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Model-based control of intelligent traffic

networks

B. De Schutter, H. Hellendoorn, A. Hegyi, M. van den Berg, and S.K. Zegeye

Abstract Road traffic networks are increasingly being equipped and enhanced with

various sensing, communication, and control units, resulting in an increased intelli-

gence in the network and offering additional handles for control. In this chapter we

discuss some advanced model-based control methods for intelligent traffic networks.

In particular, we consider model predictive control (MPC) of integrated freeway and

urban traffic networks. We present the basic principles of MPC for traffic control in-

cluding prediction models, control objectives, and constraints. The proposed MPC

control approach is modular, allowing the easy substitution of prediction models

and the addition of extra control measures or the extension of the network. More-

over, it can be used to obtain a balanced trade-off between various objectives such as

throughput, emissions, noise, fuel consumption, etc. Moreover, MPC also allows the

integration and network-wide coordination of various traffic control measures such

as traffic signals, speed limits, ramp metering, lane closures, etc. We illustrate the

MPC approach for traffic control with two case studies. The first case study involves

control of a freeway stretch with a balanced trade-off between total time spent, fuel

consumption, and emissions as control objective. The second case study has a more

complex layout and involves control of a mixed urban-freeway network with total

time spent as control objective.
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1 Introduction

1.1 Positioning and relation of intelligent traffic networks with

other networks

Each infrastructure has its own characteristics. Electricity networks are governed by

the laws of Kirchhoff, which state that voltage and current distribute equally over

the network. Water networks are governed by the law of gravity, which states that

water is always flowing downwards, unless one makes use of pumping stations. Gas

networks are determined by pressure, telecommunication networks by the behavior

of the users. In all these cases the subjects that are transported are passive: electrons,

water, gas molecules, and bits and bytes do not have an own will. Road networks

form a special class, because the subjects, the drivers, are self-willed and do not

always obey the proposed traffic measures. Nevertheless, the road network is too

important to let it be uncontrolled. Economics and society depend heavily on effi-

cient roads. For instance, in the European Union 44 % of all goods are moved by

trucks over roads and 85 % of all persons are transported by cars, buses, or coaches

on the roads.

There are several aspects of the road network that have to be mentioned. Firstly,

the possible measures that can be taken and the limitations of these measures

to control individual drivers. Secondly, the role of governments and other (non-

government) parties in traffic control, in particular with regards to traffic jams and

environmental issues. Thirdly, the road network as a critical infrastructure that is

vital for the economy. And fourthly, the expectation of modern societies for flexible

road networks without frequent construction works.

Until half a century ago streets and roads were passive infrastructures. The main

function of the infrastructure was to facilitate comfortable and quick driving. But

the number of vehicles has increased significantly over the last decades, which has

led to traffic jams and dangerous situations on crossings. So traffic signals were in-

troduced, first with a fixed-time scheme, and later on with computer programs con-

nected to induction loops in the streets. Moreover, on highways variable speed lim-

its and ramp metering were introduced, nowadays combined with Dynamic Route

Information Panels (DRIPs). The behavior of drivers towards the road signs has

changed: they now expect that traffic control measures can oversee the total traffic

situation and, at the same time, have a good understanding of the needs of individ-

ual drivers, such that the drivers are not waiting seemingly meaningless for a traffic

signal or a ramp metering installation, or have to drive slower than meaningful on

a highway. Due to improved car mechanics, safer cars, and better roads, drivers

have adapted their driving behavior, e.g., by keeping less distance to each other. In

emergency cases this can lead to dangerous traffic situations and severe accidents.

Governments play a large role in defining targets for traffic management. Traffic

safety has become a main political issue leading to new road constructions, separate

lanes, and more roundabouts. Governments have clear targets to reduce the number

of road casualties. They are also under severe pressure to reduce traffic jams, which
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leads, e.g., to the use of shoulder lanes in combination with camera surveillance

during rush hours. Furthermore, legislation on environmental protection forces gov-

ernments to take actions against pollution of CO2, NOx, HC, and particulate matters.

Interest groups of truck drivers, automobile clubs, ecology movements, and neigh-

boring residents and companies also play an important role in the public discussion

about road constructions and traffic management.

Roads as well as electricity and drinking water networks have become critical

infrastructures. They are of vital importance for the well-functioning of modern

society. Traffic jams have large economical impact that may sum up to several per-

centages of the Gross Domestic Product (GDP), especially in (parts of) countries

with a dense population where an accident on one of the main junctions can lead

to a total collapse of the road network. In The Netherlands the length of traffic

jams increased with 8.1 % in 2007, the number of traffic jams between 3.30 p.m.

and 8.00 p.m. increased with 6.5 % in the same period, and between 10.00 a.m. and

3.30 p.m. the length of traffic jams increased by even 22.8 %. Worldwide, traffic in-

cidents cost approximately 1–2 % of the GDP, i.e., approximately 65 billion dollar.

Road congestion amounts to an average 1 % of GDP in the European Union, with

Great Britain and France at 1.5 %. So reducing congestion contributes to a healthier

economy.

Society demands more functionality, capacity, and quality of the road network.

Construction works are necessary, but should influence the traffic flow as little as

possible. Road networks should be flexible on the long term: it should be possible

to quickly implement new political or societal desires. Extensions of the network or

new driving concepts like adaptive cruise control or platooning should not lead to

construction works that last many years.

There are several (partial) solutions to address all the issues discussed above, and

one of them is the use of intelligent dynamic traffic management, which is the topic

of this chapter.

1.2 The need for intelligent dynamic traffic management

As already indicated above, the need for mobility is increasing due to the growing

number of road users as well as the increasing number of movements per user [36].

This leads to an increase in the frequency, length, and duration of traffic jams. These

traffic jams cause large delays, resulting in higher travel costs and they also have a

negative impact on the environment due to, e.g., noise and pollution.

To tackle these congestion problems there exist different solution approaches:

constructing new roads, levying tolls, promoting public transport, or making more

efficient use of the existing infrastructure. In this chapter we consider the last ap-

proach, implemented using dynamic traffic management and traffic control mea-

sures, such as on-ramp metering, dynamic speed limits, traffic signals, dynamic

routing, provision of congestion information, etc., since this solution is effective

on the short term, and inexpensive compared to constructing new roads. In addition,
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it is flexible enough to deal with the new infrastructures that will be constructed in

the long term.

Current traffic control approaches usually focus on either urban traffic or free-

way traffic. In urban areas traffic signals are the most frequently used control mea-

sures. Traditionally, they are controlled locally using fixed-time settings, or they

are vehicle-actuated, meaning that they react on the prevailing traffic situation.

Nowadays sophisticated, dynamic systems that aim at coordinating different avail-

able control measures in order to improve the total performance, are also making

progress: systems such as SCOOT [46], SCATS [58], Toptrac [3], TUC [13], Mitrop

[17], Motion [8], and UTOPIA/SPOT [43] use a coordinated control method to im-

prove the urban traffic circulation, e.g., by constructing green waves. Control on

freeways is done using different traffic control measures. Ramp metering is applied

on on-ramps, using methods like ALINEA [40]. Overviews of ramp metering meth-

ods and results are given in [41, 50]. The use of variable speed limits on freeways

is described in [2, 21, 32, 49], and the use of route guidance in [11, 13, 26]. Several

authors have described methods for coordinated control of freeways using different

traffic control measures [6, 19, 28, 29].

Usually these traffic control measures operate based on local data (occupancy,

intensity, or speed measurements). However, considering the effect of the measures

on the network level has many advantages compared to local control. E.g., solving

a local traffic jam only may have as a consequence that the vehicles run faster into

another (downstream) traffic jam, whereas still the same amount of vehicles have

to pass the bottleneck (with a given capacity), and so the average travel time at

the network level will still be the same. Another reason for considering the effects

of control at the network level, is that in a dense network a local control measure

can have effects on more distant parts of the network: an improved flow may cause

congestion somewhere else in the network or a reduced flow may prevent congestion

somewhere else in the network. Another source of degraded network performance is

that congestion may block traffic flows on routes that do not pass the bottleneck (or

incident location), such as a freeway with a congested off-ramp where the vehicles

that want to leave the freeway block the mainstream traffic. Similar arguments also

hold for urban and mixed urban-freeway traffic networks.

The traffic flows on freeways are often influenced by traffic flows on urban roads,

and vice versa. Freeway control measures like ramp metering or speed limits allow

a better flow and a larger throughput, but could lead to longer queues on on-ramps.

These queues may spill back and block urban roads. On the other hand, urban traf-

fic management policies often try to get vehicles on the freeway network as soon

as possible, displacing the congestion toward neighboring freeways. The problems

between the two road types are often increased by the fact that in several countries

urban roads and freeways are managed by different traffic authorities, each with

their own policies and objectives.

Hence, there is a clear need for coordinated and network-wide traffic manage-

ment and control. Therefore, we present a coordinated control approach for mixed

urban-freeway networks that provides an appropriate trade-off between the perfor-
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mance of the urban and freeway traffic operations, and that results in a significant

improvement of the performance of the overall network.

As control method we use a model predictive control (MPC) approach [9, 34],

adapted for traffic control. MPC is an online model-based predictive control ap-

proach in which a prediction model and (online) optimization are used to determine

the control actions that optimize a given performance criterion over a given time

horizon subject to given constraints. Using a receding horizon approach, only the

first step of the computed control signal is applied, and next the optimization is

started again with the prediction horizon shifted one time step further. MPC has al-

ready been applied to coordinated control of freeway networks in [6, 19, 29]. In this

chapter, which collects and extends several of our previous results reported in [19–

21, 52–54, 59, 60], we demonstrate how MPC can be used to obtain coordinated and

integrated control of traffic networks containing both freeways and urban roads as

well as a wide variety of traffic control measures, such that a balanced trade-off is

obtained between various performance criteria and such that (hard) constraints are

taken into account. Other publications that deal with MPC or MPC-like approaches

for traffic control are [12, 16, 29, 43].

1.3 Overview of the chapter

This chapter is organized as follows. We first present an integrated traffic flow model

for networks that contain both urban roads and freeways, as well as an emission and

fuel consumption model in Section 2. Next, we describe MPC-based control for

intelligent traffic networks in Section 3. The proposed approach is then illustrated

in Section 4 via two simple case studies: one involving the balanced optimization

of total time spent, total fuel consumption, and total emissions, and one involving

a mixed urban-freeway network with total time spent as cost criterion. Section 5

concludes the chapter.

2 Traffic models

Traffic flow models can be distinguished according to the level of detail they use to

describe the traffic. An overview of existing traffic models is given in [25].

In this chapter we use macroscopic traffic models. Macroscopic models describe

traffic flows using aggregated variables such as flows and densities. They are suited

very well for online control since these models give a balanced trade-off between

accurate predictions and computational efforts. Indeed, the computation time for

a macroscopic model does not depend on the number of vehicles in the network,

which makes the model well-suited for online control, where the prediction should

be performed online in an optimization setting, requiring that the model should run

several times faster than real-time. Examples of macroscopic models are the LWR
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model [33, 45], the models of Helbing [22] and Hoogendoorn [24], and METANET

[35].

We use an extended version of the METANET traffic flow model [35] to describe

the freeway traffic, and a modified and extended model based on a queue length

model developed by Kashani and Saridis [27] for the urban traffic. We also discuss

how the freeway and the urban model have to be coupled, and we explain how the

resulting traffic flow model can be linked with a model that describes emissions and

fuel consumption. This leads to a macroscopic traffic model for mixed networks

with urban roads and freeways, especially suited for an MPC-based traffic control

approach.

Note that we will explicitly make a difference between the simulation time step

Tf for the freeway part of the network, the simulation time step Tu for the urban part

of the network, and the controller sample time Tc. We will also use three different

counters: kf for the freeway part, ku for the urban part, and kc for the controller. For

simplicity, we assume that Tu is an integer divisor of Tf, and that Tf is an integer

divisor of Tc:

Tf = MfuTu, Tc = McfTf = McfMfuTu , (1)

with Mfu and Mcf integers. The value for Tf must be selected in such a way that no

vehicle can cross a freeway segment in one time step, which results in a typical value

of 10 s for freeway segments of length 0.5 km. The value of Tu is in general selected

small enough to obtain an accurate description of the traffic, typically between 1 and

5 s, depending on the length of the roads. The control time step Tc should be large

enough to allow the traffic controller to determine the new control signal, which

depends on the required computation time, and short enough to deal with changing

traffic conditions. Typical values for Tc are 1–5 min.

2.1 Freeway traffic flow model

For the prediction of the traffic flows on the freeway part of the network we use

the destination-independent METANET model from [29, 30, 39]. We will briefly

present the basic METANET model here. For a full description we refer the inter-

ested reader to [29, 30, 39].

The METANET model represents a network as a directed graph with the links

(indicated by the index m) corresponding to freeway stretches. Each freeway link

has uniform characteristics, i.e., no on-ramps or off-ramps and no major changes

in geometry. Where major changes occur in the characteristics of the link or in the

road geometry (e.g., at an on-ramp or an off-ramp), a node is placed. Each link m is

divided into Nm segments (indicated by the index i) of length Lm (see Figure 1). Each

segment i of link m is characterized by the traffic density ρm,i(kf) (veh/km/lane), the

mean speed vm,i(kf) (km/h), and the traffic volume or outflow qm,i(kf) (veh/h), where
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traffic flow

freeway link m

. . .. . .segment 1 segment i segment Nm

Fig. 1 In the METANET model a freeway link is divided into segments.

kf indicates the time instant t = kfTf, and Tf is the time step used for the simulation

of the freeway traffic flow (typically Tf = 10 s).

The following equations describe the evolution of the network over time. The

outflow of each segment is equal to the density multiplied by the mean speed and

the number of lanes on that segment (denoted by λm):

qm,i(kf) = ρm,i(kf)vm,i(kf)λm . (2)

The density of a segment equals the previous density plus the inflow from the up-

stream segment, minus the outflow of the segment itself (conservation of vehicles):

ρm,i(kf +1) = ρm,i(kf)+
Tf

Lmλm

(

qm,i−1(kf)−qm,i(kf)
)

. (3)

While (2) and (3) are based on physical principles and are exact, the equations that

describe the speed dynamics and the relation between density and the desired speed

are heuristic. The mean speed at step kf + 1 equals the mean speed at step kf plus

a relaxation term that expresses that the drivers try to achieve a desired speed V , a

convection term that expresses the speed increase (or decrease) caused by the inflow

of vehicles, and an anticipation term that expresses the speed decrease (increase) as

drivers experience a density increase (decrease) downstream:

vm,i(kf +1) = vm,i(kf)+
Tf

τ

(

V
(

ρm,i(kf)
)

− vm,i(kf)
)

+

Tf

Lm

vm,i(kf)
(

vm,i−1(kf)− vm,i(kf)
)

−
ϑTf

τLm

ρm,i+1(kf)−ρm,i(kf)

ρm,i(kf)+κ
, (4)

where τ , ϑ , and κ are model parameters. The expression for the desired speed V is

given by

V
(

ρm,i(kf)
)

= vfree,m · exp

[

−
1

am

(

ρm,i(kf)

ρcrit,m

)am
]

, (5)
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with am a model parameter, and where the free-flow speed vfree,m is the average

speed that drivers assume if traffic is freely flowing, and the critical density ρcrit,m is

the density at which the traffic flow is maximal.

When a speed limit is active in the segment, (5) becomes

V
(

ρm,i(kf)
)

= min

(

vfree,m · exp

[

−
1

am

(

ρm,i(k)

ρcrit,m

)am
]

,(1+α)vcontrol,m,i(kf)

)

,

(6)

where vcontrol,m,i(kf) is the speed limit imposed on segment i of link m at time step

kf, and 1+α is the non-compliance factor that expresses that drivers usually do not

fully comply with the displayed speed limit and that their target speed is usually

higher than what is displayed1.

Origins are modeled with a simple queue model. The length of the queue equals

the previous queue length plus the demand do(kf), minus the outflow qo(kf):

wo(kf +1) = wo(kf)+Tf

(

do(kf)−qo(kf)
)

. (7)

The outflow of the origin depends on the traffic conditions on the mainstream

and, for the metered on-ramp, on the ramp metering rate2 ro(kf), where ro(kf) ∈
[0,1]. More specifically, qo(kf) is the minimum of three quantities: the available

traffic in time period kf (queue plus demand), the maximal flow that could enter the

freeway because of the mainstream conditions, and the maximal flow allowed by

the metering rate:

qo(kf) = min

[

do(kf)+
wo(kf)

Tf

, Qo · ro(kf), Qo

(

ρmax,m −ρm,1(kf)

ρmax,m −ρcrit,m

)

]

, (8)

where Qo is the on-ramp capacity (veh/h) under free-flow conditions and ρmax,m

(veh/km/lane) is the maximum density of link m, and m is the index of the link to

which the on-ramp is connected.

The above equations can be extended with terms that account for the speed drop

caused by merging phenomena if there is an on-ramp, or for the speed reduction due

to weaving phenomena when there is a lane drop, see [29].

The coupling equations to connect links are as follows. Every time there is a

major change in the link parameters, like a junction or a bifurcation, a node is placed

between the links. This node provides the incoming links with a virtual downstream

density (required for the speed update equation (4)), and the leaving links with an

inflow and a virtual upstream speed (required for the density update equation (3)

and the speed update equation (4)). The flow that enters node n is distributed among

the leaving links according to

1 Data from the Dutch freeways show that when the speed limits are not enforced the average speed

is approximately 10 % higher than what is displayed (α = 0.1), and when they are enforced the

average speed is approximately 10 % lower than what is displayed (α =−0.1).
2 For an unmetered on-ramp we can also use (8) by setting ro(kf)≡ 1.
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Qn(kf) = ∑
µ∈In

qµ ,Nµ (kf) (9)

qm,0(kf) = βm,n(kf) ·Qn(kf) , (10)

where Qn(kf) is the total flow that enters the node at step kf, In is the set of links that

enter node n, βm,n(kf) expresses the turning rates (i.e., the fraction of the total flow

through node n that leaves via link m), and qm,0(kf) is the flow that leaves node n

via link m.

When node n has more than one leaving link, the virtual downstream density

ρm,Nm+1(kf) of entering link m is given by

ρm,Nm+1(kf) =
∑µ∈On

ρ2
µ ,1(kf)

∑µ∈On
ρµ ,1(kf)

, (11)

where On is the set of links leaving node n.

When node n has more than one entering link, the virtual upstream speed vm,0(kf)
of leaving link m is given by

vm,0(kf) =
∑µ∈In vµ ,Nµ (kf) ·qµ ,Nµ (kf)

∑µ∈In qµ ,Nµ (kf)
. (12)

Extensions to the basic METANET model are presented in [19–21].

2.2 Urban traffic flow model

Now we present a macroscopic model that describes the evolution of the traffic flows

in the urban part of the network. This model is based on the Kashani model [27],

but with the following extensions:

1. Horizontal, turning-direction-dependent queues;

2. Blocking effects, represented by maximal queue lengths and a flow constraint on

flows that want to enter the blocked link, so no vehicle will be able to cross a

blocked intersection;

3. A shorter time step3, to get a more accurate description of the traffic flows.

The main variables used in the urban model are shown in Figures 2(a) and 2(b).

The most important variables are the queue length x expressed in number of ve-

hicles, the number of arriving vehicles marr, and the number of departing vehicles

mdep. Using these variables, the model is formulated as follows.

The number of vehicles that intend to leave the link loi,s, connecting origin oi and

intersection s, toward destination d j at time t = kuTu is given by:

3 The original Kashani model of [27] uses the cycle time as time step, which restricts the model

to effects that take longer than the cycle time. For MPC-based traffic control the other effects can

also be relevant, and one might also want to control the cycle times.
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s

o

d1

d2

d3

lo,s

ls,d1

ls,d2

ls,d3

marr,o,s

marr,o,s,d1

marr,o,s,d2

marr,o,s,d3

xo,s,d1

xo,s,d2

xo,s,d3

mdep,o,s,d1

mdep,o,s,d2

mdep,o,s,d3

(a) Variables for an urban intersection.

o1

o2

o3

σ

mdep,o1,σ ,s

mdep,o2,σ ,s

mdep,o3,σ ,s

mdep,σ ,s

ls,σ

lσ ,s marr,σ ,s
xσ ,s,d1

xσ ,s,d2
xσ ,s,d3

s

d1

d2

d3

mdep,σ ,s,d1

mdep,σ ,s,d2

mdep,σ ,s,d3

(b) Variables for an urban link.

Fig. 2 Overview of the urban network variables.

mdep,int,oi,s,d j
(ku) =











0 if goi,s,d j
(ku) = 0 ,

min
(

xoi,s,d j
(ku)+marr,oi,s,d j

(ku),

Ss,d j
(ku),TuQcap,oi,s,d j

)

if goi,s,d j
(ku) = 1 ,

(13)

where Tu is the urban step with ku as counter, xoi,s,d j
(ku) is the queue length consist-

ing of vehicles coming from origin oi and going to destination d j at intersection s,
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marr,oi,s,d j
(ku) is the number of vehicles arriving at the end of this queue, Ss,d j

(ku) is

the free space in the downstream link expressed in number of cars, Qcap,oi,s,d j
is the

saturation flow4, and goi,s,d j
(ku) is a binary signal that is 1 when the specified traffic

direction has green, and zero otherwise. This means that goi,s,d j
= 0 corresponds to

a red traffic signal, and goi,s,d j
= 1 to a green one.5

The free space Sσ ,s in a link lσ ,s expresses the maximum number of vehicles that

can enter the link. It can never be larger than the length Lσ ,s of the link expressed in

number vehicles, and is computed as follows:

Sσ ,s(ku +1) = Sσ ,s(ku)−mdep,σ ,s(ku)+ ∑
d j∈Ds

mdep,σ ,s,d j
(ku) , (14)

where mdep,σ ,s(ku) is the number of vehicles departing from intersection σ towards

link lσ ,s, and Ds is the set of destinations connected to intersection s.

The number of vehicles departing from intersection s towards link ls,d j
can be

computed as

mdep,s,d j
(ku) = ∑

oi∈Os

mdep,oi,s,d j
(ku) . (15)

These vehicles drive from the beginning of the link ls,d j
toward the tail of the queue

waiting on the link. This gives a time delay δs,d j
(ku) which is approximated as:

δs,d j
(ku) = ceil

(

Ss,d j
(ku)Lav,veh

vav,s,d j

)

, (16)

where Lav,veh is the average length of a vehicle, and vav,s,d j
the average speed on link

ls,d j
.

The time instant at which the vehicle enters the link and the vehicle’s delay on

the link result in the time instant at which the vehicle will arrive at the end of the

queue. It can happen that vehicles that have entered the link at different instants

reach the end of the queue during the same time step. To take this into account the

variable marr,s,d j
(ku) that describes the vehicles arriving at the end of the queue is

updated accumulatively every time step. This results in:

marr,s,d j
(ku +δs,d j

(ku))new = marr,s,d j
(ku +δs,d j

(ku))old +mdep,s,d j
(ku) , (17)

where marr,s,d j
(ku + δs,d j

(ku)) is the number of vehicles arriving at the end of the

queue at time ku+δs,d j
(ku), and mdep,s,d j

(ku) is the number of vehicles entering link

ls,d j
.

The traffic flow reaching the tail of the queue in link ls,d j
divides itself over the

subqueues according to the turning rates βoi,s,d j
(ku):

4 The saturation flow is the maximum flow that can cross the intersection under free-flow condi-

tions.
5 The computed green time is the effective green time. The exact signal timing including the amber

time can easily be derived from this effective green time.
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marr,oi,s,d j
(ku) = βoi,s,d j

(ku)marr,oi,s(ku) . (18)

The subqueues are then updated as follows:

xoi,s,d j
(ku +1) = xoi,s,d j

(ku)+marr,oi,s,d j
(ku)−mdep,oi,s,d j

(ku) . (19)

The total flow entering a destination link consists of several flows from different ori-

gins. The available space in the destination link should be divided over the entering

flows, since the total number of vehicles entering the link may not exceed the avail-

able space. We divide this available space equally over the different entering flows.

When one flow does not fill its part of the space, the remainder is proportionally

divided over the rest of the flows. For a detailed description of this process we refer

to [54].

2.3 Interface between the freeway and the urban traffic flow models

The urban part and the freeway part are coupled via on-ramps and off-ramps. In this

section we present the formulas that describe the evolution of the traffic flows on

these on-ramps and off-ramps. The main problems are the different simulation time

steps Tf and Tu and the boundary conditions that the models create for each other.

We assume that the time steps are selected such that Tfvfree,m < Lm.

2.3.1 On-ramps

Consider an on-ramp r that connects intersection s of the urban network to node p

of the freeway network, as shown in Figure 3(a). The number of vehicles that enter

the on-ramp from the urban network is given by marr,s,r(ku). These vehicles have a

delay δs,r(ku) similar to (16). The evolution of the queue length is first described

with the urban model. At the end of each freeway time step, the queue length as

described in the urban model is then translated to the queue length for the freeway

model as explained below.

Consider the freeway time step kf corresponding to the urban time step ku =Mfukf

(recall that Tf = MfuTu). In order to get a consistent execution of the urban and

freeway models the computations should be done in the following order:

1. Determine the on-ramp departure flow qr,p(kf) during the period [kfTf,(kf +1)Tf]
using (8).

2. Assume that these departures spread out evenly over the equivalent urban sim-

ulation period [kuTu,(ku +Mfu)Tu]. Compute the departures for each urban time

step in this period using mdep,s,r,p(k) =
qr,p(kf)Tf

Mfu

for k = ku, . . . ,ku +Mfu −1.
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(b) Variables for an off-ramp.

Fig. 3 Overview of variables on on-ramps and off-ramps.

3. The number of arriving vehicles, the free space, and the queue length xs,r,p at link

ls,r can now be computed using the equations for the urban traffic model given in

Section 2.2.

4. When the queue length xs,r,p(ku+Mfu) is computed, we set wo(kf+1)= xs,r,p(ku+
Mfu). It is easy to verify that this is equivalent to (7).

2.3.2 Off-ramps

The evolution of the traffic flows on an off-ramp r is computed for the same time

steps as for the on-ramp, starting at time step ku =Mfukf. The variables are displayed

in Figure 3(b). The following steps are required to simulate the evolution of the

traffic flows, in order to get a consistent execution of the urban and freeway models:

1. Determine the number of departing vehicles from link lr,s at intersection s during

the period [kuTu,(ku +Mfu)Tu] using the urban traffic flow model.

2. Compute the maximal allowed flow qmax
r,1 (kf) that can leave the freeway and enter

the off-ramp in the period [kfTf,(kf + 1)Tf] based on the available storage space

in the link lr,s at the end of the period:
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qmax
r,1 (kf) =

1

Tf

Sr,s(ku)+
ku+Mfu−1

∑
k=ku

∑
d j∈Ds

mdep,r,s,d j
(k) . (20)

The effective outflow qm,nlast,m
(kf) of freeway link m between node p and off-

ramp r is then given by

qm,nlast,m
(kf) = min

(

qnormal
m,nlast,m

(kf),q
max
r,1 (kf)

)

, (21)

where qnormal
m,nlast,m

(kf) is the flow that would have entered the freeway if the off-ramp

would not have been blocked.

3. Now the METANET model can be updated for simulation step kf +1.

4. We assume that the outflow of the off-ramp is distributed evenly over the period

[kfTf,(kf +1)Tf] such that

marr,r,s(k+δr,s) =
qm,nlast,m

(kf)Tf

Mfu

for k = ku, . . . ,ku +Mfu −1 . (22)

The corresponding urban queue lengths xr,s,d j
(k) for k = ku +1, . . . ,ku +Mfu can

be updated using the urban traffic flow model.

2.4 Emission and fuel consumption model

In this section we present the dynamic emission and fuel consumption model VT-

micro and we show how it can be integrated with the macroscopic METANET traffic

flow model of Section 2.1 (see also [59, 60]). A similar approach can also be used

to integrate VT-micro with the urban model of Section 2.2.

2.4.1 Emission and fuel consumption models

Traffic emission and fuel consumption models calculate the emissions produced and

fuel consumed by vehicles based on the operating conditions of the vehicles. The

main inputs to the models are the operating conditions of the vehicle (such as speed,

acceleration, engine load) [23]. These models can be either average-speed-based or

dynamic. Average-speed-based emission and fuel consumption models estimate or

predict traffic emission and fuel consumption based on the trip-based average speed

of traffic flow [37]. These models can also be used with second-by-second speeds

to take some of the variation of the speeds into account [7]. On the contrary, dy-

namic (or also called microscopic) emission and fuel consumption models use the

second-by-second speed and acceleration of individual vehicles to estimate or pre-

dict the emissions and the fuel consumption. Such models provide better accuracy

than average-speed-based models. Therefore, we will consider a dynamic emission
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and fuel consumption model and integrate it with the macroscopic traffic flow model

of Section 2.1.

VT-micro [1] is a microscopic dynamic emission and fuel consumption model

that yields emissions and fuel consumption of one individual vehicle using second-

by-second speed and acceleration. The model has the form

Ex(kf) = exp
(

ṽT(kf)Pxã(kf)
)

, (23)

where Ex is the estimate or prediction of the emission or fuel consumption variable

x ∈ {CO, NOx, HC, fuel}, with ṽ(kf) = [1 v(kf) v(kf)
2 v(kf)

3]T where v(kf) is the

speed of the vehicle at freeway time step kf, with ã(kf) = [1 a(kf) a(kf)
2 a(kf)

3]T

where a(kf) is the acceleration of the vehicle at freeway time step kf, and with Px

the model parameter matrix for the variable x. The values of the entries of Px for

x ∈ {CO, NOx, HC, fuel} can be found in [1].

The VT-micro emission model does not yield estimates of CO2 emission. But

since there is almost an affine relationship between the fuel consumption and the

CO2 emission [38], we can compute the CO2 emission as

ECO2
(kf) = δ1 +δ2Efuel(kf) , (24)

where δ1 and δ2 are model parameters, the values of which can be found in [38].

Figure 4 depicts the CO2 and fuel consumption versus the vehicle speed for three

acceleration values using the equations presented above.

2.4.2 Integrating METANET with VT-micro

The VT-micro model is a microscopic traffic emission and fuel consumption model

while METANET is a macroscopic traffic flow model. Thus, these two different

models are required to be integrated in such a way that VT-micro can get speed and

acceleration inputs of the traffic flow from the METANET model at every simulation

time step. The speed of the traffic flow can be easily obtained from (4). However,

the computation of the acceleration is not as straightforward. In the sequel we show

how to obtain the acceleration from the METANET model.

Since the METANET model is discrete in both space and time, there are two

acceleration components involved in the model. The first is the “temporal” accel-

eration of the vehicle flow within a given segment. The second component is the

“spatial” acceleration of the vehicles flowing from one segment into another in one

simulation time step (see Figure 5).

Temporal acceleration

The temporal acceleration of vehicles in a segment i of link m at time step kf is given

by:
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Fig. 4 Fuel consumption and CO2 emission curves of vehicles as a function of the speed for accel-

erations a ∈ {−1, 0, 1}m/s.

am,i(kf) =
vm,i(kf +1)− vm,i(kf)

Tf

. (25)

This equation is the same for all segments of all links.

Let us now determine how many vehicles are subject to this temporal accelera-

tion from time step kf to time step kf + 1. At time step kf the number of vehicles

in segment i of link m is equal to Lmλmρm,i(kf) and from time step kf to kf + 1

(i.e., in the time period [kfTf,(kf + 1)Tf]) the number of vehicles leaving segment i

is Tf qm,i(kf) (see Figure 5). Therefore, the number of vehicles accelerating at the

temporal acceleration provided in (25) is
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segment i−1 segment i segment i+1

Tf qm,i−1(kf) Lmλmρm,i(kf)−Tf qm,i(kf)
Tf qm,i(k)

at kf

at kf +1

Fig. 5 Illustration of traffic flow in METANET.

nm,i(kf) = Lmλmρm,i(kf)−Tf qm,i(kf) . (26)

This equation is also the same for all segments of all links.

Spatial acceleration

The spatial acceleration depends on the geometry of the traffic network. It is differ-

ent for a link, an on-ramp, an off-ramp, merging links, and splitting links. Here we

present the spatial accelerations for a link and an on-ramp. Similar equations can be

derived for off-ramps and for splitting and merging links (see [59]).

Link

In the simulation time step from kf to kf +1, the spatial acceleration of the vehicles

leaving segment i− 1 of link m and going to segment i of link m, and the corre-

sponding number of the vehicles are respectively described by (see also Figure 5):

am,∆ i(kf) =
vm,i(kf +1)− vm,i−1(kf)

Tf

(27)

nm,∆ i(kf) = Tf qm,i−1(kf) . (28)
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On-ramp

Consider an on-ramp connected to segment i of link m. We assume the initial speed

on the on-ramp to be von. If the inflow of the on-ramp is given by qon,m,i(kf), the

spatial acceleration of the vehicles as their speed is changing from von to vm,i(kf+1)
and the corresponding number of vehicles are respectively

aon,m,∆ i(kf) =
vm,i(kf +1)− von

Tf

(29)

non,m,∆ i(kf) = Tf qon,m,i(kf) . (30)

2.4.3 VT-macro

Recall that as input for the VT-micro model we have to specify speed-acceleration

pairs. In all the derivations above both the temporal and spatial accelerations have

the form ay =
v2 − v1

Tf

. The corresponding speed input is then taken to be v1. Fur-

thermore, since the speed-acceleration pair holds for a number of vehicles, the emis-

sions and fuel consumption obtained for the given pair have to be multiplied by the

corresponding number of vehicles in order to obtain the total emissions and fuel

consumption (as the VT-micro model describes the emissions or fuel consumption

of one individual vehicle).

This results in a new traffic emission and fuel consumption model

E total
x,m,i(kf) = ntemp(kf)E

temp
x,m,i (kf)+nspat(kf)E

spat
x,m,∆ i(kf) , (31)

where the superscripts “temp” and “spat” in n and E refer to the temporal or spa-

tial variables, n denotes the number of vehicles, and Ex,m,i and Ex,m,∆ i denote the

emission or fuel consumption for segment i of link m with respectively the tempo-

ral and spatial speed and acceleration inputs. More specifically, Jx,m,i and Jx,m,∆ i are

computed as in (23) or (24).

We call this new model the VT-macro emission and fuel consumption model.

3 Model-based predictive traffic control

In the previous section we have developed a model that describes traffic networks

that contain both urban roads and freeways. This model forms the basis for our

model-based predictive control method.
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3.1 Motivation

To find the optimal combination of traffic control measures (control inputs) we apply

a model predictive control (MPC) framework [9, 15, 34]. MPC is an optimal control

method applied in a rolling horizon framework. Optimal control has successfully

been applied in [29–31] to coordinate or integrate traffic control measures. Both

optimal control and MPC have the advantage that the controller generates control

signals that are optimal according to a user-supplied objective function. However,

MPC has some important advantages over traditional optimal control. First, optimal

control has an open-loop structure, which means that the disturbances (in our case:

the traffic demands) have to be completely and exactly known in advance, and the

traffic model has to be very accurate to ensure sufficient precision for the whole

period of operation. MPC operates in closed-loop, which means that the traffic state

and the current demands are regularly fed back to the controller, and the controller

can take disturbances (here: demand prediction errors) into account and correct for

prediction errors resulting from model mismatch. Second, adaptivity is easily imple-

mented in MPC, because the prediction model and/or its parameters can be updated

during the operation of the controller. This may be necessary when traffic behav-

ior changes (e.g., in case of incidents, changing weather conditions, lane closures

for maintenance). Third, for MPC a shorter prediction horizon is usually sufficient,

which reduces complexity, and makes the real-time application of MPC feasible.

3.2 Principle of operation

In MPC a discrete-time model is used to predict the future behavior of the traffic

network. During a control sampling interval the control signals are taken to be con-

stant. The goal of the controller is to find the control signals that result in an optimal

behavior of the traffic flows. To express performance an objective function is de-

fined and the control signals that optimize this function are found via (numerical)

optimization.

The control is applied in a rolling-horizon scheme: at each control step kc (cor-

responding to the time instant t = kcTc with Tc the control time step (typically in the

range of 1 to 5 min for traffic network control)), a new optimization is performed

over the prediction horizon [kcTc,(kc +Np)Tc], and only the first value of the result-

ing control signal (the control signal for time instant kc) is applied to the process (see

Figure 6). At the next control step kc +1 this procedure is repeated. To reduce com-

plexity and improve stability often a control horizon Nc (≤ Np) is introduced, and

after the control horizon has been passed the control signal is taken to be constant.

So there are two loops in the MPC scheme: the rolling-horizon loop and the

optimization loop inside the controller. The loop inside the controller of Figure 6 is

executed as many times as required to find the optimal control signals at control time

step kc, for given Np, Nc, traffic state, and expected demand. The loop connecting

the controller and the traffic system is performed once for each kc and provides the
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Fig. 6 Schematic view of the model predictive control (MPC) structure.

state feedback to the controller. Recall that this feedback is necessary to correct

for (the ever present) prediction errors, and disturbance rejection (compensation for

unexpected traffic demand variations). Another advantage of this rolling-horizon

approach is that it results in an online adaptive control scheme that allows us to

take changes in the system or in the system parameters into account by regularly

updating the model of the system.

When optimizing large networks, the computational complexity may become too

high. In these cases the network should be separated into some subnetworks that are

controlled by separate MPC controllers. The subnetworks should be chosen such

that the interaction between them is as small as possible. To handle the remaining

interactions (e.g., occasionally overflowing queues) adequately, structures such as

hierarchical control or agent-based control can be used (see [47, 55, 56]).

Objective function

The MPC algorithm has to determine the control signals c (such as the ramp me-

tering rates, dynamic speed limits, traffic signal settings, etc.) that minimize a given

objective function over the period [kcTc,(kc +Np)Tc]. Possible performance criteria

are the total time spent (TTS) in the freeway and the urban part of the network,

emission levels, and fuel consumption. Let us now derive the expressions for these

performance criteria.

The TTS in the freeway part of the network is given by

JTTS,f(kc) =Tf ∑
j∈Kf(kc,Np)

(

∑
(m,i)∈Mls,f

ρm,i( j)Lmλm + ∑
o∈Of

wo( j)

)

, (32)
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where Kf(kc,Np) is the set of freeway time steps kf that correspond to the considered

prediction period [kcTc,(kc +Np)Tc], Mls,f is the set of pairs (m, i) of link indices m

and segment indices i of the freeway part of the network, and Of is the set of all

mainstream origins and on-ramps at the boundaries of the mixed network (note that

on-ramps connecting the urban and the freeway part of the network are considered

in the expression for the urban TTS given next).

To compute the TTS for the urban part of the network the number of vehicles in

each urban link nveh,lσ ,s
is required:

nveh,lσ ,s
(ku) = Lσ ,s −Sσ ,s(ku) , (33)

where Lσ ,s is the maximum number of vehicles that the link can contain. Using this

equation the number of vehicles for all urban links, on-ramps, and off-ramps can be

determined. The TTS in the urban part of the network is then given by

JTTS,u(kc) =Tu ∑
l∈Ku(kc,Np)

(

∑
loi ,s

∈Iu

nveh,loi,s
(l)+ ∑

ls,r∈Ron∪Roff

nveh,ls,r(l)

+ ∑
o∈Ou

nveh,o(l)

)

, (34)

where Ku(kc,Np) is the set of urban time steps ku that correspond to [kcTc,(kc +
Np)Tc], Iu is the set of all urban links, Ou is the set of all urban origins o, Ron is the

set of urban links lr,s connected to the on-ramps, and Roff is the set of urban links ls,r
connected to the off-ramps.

The expression for the emissions and the fuel consumption over the prediction

period [kcTc,(kc +Np)Tc] is given by

Jx(kc) = ∑
j∈Kf(kc,Np)

∑
(m,i)∈Mls,f

E total
x,m,i( j) (35)

for x ∈ {CO, NOx, HC, fuel}, where E total
x,m,i is defined by (31).

In order to get smoother control signals, one often also imposes a penalty on the

temporal variation of the control signal c:

Jtemp
var (kc) =

kc+Nc−1

∑
j=kc

‖c( j)− c( j−1)‖2
. (36)

In a similar way, one could also define a penalty on the spatial variation for speed

limits vcontrol,m,i( j) defined on control time steps j:

Jspat
var (kc) =

kc+Nc−1

∑
j=kc

∑
(m,i)∈Vc

(vcontrol,m,i( j)− vcontrol,m,i−1( j))2
, (37)
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where Vc is the set of pairs of pairs (m, i) of link indices m and segment indices i

such that a speed limit is active on both segments i and i−1.

The overall objective function used in MPC is then a weighted sum of the above

partial objective functions:

JMPC(kc) =
n

∑
i=1

γi

Jnominal,i

Ji(kc) , (38)

where Jnominal,i is the nominal value of partial objective function Ji (for normaliza-

tion purposes) and γi is a weighting factor.

Operational constraints

The constraints may contain upper and lower bounds on the control signal, but also

linear or nonlinear equality and inequality constraints on the states of the system.

The constraints are used, e.g., to keep the system working within safety limits, or to

avoid unwanted situations.

Optimization algorithms

At each control step the MPC controller computes an optimal control sequence over

a given prediction horizon. In general, this optimal control sequence is the solution

of a nonlinear, non-convex optimization problem in which the objective function is

minimized subject to the model equations and the constraints. To solve this opti-

mization problem different numerical optimization techniques can be applied, such

as multi-start sequential quadratic programming (SQP) (see, e.g., [42, Chapter 5])

or pattern search (see, e.g., [44]) for real-valued problems, and genetic algorithms

[10], and tabu search [18] or simulated annealing [14] for mixed-integer problems

that arise when discrete control measures (e.g., lane closures) are included.

Tuning of Np and Nc

The tuning rules to select appropriate values for Np and Nc that have been developed

for conventional MPC cannot be applied straightforwardly to the traffic flow con-

trol framework presented above. However, based on a heuristic reasoning we can

determine an initial guess for these parameters.

The prediction horizon Np should be larger than the typical travel time from the

controlled segments to the exit of the network, because if we take the prediction

horizon Np shorter than the typical travel time in the network, the effect of the vehi-

cles that are influenced by the current control measure and — as a consequence —

have an effect on the network performance before they exit the network, will not be

taken into account. Furthermore, a control action may affect the network state (by
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Fig. 7 A 6 km freeway with metered on-ramp and two dynamic speed limit control.

improved flows, etc.) even when the actually affected vehicles have already exited

the network. On the other hand, Np should not be too large because of the computa-

tional complexity of the MPC optimization problem. So based on this reasoning we

select Np to be about the typical travel time in the network.

For the control horizon Nc we select a value that represents a trade-off between

the computational effort and the performance.

4 Case studies

In order to illustrate the control framework presented above we will now apply it to

two case studies: a simple one involving a freeway stretch and a more complex one

involving a mixed urban-freeway network.

4.1 MPC for the reduction of emissions, fuel consumption and

travel time on freeways

4.1.1 Network and scenario

Since we want to focus on the relevant points of the approach presented in this

chapter, the benchmark network (see Figure 7) for this experiment was chosen as

simple as possible. The network consists of one mainstream freeway link with two

speed limits, and one metered on-ramp. The on-ramp is located at a distance of 4 km

from the mainstream origin of the freeway link, and it has a capacity of 2000 veh/h.

The mainstream freeway link has two lanes with a capacity of 2100 veh/h each.

Segments 3 and 4 of the freeway are equipped with a variable message sign where

speed limits can be displayed. The outflow at the end of the freeway is considered

to be unrestricted. We assume that the queue length at the on-ramp may not exceed

100 vehicles, in order to prevent spill-back to a surface street intersection.

We use the network parameters as found in [30]: Tf = 10 s, τ = 18 s, κ =
40 veh/km/lane, ϑ = 60 km2/h, ρmax = 180 veh/km/lane, a = 1.867, and ρcrit =
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Fig. 8 On-ramp demand (dashed line) and mainstream demand (solid-line) profiles used in the

simulations for the first case study.

33.5 veh/km/lane. Furthermore, we assume that the desired speed is 10% higher

than the displayed speed limit, that is α = 0.1.

The controller sampling time Tc is chosen to be 1 min. Moreover, in order to in-

clude relevant dynamics of the system states, the prediction horizon and the control

horizon are selected to be respectively Np = 15 and Nc = 7.

To examine the effect of the combination of variable speed limits and ramp me-

tering typical demand profiles are considered for the mainstream origin and the on-

ramp (see Figure 8). The mainstream demand has a constant, relatively high level

and a drop after 2 h to a low value in a time span of 15 min. The demand on the

on-ramp increases to near capacity, remains constant for 15 min, and decreases fi-

nally to a constant low value. For the given demand profiles one uncontrolled (Case

1) and four controlled (Cases 2 to 5) situations are compared. When no control is

applied to the system (Case 1), the speed limit is set to a constant value of 102 km/h

and the ramp rate is constant and equal to 1. We consider this case as a benchmark to

compare the results of the simulations when an MPC controller is implemented. For

the controlled cases the objective of the MPC controller is to optimize the following

performance criteria (all deemed equally important within each case, i.e., γi = 1 for

all i):

Case 2: total time spent,

Case 3: total fuel consumption and total time spent,

Case 4: total NOx emissions and total time spent, and

Case 5: total fuel consumption, total NOx emissions, and total time spent.

In this experiment the MPC optimization problem is a non-convex, nonlinear

problem with real-valued optimization variables (the dynamic speed limits and the
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ramp metering rates). To solve this optimization problem we have selected multi-

start SQP as optimization algorithm. The SQP algorithm is implemented in the

fmincon function of the Matlab optimization toolbox [51].

4.1.2 Results

In Table 1 we present the simulation results of the uncontrolled simulation (Case 1)

and the controlled simulations (Case 2 to Case 5).

Table 1 Simulation results for the freeway case study.

Simulation results

Control TTS Total NOx Total fuel

objectives (veh·h) emissions (kg) consumption (l)

Case 1: Uncontrolled 1459 8.719 6108

Case 2: TTS 1247 (-14.6%) 8.288 (-4.9%) 5274 (-13.7%)

Case 3: TTS + fuel 1257 (-13.9%) 8.147 (-6.6%) 4934 (-19.2%)

Case 4: TTS + NOx 1412 (-3.2%) 7.654 (-12.2%) 5290 (-13.4%)

Case 5: TTS + fuel + NOx 1336 (-8.5%) 7.786 (-10.7%) 5088 (-16.7%)

When an MPC controller is implemented (Case 2 to Case 5) the values of all

the performance indicators are reduced by a certain amount compared to the un-

controlled situation. But, the reduction of the respective performance indicators is

dependent on the objective of the controller. As can be seen in the table, when the

objective of the controller is to reduce the TTS (Case 2), the TTS is reduced with

14.6 %. Moreover, the total NOx emissions and the total fuel consumption are re-

duced with 4.9 % and 13.7 % respectively. This indicates that under the given traffic

demand and traffic scenario, reducing the TTS can also help in reducing the total

NOx emissions and the total fuel consumption.

When the objective of the controller also includes the total fuel consumption as

well as the TTS (Case 3), the results for TTS differ slightly compared to Case 2,

while the total fuel consumption shows a significant reduction. So for Case 3 more

fuel is saved by making a small sacrifice in the TTS.

In Case 4 the objective of the controller is to reduce the total NOx emissions and

the TTS where both criteria are weighted equally. In this case, the TTS does not

show a significant improvement compared to the uncontrolled case. On the other

hand, the total NOx emissions decrease significantly. Moreover, we can see that the

total fuel consumption is reduced by 13.4 %, which is less than in Case 3. Thus,

although the combination of a larger TTS and more fuel consumption indicates in-

efficient driving behavior in terms of the non-environmental performance indicators

(travel time and energy consumption), there is a positive impact on the emissions.

Case 5 encompasses the concerns regarding the travel time, energy consumption,

and the environment, as it addresses all three performance indicators by weight-

ing them equally. The simulation results in Table 1 show that in this case the MPC
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controller achieves a balanced trade-off between total time spent, the total fuel con-

sumption, and the total NOx emissions.

4.2 MPC for mixed urban-freeway networks

4.2.1 Set-up and scenarios

For this case study a simple network is used, as shown in Figure 9. The network

consists of two two-lane freeways (freeway 1 and 2) each with two on-ramps and

two off-ramps (ramp 1 to 4). Furthermore, there are two urban intersections (A and

C), which are connected to the freeway and to each other. Between these intersec-

tions and the freeways there are some crossing roads (B, D, and E), where there is

only crossing traffic that does not turn into other directions, e.g., pedestrian traffic

or bicycles. We have selected this network because it contains the most essential

elements from mixed networks. There are freeways with on-ramps and off-ramps

and controlled intersections not far away from the freeways, resulting in a strong

relation between the traffic on the two types of road. The network is small enough

to use intuition to analyze and interpret the results, but large enough to make the

relevant effects visible.

We will consider four different traffic scenarios all of which are created starting

from a “basic” scenario. This basic scenario has a demand of 3600 veh/h for freeway

origins and 1000 veh/h for urban origins, and turning rates as shown in Figure 9.

Each of the scenarios is a variation on this basic scenario, with one variable or

parameter changed, or with a constraint added. The total simulated time is 30 min.

These are the four scenarios:

Scenario 1: Congestion on the freeway: A traffic jam exists at the downstream

end of freeway 1. This congestion grows into the upstream direc-

tion and blocks the on-ramps, causing a spill-back leading to urban

queues. The congestion is created by imposing a downstream density

of 65 veh/km/lane for the last segment of the freeway.

Scenario 2: Blockage of an urban intersection: On intersection D an incident has

occurred, and the whole intersection is blocked. The queues spill back

into neighboring intersections, and also block the off-ramps of the free-

ways. This incident is simulated by setting the saturation flow of all

links leaving the intersection to 0 veh/h.

Scenario 3: Rush hour: In this scenario the demand at the origins becomes larger

during a short period. We have selected a flow of 500 veh/h with a peak

of 2000 veh/h for the urban origins, and a flow of 2000 veh/h with a

peak of 4000 veh/h for freeway origins. The duration of the peak is

10 min.

Scenario 4: Maximum queue length: Here, the queue on the link from intersec-

tion A toward intersection B may not become longer than 20 vehicles.
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Fig. 9 Network used in the second case study.

This can be a traffic management policy, e.g., when the link is in a res-

idential area.

For all control systems the implementation of the simulations and the controller

is completely done in Matlab. We use the traffic flow model described in Section

2 both as the real-world model and as the prediction model. With this set-up we

can give a proof of concept of the developed control method, without introducing

unnecessary side effects.

In our case study the MPC optimization problem is a non-convex, nonlinear

problem with real-valued optimization variables. To solve this optimization prob-

lem we have applied multi-start SQP, using the SQP algorithm implemented in the

fmincon function of the Matlab optimization toolbox [51].

As cost function we select the total time spent (TTS) in the urban and the freeway

part of the network. The model parameters are selected as follows. The parameters

of the METANET model are selected according to [30]: vfree,m = 106 km/h, ρcrit,m =
33.5 veh/km/lane, ρmax,m = 180 veh/km/lane, Qcap,m = 4000 veh/h, τ = 18 s, κ =
40 veh/km/lane, ϑ = 65 km2/h, and am = 1.867. The parameters of the urban model

are: Qcap,o,s,d = 1000 veh/h, Lav,veh = 6 m, and vav,ls,d = 50 km/h.
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We have selected the following time steps: Tc = 120 s, Tf = 10 s, and Tu = 1 s.

There are three parameters that can be tuned for the MPC controller. We have se-

lected Np = 8 and Nc = 3 as horizons, and γ1 = γ2 = 1 as weights for the urban and

freeway partial performance criteria in the cost function (without normalization in

this case).

4.2.2 Alternative control methods

Dynamic traffic control systems have already been implemented in the real world.

Some examples of these systems are SCATS [58], Toptrac [3], SCOOT [46],

UTOPIA/SPOT [43], MOTION [8], and IN-TUC [13].

Here we will use SCOOT and UTOPIA/SPOT to make a comparison between

the developed MPC control method and some existing systems. We have selected

these methods because they are good representatives of this kind of dynamic traffic

control systems. However, these systems are commercial systems, meaning that real

specifications are not publicly available. This means that we can only approximate

their functioning (see [54] for details). Note that both systems only target the urban

traffic. So they optimize the intersections independently of the neighboring freeway.

The main difference between the MPC-based system proposed in this paper and

the existing systems like SCOOT and UTOPIA/SPOT is that MPC-based traffic

control takes the influences and interactions between the urban and freeway parts

of the network into account. By simulating the effect of one measure on both kinds

of roads, control settings can be found that provide a trade-off between improving

traffic conditions on the freeway and delaying traffic on the urban roads, and vice

versa.

Furthermore, the MPC-based system we have developed can handle hard con-

straints on both the control signals and the states of the traffic network. All control

systems can handle constraints that are directly linked to the control signals, e.g.,

maximal and minimal green times, or maximal cycle times. But the MPC-based

system can also handle more indirect constraints such as maximum queue lengths,

maximum delays, etc. These constraints are included as hard constraints in the MPC

optimization problem, which is subsequently solved using a constrained optimiza-

tion algorithm. In the other systems such a constraint (like maximum queue lengths)

is implemented by adding a penalty term that penalizes the constraint violation to

the performance function. This penalty term must become relatively large when the

maximum queue length is reached. This results in a very high value of the cost when

the maximum queue length is violated. While the purpose of the control is to min-

imize the cost function, a trade-off will have to be made between minimizing the

original cost and violating the queue length constraint. This can lead to either satis-

fying the constraints with a degraded performance, or violating the constraints and

obtaining a better performance.
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4.2.3 Results

We have applied SCOOT, UTOPIA/SPOT, and MPC to the case study network for

each of the four scenarios. The results are listed in Table 2. This table shows the TTS

for the freeway part of the network, for the urban part, and for the whole network.

The last column of the table shows the improvement of the MPC method compared

to SCOOT (first number) and to UTOPIA/SPOT (second number). This makes it

possible to determine in which part of the network the largest improvements are

obtained. For the fourth scenario the largest attained queue length is also shown.

The first two scenarios show that the MPC method can improve the performance

for the urban as well as for the freeway part of the network when a problem arises

in one of the two. The immediate negative effects of such a problem are reduced as

well as the negative influence on the rest of the network.

The third scenario shows that the MPC method can control the traffic slightly

better that SCOOT and UTOPIA/SPOT when a large peak in the demand occurs. In

this scenario the trade-off between the freeway and urban parts of the network can

clearly be seen. A reduction of the performance on the urban network can lead to an

improvement of the performance on the freeway network, and vice versa. This can

be used to obtain a better performance for the total network.

The maximum queue length constraint is implemented in SCOOT and UTOPIA

by adding an extra penalty term in the cost function. This term has a relative weight

that allows a trade-off between the performance of the network and the importance

of the maximum queue length constraints. When the weight is high the queue length

constraint is satisfied but the performance is low, as shown in the first simulations

done for the fourth scenario. In the second set of simulations the weighting term for

the queue constraint is low, resulting in a better performance, but now the maximum

queue length is exceeded. The values for MPC are the same for both simulation

sets because the queue length constraint is implemented as a hard constraint for the

optimization algorithm6.

5 Conclusions

In this chapter we have shown how model predictive control (MPC) can be used to

obtain network-wide coordination and integration of various control measures (e.g.,

variable speed limits, ramp metering, and traffic signals) as well as a balanced trade-

off between various performance criteria (such as the total time spent, emissions,

and fuel consumption). As models are an important component of MPC we have

presented an integrated traffic flow model for mixed urban-freeway networks. We

have also proposed an emissions and fuel consumption model that can be interfaced

6 The MPC-based method violates the constraint with 1 vehicle at the start of the simulation. This

is due to infeasibility problems during the optimization, related to the initial state of the network at

the start of the simulation. This issue can be solved by increasing the horizons Np and Nc.
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Table 2 Results for the second case study: total time spent for the freeway part of the network, for

the urban part, and for the total network. The improvement of the MPC-based method compared

to SCOOT and UTOPIA/SPOT is also listed.

Scenario 1: Congestion on the freeway.

SCOOT UTOPIA/SPOT MPC improvement

freeway 595.4 565.1 563.9 5.3 / 0.3%

urban 313.6 335.7 305.7 3.0 / 9.0%

total 909.0 900.8 869.6 4.4 / 3.5%

Scenario 2: Blockage of an urban intersection.

SCOOT UTOPIA/SPOT MPC improvement

freeway 498.0 526.2 495.0 0.7 / 6.0%

urban 665.9 672.3 620.3 6.9 / 7.8%

total 1163.9 1198.5 1115.3 4.2 / 7.0%

Scenario 3: Rush hour.

SCOOT UTOPIA/SPOT MPC improvement

freeway 244.6 280.1 253.3 -3.5 / 9.6%

urban 409.0 383.5 386.8 5.5 / -1.6%

total 653.6 663.6 640.1 2.1 / 3.5%

Scenario 4a: Maximum queue length of 20 vehicles, with a large weight.

SCOOT UTOPIA/SPOT MPC improvement

freeway 367.2 510.3 373.9 -1.8 / 26.8%

urban 309.7 435.4 264.4 15.7 / 39.3%

max. queue 19 19 21

total 676.9 945.7 638.3 6.8 / 32.6%

Scenario 4b: Maximum queue length of 20 vehicles, with a small weight.

SCOOT UTOPIA/SPOT MPC improvement

freeway 367.1 428.1 373.9 -1.8 / 13.7%

urban 303.0 360.5 264.5 13.8 / 26.7%

max. queue 93 43 21

total 670.1 788.6 638.3 5.8 / 19.1%
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with the combined urban-freeway traffic flow model. Finally, we have presented two

case studies that illustrate the proposed control approach.

The MPC-based traffic control approach presented in this paper can be extended

in various directions. One important topic is the issue of scalability and compu-

tational complexity, which could be addressed using a distributed, hierarchical, or

multi-agent approach [47, 55, 56]. Other issues include the further development of

fast, but accurate traffic flow and emission models for large-scale traffic networks.

Moreover, the approach could also be extended to include additional control mea-

sures, including those arising in the context of automated highway systems and in-

telligent vehicle highway systems [4, 5, 48, 57].

The proposed approach is not limited to traffic networks only but could — with

proper modifications — also be applied to other types of networks, such as water

networks, electricity networks, railway networks, etc. (see also the other chapters of

this book).
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