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Optimization of Maintenance for Power System

Equipment Using a Predictive Health Model

G. Bajracharya, T. Koltunowicz, R. R. Negenborn, Z. Papp, D. Djairam, B. De Schutter, J. J. Smit

Abstract—In this paper, a model-predictive control based
framework is proposed for modeling and optimization of the
health state of power system equipment. In the framework, a
predictive health model is proposed that predicts the health state
of the equipment based on its usage and maintenance actions.
Based on the health state, the failure rate of the equipment can
be estimated. We propose to use this predictive health model to
predict the effects of different maintenance actions. The effects
of maintenance actions over a future time window are evaluated
by a cost function. The maintenance actions are optimized using
this cost function. The proposed framework is applied in the
optimization of the loading of transformers based on the thermal
degradation of the paper insulation.

Index Terms—Power System Maintenance, Maintenance Opti-
mization, Predictive Health Management, Model-Predictive Op-
timization, Power Transformer.

I. INTRODUCTION

In the power grid, a significant portion of the electrical

infrastructures will reach the end of their operational age

within the coming few decades. On the one hand, the im-

pending replacement wave of these infrastructures will require

extensive investments in the near future. On the other hand,

the aging infrastructures are degrading the reliability of the

system. So, there is a greater need for reducing the threat of the

aging related failures and at the same time deferring the new

investments by extending the life of the aging infrastructures.

The extension of the life of the aging infrastructures should

be done while keeping the reliability above an acceptable

threshold. The performance, risk, and expenditures in the

electrical infrastructure should thus be optimally managed to

achieve quality of service in the most cost effective manner

[1].

Maintenance is important for maintaining reliability of the

equipment and extending the life of the equipment. Mainte-

nance strategies implemented in electrical equipment can be

categorized into three classes [1, 2]:
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1) Corrective Maintenance: Maintenance is performed only

after breakdown of equipment.

2) Time-Based Maintenance: Maintenance is performed at

predefined/fixed time steps.

3) Condition-Based Maintenance: Maintenance is based on

the condition of the equipment.

Condition-based maintenance is becoming popular in elec-

trical infrastructures over the traditional time-based mainte-

nance [2]. Condition-based maintenance reduces the cost by

performing maintenance only when it is needed. Currently,

condition-based maintenance strategies are often based on

heuristics. Knowledge rules and standards are used for the

condition assessment and the maintenance is based on this

condition assessment [3]. The rules and standards are devel-

oped based on expert knowledge and/or the analysis of the

performance history of a set of identical equipment.

A model of the effects of maintenance actions on the health

state of the equipment and its performance (i.e., reliability) is

required to evaluate maintenance strategies [4]. Such a model

emulates the evolution of the stresses in the equipment based

on the physical principles of the aging mechanisms of the

equipment. This model can be used to predict the effects of

different planned maintenance strategies. These effects can be

evaluated by associating cost functions to the health state and

the performance of the equipment. An optimal maintenance

strategy can then be devised by determining the effectiveness

of different maintenance strategies using simulation and se-

lecting the best strategy based on the cost associated with this

strategy.

A framework of a predictive health model and the optimiza-

tion of maintenance action are proposed in this paper. The

framework is based on model predictive control in which the

health model is used to predict the effect of the maintenance

(control) actions. The framework is implemented in a case

study of optimization of the loading of transformers.

The outline of this paper is as follows. In Section II,

the proposed framework for the model-based optimization

is presented. Section III gives a description of the aging

of the paper insulation in transformers. An application of

the framework for the case study and results are presented

in Section IV. Conclusions and future work are included in

Section V.

II. PROPOSED FRAMEWORK FOR MODEL-BASED

OPTIMIZATION

The framework for model-based optimization that we pro-

pose here uses a predictive health model. Using the predictive
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Fig. 1. Predictive health model

health model, the future health state of equipment used in the

electricity grid can be predicted given possible actions and

usage of the equipment. The framework also defines the cost

function for the optimization.

A. Predictive Health Model

The predictive health model consists of the dynamic stress

model, the failure model, and the estimation of cumulative

stresses as illustrated in Fig. 1. As equipment ages, various

stresses, such as electrical, thermal, mechanical, and environ-

mental stresses, weaken the strength of the equipment. The

cumulative stresses of the equipment are affected by the usage

pattern (e.g., loading) and maintenance actions (e.g. replace-

ment of parts) performed on the equipment. The health state of

the equipment is represented by the cumulative stresses. Their

dynamics can be described by a dynamic stress model which

is implemented as a discrete-time state-space model. This

model can predict future cumulative stresses x̂(k+1) based on

planned usage of the equipment ud(k), planned maintenance

actions ua(k), and current cumulative stresses x̂(k), where k

is the current discrete time step. The dynamic stress model

represents the aging of the equipment in which the cumulative

stresses x̂ represent the health state of the equipment. The

dynamic stress model is described as follows:

x̂(k+1) = f(x̂(k),u(k)) , (1)

where u(k) = [ ua(k) ud(k) ]
T

.

As the cumulative stresses increase over time, the probabil-

ity of failure of the equipment also increases. The relationship

between the cumulative stresses and the failure rate of the

equipment is described in a failure model. The failure model

uses the predicted cumulative stresses x̂(k) to predict the

failure rate ŷ(k) of the equipment. The failure model directly
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Fig. 2. Optimization of maintenance

maps the cumulative stresses to the failure rate as follows:

ŷ(k) = g(x̂(k)) (2)

The cumulative stresses are indicated by condition pa-

rameters of the equipment, such as the partial discharge,

temperature measurements, etc. Different online and offline

monitoring systems can detect the condition parameters. In

practice, only few condition parameters (e.g., electrical and

thermal stresses) are measured by the monitoring systems.

Estimates of the monitored cumulative stresses x̂e(k) can be

made based on measurements c(k) of the monitoring systems

as follows:

x̂e(k) = hx (c(k)) (3)

The estimated cumulative stresses x̂e can be used in the

dynamic stress model to update the corresponding cumulative

stresses. The remaining unmonitored cumulative stresses are

predicted by the dynamic stress model.

The framework of the predictive health model can be used to

predict the health state and the failure rate of the equipment

by considering the usage and the maintenance actions. The

measurements of the monitoring systems can be used to update

the cumulative stresses of the equipment.

B. Optimization of Maintenance

Typically, maintenance improves the health state of the

equipment, which, in turn, reduces its failure rate. The optimal

maintenance action balances the economical cost of the main-

tenance, the improvement of the health state, and the reduction

in the failure rate of the equipment.

The process of model-based optimization is illustrated in

Fig. 2. The total cost of the maintenance actions consists of

three cost functions. The cost function of the planned usage

and the maintenance actions Ja incorporates the economical

cost of the maintenance. The cost function of the failure rate

Jf takes into account the cost associated with the failure of

the equipment. The cost function of the cumulative stresses

Jcs incorporates the cost of deterioration of the equipment.

The costs can be represented in monetary terms or can be

normalized to the cost of the equipment. The summation of



these three different costs gives the total cost of a particular

maintenance action in a particular state. The optimization

of the maintenance actions is considered over a given time

horizon in the future (N) so that the future maintenance actions

can be optimized. The total cost over the time horizon is

considered for the optimization. The optimization problem is

formulated as follows:

min
ua(k),...,ua(k+N−1)

[

N−1

∑
l=0

Ja (u(k+ l))

]

+

[

N−1

∑
l=0

Jf (ŷ(k+ l))

]

(4)

+ Jcs (x̂(k), x̂(k+N)) ,

subject to

x̂(k+ l +1) = f(x̂(k+ l),u(k+ l))

ŷ(k+ l) = g(x̂(k+ l)) , for l = 0, . . . ,N −1 .

The predictive health model is used to predict the cumu-

lative stresses and the failure rates for the planned usage

pattern and different future maintenance actions. The total

cost is calculated for different future usage and maintenance

actions over the time horizon. Optimal maintenance actions

minimizing the total cost over the time horizon are searched.

III. DESCRIPTION OF THE TRANSFORMER MODEL

The proposed framework has been implemented on a case

study of transformer insulation systems. Such a transformer

insulation system consists of cellulose paper impregnated with

mineral oil of the transformer. In this particular case, the use

of the framework is illustrated by considering the health state

of paper insulation only. A model of the degradation of the

paper insulation is used to determine the optimal loading of

the transformer. The loading is taken as a planned usage of

the equipment.

A. Aging Model of the Insulation System of a Transformer

A transformer consists of various sub-components, such as

windings, cellulose paper insulation, a core, tap changers, etc.

The health of a transformer depends on the health state of its

sub-components. One of the important sub-components is the

cellulose paper insulation. Degradation of the cellulose paper

insulation, due to thermal stress, oxidation, and hydrolytic

processes reduces its dielectric and mechanical strength. This

cellulose degradation determines the ultimate life of the insu-

lation system [5].

The degradation process depends mainly on the temperature.

Different models have been proposed to investigate the effects

of the temperature on the aging of cellulose paper. The

International Electrotechnical Commission Loading Guide [6]

uses the hottest spot winding temperature to predict the life of

the insulation system. Emsley et al. [5] have proposed kinetics

of degradation of the cellulose paper based on its degree of

polymerization. The degree of polymerization is the average

chain length of the polymer in the cellulose. A decrease in the

degree of polymerization signifies degradation of the paper.

According to the degradation model from Emsley et al.

[5], the degree of polymerization of cellulose paper can be

estimated by the following equation:

1

DPt

−

1

DP0
= Aexp

(

−

E

R(T +273)

)

×24×365× t , (5)

where DPt and DP0 are the value of the degree of polymer-

ization at time t and 0, respectively, A is a pre-exponential

constant, E is the activation energy, R (= 8.314 kJ mole−1

K−1) is the gas constant, T is the temperature of the cellulose

paper in Celsius, and t is the elapsed time in years.

For dry Kraft paper in oil, which is commonly used in

transformers, the activation energy E can be taken as 111 kJ

mole−1 and the pre-exponential constant A can be taken as

1.07×108[5].

The degree of polymerization of new paper insulation may

vary from 1300 to 900. The paper is considered to be at the

end of its life if its degree of polymerization reaches between

150 and 250 [5]. For the model used in this paper, an initial

value of 1000 and a final value of 200 are used [1], [7].

The degradation model (5) will be used to estimate the effect

of the temperature on the condition of the paper.

B. Relationship between Temperature and Loading

The temperature of the insulation depends upon the ambient

temperature and the heat generated due to the power losses

in the transformer. The power losses consist of iron losses

and copper losses. The iron losses are almost constant for

the normal operation whereas the copper losses increase with

the increase in the current (loading) of the transformer. The

loading of the transformer can vary on a daily, weekly, and

seasonal basis.

Different models have been proposed to estimate the hottest

spot winding temperature in transformers. The temperature can

be estimated by the thermal model based on heat transfer [8],

[9]. Various measurements, such as the top-oil temperature and

the bottom-oil temperature, are also used for the estimation

[10]. The steady state hottest spot winding temperature T can

be calculated as follows [8]:

T = θA +∆θTO,R

(

KU
2R+1

R+1

)n

+∆θH,R

(

KU
2
)m

, (6)

where θA is the ambient temperature, KU is per unit load,

∆θTO,R and ∆θH,R are the rated top oil rise over the ambient

temperature and the rated hottest spot winding temperature

rise over the top oil temperature, respectively, R is the ratio

of the load loss at the rated load to the no-load loss, n and m

are empirical values which depend on the type of cooling of

the transformer.

For a 187 MVA transformer described in Annex C of

[8], ∆θTO,R and ∆θH,R are considered as 36 ◦C and 28.6 ◦C

respectively. R is calculated as 4.87 and θA is assumed as

30 ◦C. The values of both nand mare considered as 1 for the

directed forced-oil cooling of the transformer. The steady state

hottest spot winding temperature with respect to loading is

calculated by (6), which is shown in Fig. 3.
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Fig. 3. Relation of the loading to the steady state hottest spot winding
temperature

IV. APPLICATION OF THE TRANSFORMER MODEL TO THE

MODEL-BASED OPTIMIZATION FRAMEWORK

A. A Predictive Health Model of Cellulose Paper Insulation

In the predictive health model of the cellulose paper in-

sulation, the degree of polymerization x̂DP is taken as the

cumulative stress. The temperature of the transformer uT

depends upon the loading and thus can be considered as

a planned usage of the equipment. This way, the model

predicts the effect of the loading of the transformer on the

degree of polymerization of the paper insulation. The kinetics

of degradation of the degree of polymerization described in

(5) are discretized to obtain the dynamic stress model, as

described in (1). The dynamic stress model, discretized for

a time step of 1 year, is then as follows:

1

x̂DP(k+1)
=

1

x̂DP(k)

+Aexp

(

−

E

R(uT(k)+273)

)

×24×365×h ,

(7)

where x̂DP(k) and uT(k) represent the degree of polymerization

and the temperature of the insulation system in the kth year,

respectively, and h is the time step (1 year) of the discrete-time

model.

The failure model for transformers due to the insulation

degradation is not considered in this paper. The contribution to

the failure rate due to the insulation degradation is relatively

low compared to the failure rate due to other components,

such as tap changers [11]. However, the degradation of the

insulation system leads to the end of the operating life of

the transformer and thus has a major impact in terms of the

investment of the equipment [12]. Thus, only the dynamic

stress model is considered for the optimization.

B. Cost functions

The cost function of the cumulative stresses (i.e., the degree

of polymerization) Jcs and the cost function of the usage (i.e.,

the temperature) Ja have been developed for the optimization.

Jcs accounts for the cost of aging of the equipment. A linear

depreciation of the cost of the equipment with respect to the

operating time is commonly used. The cost of the degree of

polymerization is considered as 1 (normalized) when the de-

gree of polymerization is reduced to the minimum acceptable

value (i.e., DPfinal = 200). The initial degree of polymerization

of the new paper insulation DPinitial is considered to be 1000.

The cost function for the degree of polymerization is as

follows:

Jcs (x̂(k), x̂(k+N)) = α

(

1

x̂DP(k+N)
−

1

x̂DP(k)

)

, (8)

where α =
1

1/DPfinal −1/DPinitial

= 250.

The cost function of the temperature Ja describes the cost of

the loading of the transformer (see Fig. 3). A linear function is

assumed for the cost function. A linear coefficient β represents

the cost due to the decrement of the temperature (i.e., the

benefit due to the increment of the temperature). A reference

temperature Tref is considered and the cost is calculated with

respect to this reference temperature. Thus the cost is a

relative cost with respect to the reference temperature. The

cost function is given as:

Ja (uT (k)) =−β (uT(k)−Tref) . (9)

C. Optimization

The predictive health optimization problem is obtained by

substituting Jcs and Ja from (8) and (9), respectively, in (4).

Jf is not included as the failure model is not considered. The

constraints of the optimization are obtained from the predictive

health model, described by (7). The resulting optimization

problem is:

min
uT(k),...,uT(k+N−1)

[

N−1

∑
l=0

−β (uT(k+ l)−Tref)

]

+α

(

1

x̂DP(k+N)
−

1

x̂DP(k)

)

, (10)

subject to

1

x̂DP(k+ l +1)
=

1

x̂DP(k+ l)

+Aexp

(

−

E

R(uT(k+ l)+273)

)

×24×365×h ,

for l = 0, . . . ,N −1.

The optimization is performed over a prediction horizon of

N years. In the optimization, the replacement of the trans-

former in the case of its end of life (degree of polymerization

less than 200) is not considered. Thus the prediction horizon,

N, has to be less than the minimum expected life within the

given range of parameters. For instance, in the case of the

maximum temperature of 95 ◦C, the minimum expected life

is approximately 25 years (see Fig. 4). Thus N is chosen as

20 years. The reference temperature Tref is taken as the mid-

range value (87.5 ◦C) of the investigated temperature range

of 80 ◦C to 95 ◦C. The selection of the reference temperature

Tref does not affect the optimal solution. The solution to the

optimization problem gives the optimal temperature that yields

the minimum total cost.
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Fig. 6. Optimal temperature for different cost coefficient β .

The optimization problem (10) consists of a non-linear cost

function and non-linear constraints. The optimization therefore

is solved by a non-linear solver, SNOPT [13]. The solver is

used through the Tomlab v6.1 [14] interface in Matlab v7.5.

D. Results

For a transformer, as the temperature increases, the in-

sulation is stressed further, resulting in faster aging. An

increase in temperature implies an increase in the loading

of the transformer. Thus as the loading of the transformer is

increased, the rate of aging is also increased and vice versa.

The optimal solution is found when the cost of aging and

the benefit of the increase in the loading are matched. The

optimal solution depends upon how important or unimportant

the increase in the loading is compared to the loss of life of the

insulation system. The criticality of the loading depends upon

various factors including the importance of the transformer, the

criticality of the transformer location, and the loading profile

of the transformer.

The benefit of the increase in the loading (or the increase

in the temperature) is quantified by the benefit due to the

increment of the temperature β in (10). Fig. 5 illustrates the

total cost with respect to the temperature uT for three different

values of β . As observed in the figure, the optimal temperature

varies as β is changed.

The optimal temperature for different values of β is plotted

in Fig. 6. A constant temperature over the prediction horizon

is considered since the purpose is to obtain the optimal

temperature. As illustrated in the figure, if the benefit due to

the increment of the temperature is lower, a lower temperature

is optimal and vice versa.

The results of the optimization can be used for the loading of

the transformer. As the temperature is related to the loading of

the transformer (see Fig. 3), the optimal loading varies as the

value of β changes. The value of β can be chosen according

to the importance of the transformer and the priorities of

the utility. The recommendation of the future loading of the

transformer, which is a part of the maintenance planning, can

be made based the optimization result.

V. CONCLUSIONS AND FUTURE WORK

A framework for predictive health modeling of power

system equipment has been proposed and a model-based

optimization has been implemented for the optimization of

maintenance. The framework is applicable to most of the

power system equipments. A case study of optimization of

the loading of transformers based on the framework has been

proposed in this paper.

The presented framework combines a prediction model

based on the aging mechanisms as well as an estimation of the

health state based on online and offline monitoring systems.

The business values, such as the performance of the equipment

and the investment cost in maintenance, have been translated

into the cost functions of the optimization.

The framework will be extended to include the hottest spot

winding temperature estimation. For the estimation, the time



step of the model will be decreased to match the dynamics

of the temperature. The framework will also be extended for

the system-wide optimization of maintenance over a network.

Distributed problem solving and optimization schemes will

be applied for the system-wide optimization. Furthermore, the

model presented can be extended to include a multi-component

model that considers aging due to other components, such as

the oil condition.
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