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Multi-Area Predictive Control for Combined Electricity

and Natural Gas Systems

Michèle Arnold, Rudy R. Negenborn, Göran Andersson, Bart De Schutter

Abstract— The optimal operation of an integrated electricity
and natural gas system is investigated. The couplings between
these two systems are modeled by energy hubs, which serve
as interface between the loads and the transmission infras-
tructures. Previously, we have applied a distributed control
scheme to a static three-hub benchmark system. In this paper,
we propose an extension of this distributed control scheme
for application to energy hubs with dynamics. The dynamics
that we consider here are due to storage devices present
in the multi-carrier system. We propose a distributed model
predictive control approach for improving the operation of
the system by taking into account predicted behavior and
operational constraints. Simulations in which the proposed
scheme is applied to the three-hub benchmark system illustrate
the potential of the approach.

Index Terms— Distributed control, model predictive control,
electric power systems, natural gas systems, multi-carrier sys-
tems

I. INTRODUCTION

Nowadays, infrastructures, such as electricity, natural gas,

and local district heating systems, are mostly planned and

operated independently of each other. In practice, however,

these individual systems are coupled, as e.g., micro com-

bined heat and power plants (µCHP) and other distributed

generation plants (such as so-called co- and trigeneration

[1]) are used more and more. It is therefore expected

that integrated control of several such systems can yield

improved performance. The various energy carriers available

and the conversion possible between them significantly affect

both the technical and the economical operation of energy

systems. In particular, consumers get flexibility in supply

and could therefore decide in favor of, e.g., cost, reliability,

system emissions, availability, or a combination of these.

Currently, research effort is addressing integrated control

of combined electricity and natural gas systems [2], [3]. In

[3], the couplings between the electricity and gas systems

are modeled using the concept of energy hubs [4]. These

energy hubs serve as interface between the loads and the

transmission infrastructures of both types of systems. The

electricity and natural gas system is then modeled as a

number of interconnected energy hubs.

Because of the increasing number of distributed generation

facilities with mostly fluctuating energy infeed (generation
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profiles), the issue of storing energy also becomes more

important. Electric energy storage devices are expensive and

the operation of them causes energy losses. In order to still

enable the electric energy supply in time, the operation of a

µCHP device in combination with a heat storage device is

considered. By optimally using the heat storage device, the

µCHP device can be operated in order to follow the electrical

load.

In [5], we have proposed a distributed control scheme

for the steady-state optimization of energy hub systems. A

three-hub benchmark system is used there to illustrate the

performance of the approach. In that system, the individual

energy hubs determine in a cooperative way which actions to

take. The models that the energy hubs thereby use are static,

steady-state models. No dynamics are taken into account.

In this paper, we propose an extension of the distributed

control scheme presented in [5] for application to energy

hubs with dynamics. Here, we in particular consider the

dynamics due to storage devices present in the combined

electricity and natural gas system. We propose to use a

distributed model predictive control (MPC) scheme, in which

the operation of the hub system over a certain prediction

horizon is considered and in which actions that give the best

predicted behavior are determined by the individual energy

hubs. By using such a predictive approach, the energy usage

can be adapted to expected fluctuations in the energy prices

and to expected changes in the load profiles. A variety of

distributed MPC approaches have been applied to different

application areas, summarized in [6].

This paper is organized as follows. In Section II the

mathematical model of the considered multi-carrier system is

given. In Section III we first discuss a centralized MPC ap-

proach for the overall system and then propose a distributed

MPC approach. Simulation results applying the method to

a three-hub benchmark system are presented in Section IV.

Section V concludes this paper and outlines directions for

future research.

II. MODELING

In this section, the model of the combined electricity and

natural gas network is presented. The equations for power

conversion and power storage within the energy hubs and

for power transmission between the hubs are given.

A. System setup

We study general systems consisting of interconnected

energy hubs. As example benchmark system we consider

a system consisting of three hubs that are interconnected



Fig. 1. System setup of three interconnected energy hubs. Active power
is provided by generators G1, G2, G3. Hubs H1 and H2 have access to
adjacent natural gas networks N1, N2.

by an electricity and natural gas transmission system, as

illustrated in Fig. 1. The electricity system and the gas system

are connected via energy hubs. An energy hub is a network

node that includes conversion, conditioning, and storage of

multiple energy carriers. It represents the interface between

the energy sources and transmission lines on the one hand

and the power consumers on the other hand. The energy hub

is a modeling concept with no restrictions to the size of the

modeled system. Single power plants or industrial buildings

as well as bounded geographical areas such as whole towns

and cities can be modeled as energy hubs.

In the system under study, each energy hub represents a

general consumer, e.g., a household, that uses both electricity

and gas. Each of the hubs has its own local electrical energy

production (Gi, with electric power production PG
e,i, for

i ∈ {1, 2, 3}). Hub H1 has access to a large gas network

N1, with gas infeed PG
g,1. In addition, hub H2 can obtain

gas from a smaller local gas tank N2, modeled as gas

infeed PG
g,2. Each hub consumes electric power PH

e,i and

gas PH
g,i, respectively, and supplies energy to its electrical

load Le,i and its heat load Lh,i. The hubs contain converter

and storage devices in order to fulfill their energy load

requirements. For energy conversion, the hubs contain a

µCHP device and a furnace. The µCHP device couples the

two energy systems as it simultaneously produces electricity

and heat from natural gas. Hubs H1 and H2 additionally

comprise a hot water storage device. Compressors (Cij , for

(i, j) ∈ {(1, 2), (1, 3)}) are present in the gas network within

the pipelines originating from hub H1, at which the large

gas network is located. The compressors provide a pressure

decay and enable the gas flow to the surrounding gas sinks.

There are several ways in which electrical and thermal

load demands can be fulfilled. This redundancy increases

the reliability of supply and at the same time provides

the possibility for optimizing the input energies, e.g., using

criteria such as cost, availability, emissions, etc.

B. Energy hub model

Since we consider an optimization over multiple periods,

the equations are defined per time step k. For each of the

three energy hubs, the electrical load Le,i(k) and the heat

load Lh,i(k) at time step k are related to the electricity

PH
e,i(k) and gas hub input PH

g,i(k) as follows:

[

Le,i(k)
Lh,i(k)

]

=

[

1 νg,i(k)η
CHP
g,e,i

0 νg,i(k)η
CHP
g,h,i + (1− νg,i(k))η

F
g,h,i

] [

PH
e,i(k)

PH
g,i(k)

]

, (1)

where ηCHP
g,e,i and ηCHP

g,h,i denote the gas-electric and gas-heat ef-

ficiencies of the µCHP device (which are assumed to be con-

stant in this paper1), and where ηF
g,h,i denotes the efficiency of

the furnace. The variable νg,i(k) (0 ≤ νg,i(k) ≤ 1) repre-

sents a dispatch factor that determines how the gas is divided

over the µCHP and the furnace. The term νg,i(k)P
H
g,i(k)

defines the gas input power going into the µCHP and the

part (1 − νg,i(k))P
H
g,i(k) defines the gas input power going

into the furnace. As the dispatch factor νg,i(k) is variable,

different input vectors can be found to fulfill the output loads.

This offers additional degrees of freedom in supply.

The storage device is modeled as an ideal storage in

combination with a storage interface. In the considered setup,

hot water storage devices are implemented. The relation

between the heat power exchange Mh,i(k) and the effectively

stored energy Eh,i(k) at a time step k is defined by the

following equation:

Mh,i(k) =
1

eh,i

(

Eh,i(k)− Eh,i(k − 1) + Estb
h,i

)

, (2)

where eh,i is the storage efficiency, Eh,i(k) denotes the

storage energy at the end of period k, and Estb
h,i represents the

standby energy losses of the heat storage device per period

(Estb
h,i ≥ 0). For hubs H1 and H2 two hot water storage

devices are implemented. Equation (1) is therefore completed

with additional storage power flows:
[

Le,i(k)
Lh,i(k) +Mh,i(k)

]

=

[

1 νg,i(k)η
CHP
g,e,i

0 νg,i(k)η
CHP
g,h,i + (1− νg,i(k))η

F
g,h,i

] [

PH
e,i(k)

PH
g,i(k)

]

. (3)

C. Transmission network

For the transmission networks of both the electricity

network and the gas network, power flow models based on

nodal power balances are implemented. The power flows

for the electricity network are formulated as nodal power

balances of the complex power, according to [3], [7]. The

power flow equations for the pipeline network are based on

nodal volume flow balances. The model of a gas pipeline

is composed of a compressor, with pressure amplification

pinc, and a pipeline element. More information about the

gas network model used can be found in [3].

1However, the efficiencies can also be dependent on, e.g., the converted
power level.



D. Combined energy hub transmission network model

The combined electricity and gas network is obtained by

combining the above stated power flow models. For each

time step k an algebraic state vector z(k) and a dynamic

state vector x(k) are defined. The algebraic state vector

includes the variables for which no dynamics are explicitly

defined. The dynamic state vector includes variables for

which dynamics are included. Hence,

x(k) =
[

ET
h (k)

]T
(4)

z(k) = [VT(k) θT(k) pT(k) pT
inc(k)

(PH
e )

T(k) (PH
g )

T(k)]T (5)

where

- V(k) = [V1(k), V2(k), V3(k)]
T and θ(k) =

[θ1(k), θ2(k), θ3(k)]
T denote the voltage magnitudes

and angles of the electric buses, respectively,

- p(k) = [p1(k), p2(k), p3(k)]
T denotes the nodal pres-

sures of all gas buses,

- pinc(k) = [pinc,1(k), pinc,2(k)]
T denotes the pressure

amplification of the compressors,

- PH
e (k) = [PH

e,1(k), P
H
e,2(k), P

H
e,3(k)]

T denotes the elec-

tric inputs of the hubs, and

- PH
g (k) = [PH

g,1(k), P
H
g,2(k), P

H
g,3(k)]

T denotes the gas

inputs of the hubs.

- The two storage devices in hub H1 and H2 are incor-

porated in vector Eh(k) = [Eh,1(k), Eh,2(k)]
T.

At each time step, the control variables u(k) are defined

to include the active power generation of all generators, the

natural gas imports of all gas networks and the dispatch

factors of each hub, i.e.,

u(k) =
[

(PG
e )

T(k) (PG
g )

T(k) ν
T
g (k)

]T
, (6)

where

- PG
e (k) = [PG

e,1(k), P
G
e,2(k), P

G
e,3(k)]

T denotes the active

power generation of all generators,

- PG
g (k) = [PG

g,1(k), P
G
g,2(k)]

T defines the natural gas

imports and

- νg(k) = [νg,1(k), νg,2(k), νg,3(k)]
T describes the dis-

patch factors of the gas input junctions.

Now, the model that we use to represent the combined

electricity and gas network can be conveniently written as

x(k + 1) = f(x(k), z(k),u(k)) (7)

0 = g(x(k), z(k),u(k)), (8)

summarizing the power flow equations of the electricity and

gas system, and the hub equations.

III. CONTROL PROBLEM FORMULATION

In this section we discuss the control of the system

introduced above. We first discuss how MPC can be used

in the form of a centralized, supervisory controller that can

measure all variables in the network and that determines

actions for all actuators. Due to practical and computational

issues implementing such a centralized controller may not

be feasible. Individual hubs may not want to give access

model

optimization

prediction

actions
control

objective,
constraints

system
inputs

control

MPC controller

measurements

Fig. 2. Illustration of model predictive control.

to their sensors and actuators to a centralized authority and

even if they would allow a centralized authority to take

over control of their hubs, this centralized authority could

have computational problems with respect to required time

when solving the resulting centralized control problem. We

therefore also discuss a distributed MPC scheme, in which

the control is spread over the individual hubs.

The goal of either control scheme is to determine values

for the control variables u(k) in such a way that the costs for

electricity generation and natural gas usage are minimized.

Hence, the control problem can be stated as determining the

inputs u(k) in such a way that the control objectives are

achieved, while satisfying the system constraints.

As control strategy we propose to use MPC. MPC [8],

[9] is a control strategy that uses an internal model for

making predictions of the system behavior over a predefined

prediction horizon with length N , thereby also taking into

account operational constraints. MPC is suited for control

of multi-carrier systems, since it can adequately take into

account the dynamics of energy storage devices and the

characteristics of the electricity and gas networks. MPC

operates in a receding horizon fashion, meaning that at

each time step new measurements of the system and new

predictions into the future are made. By using MPC, actions

can be determined that anticipate future events, such as

increasing or decreasing energy prices.

In Fig. 2 MPC is illustrated schematically. At each control

step k, an MPC controller first measures the current state

of the system, x(k). Then, it determines using (numerical)

optimization which control input u(k) to provide by finding

the actions that over a prediction horizon of N time steps

give the best predicted performance according to a given

objective function. The control variables determined for the

first prediction step are applied to the system. The system

then transitions to a new state, x(k + 1), after which the

cycle starts all over.

A. Centralized model predictive control

In the centralized MPC formulation there is a single

controller that determines the inputs u(k) for the whole

network. The control objective2 is to minimize the energy

costs, represented by the following system-wide objective

function:

2In addition to the stated objectives, it would be straightforward to also
include voltage regulation and power flow limitations as control objectives.



J =

N−1
∑

l=0

∑

i∈G

qGi (k + l)(PG
e,i(k + l))2

+ qNi (k + l)(PG
g,i(k + l))2, (9)

where G includes all generation units, i.e., the tree generators

and the two natural gas imports. The prices for electricity

generation qGi (k) and for natural gas consumption qNi (k) can

vary throughout the day. The centralized control problem

formulation is now stated as

min
ũ(k)

J(x̃(k + 1), z̃(k), ũ(k)) (10)

subject to

x̃(k + 1) = f̃(x̃(k), z̃(k), ũ(k)) (11)

g̃(x̃(k), z̃(k), ũ(k)) = 0 (12)

h̃(x̃(k), z̃(k), ũ(k)) ≤ 0, (13)

where the tilde over a variable represents that variable

over a prediction horizon of N steps, e.g., ũ(k) =
[ u(k)T, . . . ,u(k + N − 1)T ]T. The inequality constraints

(13) comprise limits on the voltage magnitudes, active and

reactive power flows, pressures, changes in compressor set-

tings, and dispatch factors. Furthermore, power limitations on

the hub inputs and on gas and electricity generation are also

incorporated in (13). Regarding the storage devices, limits

on the storage contents and the storage flows are imposed.

The optimization problem (10)–(13) is a nonlinear pro-

gramming problem [10], which can be solved using opti-

mization problem solvers for nonlinear programming, such

as sequential quadratic programming [10]. In general, the

solution space is non-convex and therefore finding the global

optimum cannot be guaranteed with numerical methods.

B. Distributed model predictive control

In the distributed MPC formulation, there is no single

controller, but there are multiple controllers which act in

a cooperative way. Each controller is responsible for its

own part of the overall system. In our case there are three

individual controllers each of which controls a particular

area. In addition, the compressors in the gas networks are

controlled by the controller of energy hub H1.

In the distributed MPC formulation each individual con-

troller has its own control objective. In particular, the objec-

tive functions of the three controllers are:

J1 =

N−1
∑

l=0

qG1 (k + l)(PG
e,1(k + l))2 + qN1 (k + l)(PG

g,1(k + l))2

(14a)

J2 =

N−1
∑

l=0

qG2 (k + l)(PG
e,2(k + l))2 + qN2 (k + l)(PG

g,2(k + l))2

(14b)

J3 =

N−1
∑

l=0

qG3 (k + l)(PG
e,3(k + l))2. (14c)

Each control agent is responsible for the hub variables and

all system variables of the nodes connected to it. For the first

controller, the state and control vectors for each time step k

are defined as

x1(k) = [E1(k)]
T (15)

z1(k) = [V1(k), θ1(k), p1(k), pinc,1(k), pinc,2(k),

PH
e,1(k), P

H
g,1(k)]

T (16)

u1(k) = [PG
e,1(k), P

G
g,1(k), νg,1(k)]

T (17)

The state and control vectors for the second and third

controller are defined similarly according to Fig. 1 (grey

areas).

Each controller solves its own local MPC problem using

the local model of its hub. However, this local MPC problem

depends on the MPC problems of the other controllers,

since the electricity and gas networks interconnect the hubs.

Therefore, the MPC optimization problems of the controllers

have to be solved in a cooperative way. This is not only

to ensure that the controllers choose feasible actions, but

also to allow the controllers to choose actions that are

optimal from a system-wide point of view. The distributed

MPC approach that we propose in this paper is based on

using the Lagrangian relaxation procedure derived in [11] for

setting up the MPC optimization problems of the individual

controllers and for determining which information has to be

exchanged among the controllers.

We next illustrate the mathematical procedure to de-

compose a general centralized MPC optimization problem

of a centralized controller into optimization problems for

individual distributed controllers. The procedure is illustrated

on a system consisting of two interconnected areas, extension

to three or more areas is straightforward.

Consider two areas A and B which comprise the system

variables ỹA(k) and ỹB(k), respectively. For demonstration

purposes, we collect all variables introduced above in a

vector ỹ(k), e.g., ỹA(k) = [x̃A(k), z̃A(k), ũA(k)]
T . The

centralized MPC optimization problem is then specified as

min
ũA(k), ũB(k)

J(ỹA(k), ỹB(k)) (18)

subject to g̃(ỹA(k), ỹB(k)) = 0. (19)

Here, only equality constraints are explained for demonstra-

tion purposes. Inequality constraints are handled analogously.

For decomposing the centralized MPC optimization prob-

lem, both the objective and the equality constraints are

separated and assigned to a responsible control agent (Fig. 3).

Both areas comprise constraints involving only the own

system variables, g̃A(ỹA(k)), g̃B(ỹB(k)). Besides them, so-

called coupling constraints are introduced, containing vari-

ables from both areas (marked by a hat). Regarding the

objectives, both objective functions consist of two parts. The

first term expresses the main objective originating from the

overall objective function (18). The second term is respon-

sible for the coordination between the agents and consists

of the coupling constraints introduced above. As indicated

in Fig. 3, the coupling constraints are kept explicitly as

hard constraints in the constraint set of one control agent

and added as soft constraints to the main objective of the
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Fig. 3. Decomposition procedure applied to a two-area system (area A:
ỹA(k), area B: ỹB(k)) and variables to be exchanged after each iteration
counter s.

other control agent (modified Lagrangian relaxation proce-

dure [11]). The weighting factors of the soft constraints are

the Lagrangian multipliers obtained from the optimization

problem of the other area. Both the objectives and the

coupling constraints depend on variables of the other area,

indicated by the superscript s. To handle this dependency,

the optimization problems of the control agents are solved

in an iterative procedure. At each iteration step s, the MPC

optimization problems of both control agents are solved

independently of each other, while keeping the variables

of the neighboring area constant. After each iteration, the

control agents exchange the updated values of their variables

as indicated in Fig. 3, i.e., the variables ỹs+1
i (k) and the

Lagrangian multipliers λ̃
s+1

i (k). Convergence is achieved

when the exchanged variables do not change more than

a small tolerance γtol in two consecutive iterations. In

contrary to conventional Lagrangian relaxation procedures,

a faster convergence is achieved as the weighting factors are

represented by the Lagrangian multipliers of the neighboring

optimization problems [11].

Applying this procedure to combined electricity and gas

systems, the electric power flow and gas flow equations

at the peripheral buses serve as coupling constraints. For

the studied three-hub system, the active power balances of

all nodes of the electricity system enforce a coordination

as they depend on the neighboring voltage magnitudes and

angles. Regarding the gas system, the nodal flow balances of

all buses depend on the pressures of the neighboring buses

and therefore enforce a coordination as well. Summarizing,

for each area, there exists one coupling constraint for the

electricity and one for the natural gas system, specified in [3].

IV. CASE STUDY

In this section a case study is presented in which the pro-

posed distributed MPC scheme is applied to the illustrative

three-hub system. However, the scheme is general and not

only valid or applicable for the system depicted in Fig. 1.

The performance of the distributed approach is compared

with the performance of the centralized MPC approach. The

solver fmincon provided by the Optimization Toolbox of

Matlab is used [12].

A. Simulation setup

Each hub has a daily profile of its load demand and

also of the energy prices. In this preliminary case study, a

perfect forecast is assumed, in which no disturbances within
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i
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plot).

the known profiles are occurring. The generation costs are

minimized for a simulation horizon Nsim = 10. The length

of the prediction horizon N is chosen as N = 3. Hence, an

optimization over N time steps is run Nsim times, at each

time step k implementing only the control variable for the

current time step k and then starting a new optimization at

time step k + 1 with updated system measurements.

Given are the price and load profiles of all hubs (Fig. 4).

The electricity load Le,i and the gas import prices qNi remain

constant over time. Variations are assumed only in the prices

of the electric energy generation units qGi (k) and in the heat

load of hub H2, Lh,2, in order to exactly retrace the storage

behavior. Further details about the coefficients and simulation

parameters used can be found in [3].

B. Single simulation step

In order to evaluate whether the solution determined by

the distributed algorithm is feasible for the real system, the

following simulation is run. In Fig. 5 the quality of the

intermediate solutions in case that these would be applied

to the system is shown. The distributed MPC optimization

problem is solved at time step k = 1, for N = 3. At each

iteration counter s, the overall system costs are shown, when

applying the control variables determined by the distributed

algorithm to the system. The dotted values refer to the

infeasible solutions. As the number of iterations increases,

the distributed MPC converges, and, in fact, the solution

obtained at the end of the iterations approaches the solution

obtained by the centralized MPC approach (200.98 p.u.).

After iteration 16, the values of all control variables are

feasible. After 39 iterations, the algorithm converges.

C. Simulation of multiple time steps

When minimizing the energy costs over the full simulation

of Nsim time steps, a total cost of 850.62 p.u. is obtained for

the above given load and price profiles. Applying centralized

MPC, the overall costs are lower, 849.78 p.u., since, due to

the imposed convergence tolerance γtol of the distributed

algorithm, the centralized approach finds a slightly different

solution at some iteration steps. In Fig. 6, the active power

generation and the natural gas import of hub H2 are shown.
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Fig. 5. Intermediate solutions of the distributed algorithm applied to the
system. Dotted lines represent infeasible solutions, solid lines are feasible
solutions.
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Fig. 6. Active power generation PG
e,2 and natural gas import PG

g,2 of hub

H2 over time.

As can be seen, active power generation is reduced at time

steps with higher generation costs, i.e., time steps 4–7 and

time step 10. During these time steps more gas is consumed.

The electrical loads are now predominantly supplied by the

µCHP devices in order to save costs. Most of the gas is

diverted into the µCHP device and less into the furnace.

For still supplying the heat load, the heat storage devices

come into operation. Figure 7 shows the content of both

storage devices evolving over the time steps. Both storage

devices start at an initial level of 1.5 p.u. Since the heat

load at hub H2 is increased by 20% at time steps 3-5 (Fig.

4), storage E2 attempts to remain full before this increase

and then operates at its lower limit during the heat load

peaks. At the proceeding electricity price peaks (time steps

6, 7) both storages are recharged. The electrical loads are

mainly supplied by the µCHP devices and all excessive heat

produced during these time steps is then stored in the storage

devices. Storage device E1 is refilled more than E2, as hub

H2 has a limited gas access.

If the controllers have a shorter prediction horizon than

N = 3, the storage devices are filled up less and also later.

With a prediction horizon length of N = Nsim, the storage

devices are filled up earlier and the lowest costs are obtained,

although calculation time becomes considerably longer and

the system is insensitive to unknown changes in the load and

price profiles.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper we have proposed a distributed model pre-

dictive control (MPC) approach for control of energy hub

systems. A distributed MPC scheme is proposed, such that

dynamics due to, e.g., storage devices, forecasts on energy

prices and demand profiles, and operational constraints can
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Fig. 7. Evolution of storage contents (E1, E2) over time.

be taken into account adequately. We have applied this ap-

proach for minimizing generation costs of a particular three-

hub integrated electricity and natural gas system. In a case

study, we have analyzed the quality of intermediate solutions

obtained throughout the iterations of the proposed approach

to ensure that applying the control to the real system yields

feasible solutions. In future research the performance under

different control horizons will be compared. Furthermore,

conditions and measures for guaranteeing convergence have

to be investigated more precisely. In addition, we will address

the incorporation of disturbances in the scheme instead of

assuming perfect forecasts.
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