i.e.,

∆dg,r(k) ≥ ∆dg,r,min (15)

∆dg,r(k) ≤ ∆dg,r,max, (16)

where ∆dg,r,min ≤ 0, ∆dg,r,max ≥ 0.



• The gate position should always be positive and the

gate should not be lifted out of the water. Therefore, a

minimum and a maximum on the absolute gate position

are present, i.e.,

dg,r(k) ≥ 0 (17)

dg,r(k) ≤
2

3
(hr−1(k)− zs,r), (18)

where 2
3 (hr−1(k) − zs,r) is the maximum water level

above the crest.

C. Control objectives

The changes in the gate position determined by controller

i should be chosen in such a way that

1) the deviations of water levels from provided set-points

er are minimized in all canal reaches;

2) the changes in the deviations of the water levels ∆er
from one control step to the next are minimized in

all canal reaches to encourage smooth water level

changes;

3) the changes in the gate positions ∆dg,r are minimized

in all canal reaches to reduce wear of equipment.

The objective function Jlocal,i for controller i is therefore

written as:

Jlocal,i =

N−1
∑

l=0

∑

r∈Ri

qe (er(k + 1 + l))
2

+

N−1
∑

l=0

∑

r∈Ri

q∆e (∆er(k + 1 + l))
2

+
N−1
∑

l=0

∑

r∈Ri

q∆dg
(∆dg,r(k + l))

2
,

where qe, q∆e, and q∆dg
are penalty coefficients. These

penalty coefficients are chosen as follows:

qe =
1

(eMAVE)
2 , q∆e =

1

(∆eMAVE)
2 , q∆dg

=
1

(∆dg,MAVE)
2 ,

where eMAVE, ∆eMAVE, and ∆dg,MAVE are the maximum

allowed value estimates (MAVE) of e, ∆e, and ∆dg, re-

spectively. These estimates indicate how much a variable is

allowed to vary. By defining the objective function in this

way the various objective terms in the objective function are

normalized.

D. Summarizing

The equations representing the system are linear, and the

objective functions are quadratic. It is now straightforward to

cast the resulting prediction model, constraints, and objective

function in the form suitable for application of the distributed

MPC scheme of Section II. In the next section we employ

this scheme based on linearized models to control a nonlinear

representation of an irrigation canal.

reach 1

reach 2

reach 3

reach 4

reach 5

reach 6

reach 7

reach 8

controller 1

controller 2

Fig. 3. Longitudinal view of the West-M irrigation canal and its division
into two subnetworks.

IV. CASE STUDY

In this section we describe a simulation result to illustrate

the performance of the MPC scheme discussed in this paper.

The irrigation canal that we consider is based on the West-

M canal (as illustrated in Figure 3), which is an irrigation

canal close to Phoenix, in the south of Arizona. This canal

has been used by the ASCE Task Committee on Canal

Automation Algorithms to define Test Canal 1 for testing

automatic control schemes [8]. The canal is used to provide

water to farmers. The length of the canal is almost 10 km and

the maximum capacity of the head gate is 2.8m3/s [3]. The

canal consists of 8 canal reaches. At each of the reaches of

the canal water can be taken out at offtakes for irrigation

purposes. Between each of the reaches control structures

are present in the form of undershot gates to change the

water flow locally. Between canal reaches 5 and 6 a local PI

controller is present, and therefore canal reaches 5 and 6 are

considered as one reach. We refer to [8] for details on the

dynamics of the canal.

For the benchmark system under study, MPC schemes

have been proposed based on a single controller determining

in a centralized way the set-points for the local flow con-

trollers. MPC has been proposed for controlling the first 2

canal reaches of the benchmark system in [9], for controlling

the first 3 canal reaches of the system in [10], and for

controlling all canal reaches in [11], [3].

Here, we consider distributed control of the canal using

two controllers that each control their own part of the

network. For controller 1, the set of controlled reaches is

R1 = {1, 2, 3, 4}. For controller 2, the set of controlled

reaches is R2 = {5, 7, 8}.

We consider a nonlinear simulation model of the canal,

implemented in Sobek [12]. For solving the optimization

problems at each control step we use the ILOG CPLEX

v10.0 quadratic programming solver through the Tomlab v5.7

interface in Matlab v7.3.

A. Scenario

The time Tc between two consecutive control steps is

120 s. A prediction horizon length of N = 30 is chosen
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to take into account the total delay present in the irriga-

tion canal. The controllers use as parameters γc = 1000,

γǫ = 1.10−3. As parameters for the objective functions

the controllers use the following values: eMAVE = 0.15,

∆eMAVE = 0.005, ∆uMAVE = 0.0075.

We perform a simulation of 240 time steps, corresponding

to 8 hours. We consider an increase in the offtake of canal

reach 3 at time step 60, corresponding to continuous t = 2 h,

and a decrease in the offtake of the same canal reach at time

step 120, corresponding to continuous time t = 4 h.

We show over a full simulation which actions the con-

trollers choose, and illustrate for a particular time step how

controllers obtain agreement on interconnecting variables.

B. Results

Figure 4 shows the gate settings that the two controllers

determine to take. We can clearly observe how the controllers

anticipate the additional offtake in reach 3 between t = 2
and t = 4 by already before t = 2 increasing the inflow in

the reaches. Similarly, we observe that already before t = 4
the controllers again decrease their inflows, anticipating the

offtake decrease in canal reach 3 at t = 4.

Figure 5 illustrates how at a particular time (t = 2.23)

the controllers obtain agreement on the values of the in-

terconnecting variables ∆e4(k + l), for l = 1, . . . , N .

As the number of iterations increases (s becomes larger),

the absolute error between the interconnecting inputs and

interconnecting outputs with respect to ∆e4(k+l) decreases,

ultimately resulting in agreement.

In this experiment and in experiments with alternative

scenarios (in each of which the gates where free flowing),

we have observed that the performance of the distributed

MPC approach over the full simulation is within 10% of the

performance that obtainable by a centralized MPC approach.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper we have considered model predictive control

(MPC) for distributed control of irrigation canals. We have

discussed the use of an iteration-based, distributed MPC

scheme for the control of irrigation canals. With this scheme

performance comparable to the performance of a centralized

MPC scheme can be achieved in a distributed way. On a

benchmark irrigation canal we have illustrated the potential

of the approach. In this case study, two controllers using

linear prediction models have successfully determined which

actions to take for controlling a nonlinear hydro-dynamic

representation of the West-M irrigation canal in Arizona.

Future work consists of further assessing the performance

of the proposed scheme, in particular when larger irrigation

canals are controlled and the number of controllers increases.

Moreover, when the gates become submerged, the dependen-

cies between canal reaches will change. Future work will

address this change.
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