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Abstract: In this paper we first present an extension of the macroscopic traffic flow model METANET to
multi-class flows. The resulting multi-class model takes into account the differences between, e.g., fast
vehicles (cars) and slow vehicles (trucks) including their possibly different free-flow speeds and critical
densities. Next, we show how this model can be used in a model-based predictive control approach for
coordinated and integrated traffic flow control. In particular, we use Model Predictive Control (MPC)
to coordinate various traffic control measures such as variable speed limits, ramp metering, etc. Using a
simple benchmark example from the literature we illustrate that by taking the heterogeneous nature of
multi-class traffic flows into account a better performance can be obtained.

Keywords: Heterogenous traffic flows, multi-class traffic, traffic models, model-based control, dynamic

traffic management.

1. INTRODUCTION

Due to growing percentage of car ownership, and the increase
in public transportation as well as transportation of goods, the
capacity of most roads is frequently reached or even exceeded,
resulting in frequent traffic congestion and leading to reduced
throughput, excess delays, reduced safety, and environmental
issues. The steadily increasing number and length of traffic
jams on freeways has led to the use of several dynamic traf-
fic management measures all over the world such as on-ramp
metering, dynamic routing, and the provision of congestion
information. In order to be able to coordinate the various con-
trol measures model-based control methods offer promising
perspectives (Papageorgiou et al., 1990a,b; Hegyi, 2004). One
essential feature of such approaches is the traffic flow model.
In this paper we will use (an extended version of) the macro-
scopic traffic flow model METANET proposed in (Messmer
and Papageorgiou, 1990; Kotsialos et al., 2002a, 1999b; Papa-
georgiou et al., 1990a). In particular, we will extend this model
to heterogeneous, multi-class traffic flows and integrate it in a
model-based control approach.

Most of the microscopic traffic flow models available today
(such as Paramics, AIMSUN, CORSIM, VISSIM, etc.) are es-
sentially multi-class. However, for on-line model-based control
purposes microscopic models are in practice too slow and faster
models are required. In this context, macroscopic traffic flow
models offer an appropriate trade-off between speed of execu-
tion and accuracy. There exists a wide variety of macroscopic
traffic flow models (Lighthill and Whitham, 1955a,b; Hoogen-
doorn and Bovy, 2001; Messmer and Papageorgiou, 1990; Da-
ganzo, 1997). In their basic version these models were mostly
non-heterogeneous. However, for some macroscopic traffic
models multi-class versions have already been proposed such
as multi-class extensions of the Lighthill-Whitham-Richards

(LWR) model (Logghe, 2003; Wong and Wong, 2002; Benzoni-
Gavage and Colombo, 2003) or the Fastlane model (van Lint
et al., 2008a,b). Nevertheless, the macroscopic models used for
on-line traffic control purposes are mostly non-heterogeneous.
Since the METANET model has been used extensively for
model-based control by several authors (see, e.g., Messmer and
Papageorgiou (1990); Kotsialos et al. (1999b, 2002b); Belle-
mans et al. (2006); Hegyi (2004); Hegyi et al. (2005b)) and
since to the authors’ best knowledge no multi-class extension
of the METANET model has been described yet, we propose a
multi-class version of the METANET model in this paper.

Once the multi-class METANET model has been described, we
also discuss how it can be incorporated in a model-based con-
trol approach. In particular, we apply a model predictive control
(MPC) framework (Camacho and Bordons, 1995; Maciejowski,
2002) to find the optimal combination of control measures
(control inputs). MPC is an optimal control method applied in a
rolling horizon framework. Optimal control has been success-
fully applied by Papageorgiou et al. (1990b); Kotsialos et al.
(1999a,b, 2002b) to coordinate or to integrate traffic control
measures. Both optimal control and MPC have the advantage
that the controller generates control signals that are optimal
according to a user-supplied objective function. However, MPC
offers some important advantages over conventional optimal
control. First, optimal control has an open-loop structure, which
means that the disturbances (in our case: the traffic demands)
have to be completely and exactly known before the simulation,
and that the traffic model has to be very accurate to ensure
sufficient precision for the whole simulation. MPC operates in
closed-loop, which means that the traffic state and the current
demands are regularly fed back to the controller, and the con-
troller can take disturbances into account and correct for predic-
tion errors resulting from model mismatch. Second, adaptivity
is easily implemented in MPC, because the prediction model
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Fig. 1. In the METANET model a freeway link is divided into
segments.

can be changed or replaced during operation. This may be
necessary when traffic behavior significantly changes (e.g., in
case of incidents, changing weather conditions, lane closures
for maintenance). Third, for MPC a shorter prediction horizon
is usually sufficient, which reduces complexity, and makes the
real-time application of MPC feasible.

2. ORIGINAL METANET MODEL

In this section we briefly recapitulate the basic (destination-
independent) METANET model. We refer the interested reader
to Messmer and Papageorgiou (1990); Kotsialos et al. (2002a,
1999b); Papageorgiou et al. (1990a) for a full description of the
METANET model.

2.1 Basic METANET model

The METANET model represents a network as a directed graph
with the links corresponding to freeway stretches. Each freeway
link has uniform characteristics, i.e., no on-ramps or off-ramps,
and no major changes in geometry. Where major changes occur
in the characteristics of the link or in the road geometry (e.g.,
on-ramp or an off-ramp), a node is placed. Each link m is
divided into N,, segments of length L, (see Fig. 1). The number
of lanes of link m is denoted by A,,.

Each segment i of each link m of the network is characterized by
the traffic density p,, ;(k) (veh/km/lane), the space-mean speed
vm,i(k) (km/h), and the outflow g, ;(k) (veh/h), all at time step
k. Here, time step k corresponds to the time instant t = kT,
where T is the time step used for the simulation of the traffic
flow (typically 7 = 10 s). In the METANET model the relations
between these variables and their evolution are described by the
following equations:

Qm,i(k) = pm,i(k) Vm,i (k) )Lm (l)
T
Pm,i(k+1) = ppi(k) + T (gm,i—1(k) — gm,i(k)) ()

Vmﬂ'(k‘i‘ 1) = Vm",'(k) + g (V (pm,(k)) — Vm,(k)>

L i 6 (i1 (K) — v (K)

Ly,
T Pm,is1(k) — Pm,i(k) (3)
TLy, Pm,i(k) +K 7

where 7, 11 and k are model parameters, and where the “de-
sired” speed V is given by

V (Pm,i(k)) = Viree,m - €Xp {_1 (pm,(k)>am] W

A \ Perit,m
with a, a model parameter, Vi, the free-flow speed, and
Perit,m the critical density for link m.

Equation (1) describes the physical relation between the three
state variables, (2) describes the conservation of vehicles, and

(3) characterizes the evolution of the speed, consisting of three
update terms: a relaxation term that expresses that the drivers
try to achieve a desired speed V(p), a convection term that
expresses the speed increase (or decrease) caused by the inflow
of vehicles, and an anticipation term that expresses the speed
decrease (or increase) as drivers experience a density increase
(or decrease) downstream.

In addition, mainstream or on-ramp origins are modeled with
a simple queue model: the length w, of the queue at origin o
evolves as follows:

Wo(k+ 1) = Wo(k) + T(do(k) - CIo(k)) ,
where d, (k) is the origin demand and g, (k) the outflow:

Wo (k) <pmax.m — Pm,1 (k) >
dy (k) + y Qo|\ ———— )
( ) T Q Pmax,m — Perit,m
)

with Q, the mainstream or on-ramp origin capacity (veh/h)
under free-flow conditions, and Pmax,» (veh/km/lane) the max-
imum density of the link m to which the origin is connected.

4o (k) = min

The basic METANET model may also contain some extra
merging terms (for on-ramps) as well as weaving terms (in
case there is a reduction in the number of lanes). There are
also node equations to model the connections between links
like joins and splits. However, for the sake of brevity these
equations are not given here explicitly. For details we refer
to Messmer and Papageorgiou (1990); Kotsialos et al. (2002a,
1999b); Papageorgiou et al. (1990a). Moreover, Hegyi (2004);
Hegyi et al. (2005b,a) have also proposed some additional
extensions to model dynamic speed limits (see also Section 2.2
below), main-stream metering, density-dependent anticipation
constants, and improved downstream boundary conditions.

2.2 Effect of control actions

The METANET model can also capture the effects of control
measures. In view of the control measures discussed in the
example of Section 5 we now present the equations for includ-
ing the effects of ramp metering and of dynamic speed limits.
For more details and for additional control measures we refer
to Messmer and Papageorgiou (1990); Kotsialos et al. (2002a,
1999b); Papageorgiou et al. (1990a); Hegyi (2004); Hegyi et al.
(2005a).

For ramp metering equation (5) can be extended as follows:

wo(k)
T

max,m — Mm k
Q<PPI<>>] ©

Pmax,m — Perit,m

qo(k) = min | d, (k) + y Qo 1o(k),

where r,(k) € [0,1] is the ramp metering rate at time step k.

For speed limits Hegyi (2004); Hegyi et al. (2005b,a) have
proposed to replace (4) by the following equation:

) o[ (2288

Am \ Peritym

(1 + a)vcontrol,m,i(k)> , @

where Veontrolm i (k) is the speed limit imposed on segment i of
link m at time step k, and 1 + ¢ is the non-compliance factor



that expresses that drivers usually do not fully comply with the
displayed speed limit and their target speed.

3. MULTI-CLASS METANET MODEL

Now we extend the basic METANET model to heterogeneous,
multi-class traffic flows. We assume that there are C different
classes of vehicles present in the network. Each of these classes
will be described by its own state variables. In order to take
differences in the typical lengths of the vehicles for each class
into account, we will express all variables in so-called “equiva-
lent vehicles ' ” (e. g., a truck could then count for three regular
vehicles). In particular, the state of the traffic network will be
described by

o the equivalent density fraction 6,,; (k) of vehicles of class
¢ in segment i of link m at time step &,

o the equivalent partial traffic density p,, ; (k) (veh/km/lane)
for vehicles of class ¢ in segment i of link m at time step
k,

o the space-mean speed vy, ; (k) (km/h) for vehicles of class
¢ in segment i of link m at time step &,

o the equivalent partial outflow gy, ;. (k) (veh/h) for vehicles
of class c in segment i of link m at time step k.

Since we use equivalent vehicles, the relation between the
actual densities and the equivalent partial densities can be
expressed as follows: If we use class 1 as a base class, and if
p;f,f}'ifﬂ(k) is the actual density of vehicles of class ¢ (i.e., the
real, physical number of vehicles of class ¢ in segment i of
link m at time step k), then the equivalent partial traffic density
Pm.ic(k) is defined as

veh
c

veh
L 1

actual ( )

pm,i,c(k) = Pmic k

where LY*" denotes the typical vehicle length for class c. A sim-
ilar reasoning holds for the density fractions and the outflows.

Now we present the equations that describe the relations be-
tween the state variables and their evolution. First of all, we

have
pmJ c(k)
em ic k)= =
b= o®)
where
C
pm,i,tot(k) = Z pm,i,c(k) (8)
c=1

is the total equivalent density in segment i of link m at time step
k.

Equations (1) and (2) also hold for the equivalent partial flows
and densities:

qm,ic (k) = pm,i.c(k> Vm,i,c(k) )vm 9)
T
pm,i,c(k+ 1) = pm,i,c(k) + LA (Qm,ifl,c(k) - Qm,i,c(k)) .
(10)

For the speed equation we have to make a distinction between
the convection term, which depends on the (class-dependent)
speed with which the vehicles leave the previous segment, and
the anticipation term, which depends on the tofal density in the
current and the next segment. This yields:

! This is related to the concepts Passenger Car Unit (PCU) or Passenger Car
Equivalent (PCE).

Vm,ic (k+1)= Vm7,‘7c(k)+
T /~
= (V(Pniio k), i (6), - Omic(k),) — vmic (k)

(o

T
+ rvm,i,c(k) (Vm,ifl,c(k) - Vm,i,c(k))

_ neT Pm,i+1,tot(k) —Pm,i,tot(k)
Tch pm,i,tot(k) + K

an

For V there are several options: one is to use simple (convex)
interpolation between the different fundamental diagrams for
each class cut off at the desired speed of the given class:

v (pm,i,tot(k)a 6m.,i.,l (k)v cey em,i,C(k)vc) =

c

min (Velpnisa®). X, Onis (Vs (Pnsia®) ) (12
r=1

with V. given by (4) or (7), but with class-dependent parameters

Viree,m,c» Gm,c> Oc, and with the joint critical density Pcric m, €.8.,

o 1 pm,i,tot(k) e
Ve (pm,mot(k)) = Vfree,m,c - €XP [ e ( Deritm

in case there is no speed limit active in link m. Equation (7) can
be transformed in a similar way.

Alternatively, one could use the approach also used in the
Fastlane model (van Lint et al., 2008a,b):

v (Pm,itot (k) Omi1 (k), ..., Omic(k),c) =

Pm,i,tot(k) .
Vfree,m,c — (Vfree,:n,c - Vcrit,m) if Prm,itot (k) < Perit,m
pcrit,m
Verit,mPrmi tot (K Prmitot (k) — Perit, .
itmPon.itor (K) - (k) ™) otherwise
pcrit,m pmax,m - pcrit,m

where pcrit m and verie, are respectively the joint critical density
and joint critical speed for link m, Pmaxm is the effective jam
density for link m, and p,,;(k) is the total density in segment i
of link m at time step k (cf. (8)). So in this case the desired speed
is equal for all classes when the total density is larger than the
critical density, and below the critical density different classes
move with different speed.

For each origin o we also introduce partial queue lengths w,
which evolve as follows:

W(),c(k + 1) = W(),c(k) + T(d(),c(k) — Yo, (k)> )
where d, (k) is the equivalent partial origin demand for class
¢ (expressed in equivalent vehicles per hour), and g, (k) the
equivalent partial outflow, which is described by an extension
of equation (5):

otk =min (), = 2D (P —paa))
. o ’Zg:l qg?;(k) ’ Pmax,m — Perit,m
(13)
with w
w
GS0) = oK) + 225

the desired origin outflow for class ¢ at origin o, and where
the second argument of the min operator in (13) divides the
available capacity over the different class in proportion to the
desired origin outflows. Note that (6) can be adapted in a similar
way.

4. MODEL PREDICTIVE CONTROL TRAFFIC CONTROL

To solve the problem of coordination of traffic control measures
(and in particular dynamic speed limits and ramp metering
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Fig. 2. Schematic view of the MPC structure.

— although the approach can easily be extended to include
other control measures), we adopt the model predictive control
(MPC) scheme (Camacho and Bordons, 1995; Maciejowski,
2002) (see Fig. 2). In the MPC control scheme a discrete-time
model is used to predict the future behavior of the process, and
the MPC controller uses (numerical) optimization to determine
the control signals that result in an optimal process behavior
over a given prediction horizon. The resulting optimal control
inputs are applied using a rolling horizon scheme.

More specifically, at each control step? k. (corresponding to
time t = Tck. where T; is the control time step) the state of the
traffic system is measured or estimated, and an optimization
is performed over the prediction horizon [k.T¢, (ke +Np)T¢] to
determine the optimal control inputs. Only the first value of the
resulting control signal (the control signal for time step k) is
then applied to the process. At the next control step k. + 1 this
procedure is repeated.

For the sake of simplicity we assume in this paper that 7 is an
integer multiple of 7', i.e., T. = MT with M an integer.

Note that in our case the fractions of vehicles of each class will
typically have to be measured using cameras, as conventional
sensors such as induction loops can usually not easily discern
between different vehicle classes. Alternatively, if only simple
measurements are available that do not directly differentiate
between different vehicle classes, state estimation methods
have to be applied (see, e.g., (van Lint et al., 2008a)).

To reduce complexity and improve stability often a control
horizon N; (< N,) is introduced in MPC, and after the control
horizon has been passed the control signal is taken to be
constant. So there are two loops: the rolling horizon loop and
the optimization loop inside the controller. The loop inside the
controller of Fig. 2 is executed as many times as needed to
find the optimal control signals at control step k., for given
Np, N, traffic state, and expected demand. The loop connecting
the controller and the traffic system is performed once for
each control step k. and provides the state feedback to the
controller. This feedback is necessary to correct for (the ever
present) prediction errors, and to provide disturbance rejection
(compensation for unexpected traffic demand variations). The
advantage of this rolling horizon approach is that it results
in an on-line adaptive control scheme that allows us to take
changes in the system or in the system parameters into account
by regularly updating the model of the system.

The MPC framework requires an objective function that ex-
presses the performance of the traffic network (as a function of
a given control input). The objective function we will use in the
benchmark example is total time spent (TTS) by the vehicles in

2 Since the simulation time 7 used for the METANET model (typically 10s)
is in general different from the control time step T (typically 1-5min), we also
use different time step counters for the METANET model (k) and for MPC (k).

the network (note however that the MPC approach is generic so
that other objective functions can easily be generated). More-
over, to get a smooth control signal we add a small term that
penalizes abrupt changes in the control signal. In particular,
the model predictive control algorithm finds the control val-
ues? R, (ke + j) (ramp metering rates) and Veontrolm.i(ke + Jj)
(dynamic speed limits) for j =0,...,N, — 1 that minimize the
following objective function over the period [k.T¢, (ke +Np )Tt ):

(ke+Np)M—=1 € yveh
Ll

J(k) =T Z Z Lveh

j=kcM  c=1
ke-+Ne—1 l

Z Pmic (j)Lm)Lm + Z Wo,c (J))

m,i 0

Aramp Z (RU(J) _R()(j_ 1))2

0€Oramp

iy

J=ke

+ Aspecd Z <Vc0ntr01,m,i(j) - Vcontrol,m,i (] -

1) ) 2
Vfree,m,max
(14)
where apmp and dagpeeq are non-negative weight parameters,
Viree,m,max = MaX¢ Viree m,c» Oramp 18 the set of indexes o of the
on-ramps where ramp metering is present, and Ipeeq i the
set of pairs of indexes (m,i) of the links and segments where

(mﬁi)elspeed

in the first

term on the right-hand side of (14) is requireci to transform
the equivalent densities and queue lengths back into actual,
physical densities and queue lengths.

. Lveh
speed control is present. Note that the factor 7

In order to connect the time scale of the METANET simulation
model and that of the MPC approach it should be noted that
the control signals R, and Viontrol,m,; are in fact updated every
T. time units and that they are taken to be constant within each
control period [k.T¢, (ke + 1)T¢.). So if k = Mk, then the r, and
Veontrol,m,i Signals used in (6) and (7) are defined by

To (k + ‘€) =R, (kc)7 Vcontrol,m,i(k+ £) = Vcontrol,m,i(kc)
for{=0,...,M—1.

5)

In conventional MPC heuristic tuning rules have been devel-
oped to select appropriate values for N, and N;. For MPC-based
traffic control these rules have to be adapted (Bellemans et al.,
2006; Hegyi et al., 2005a): the prediction horizon N, is selected
to be about the typical travel time in the network, and for the
control horizon N, we will select a value that represents a trade-
off between the computational effort and the performance.

In general, the optimization problems resulting from MPC-
based traffic control will be nonlinear and nonconvex, which
implies that global or multi-start local optimization methods
(Pardalos and Resende, 2002) are required such as multi-start
sequential quadratic programming (SQP), pattern search, ge-
netic algorithms, or simulated annealing.

5. A BENCHMARK PROBLEM

In order to illustrate the control framework presented above we
will now apply it to a simple traffic network. As benchmark
example we reconsider the example of Hegyi et al. (2005a)
and we compare the results for MPC with a non-heterogeneous
and with a heterogenous, multi-class traffic flow model. Note
that whenever we talk about vehicles in the remainder of this

3 We differentiate between control signals expressed as a function of the
control time step k. (represented by capitals) and as a function of the simulation
time step k (represented by small letters). Their relation is given in (15).
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Fig. 3. Schematic representation of two-lane benchmark net-
work consisting of two links L; (with 4 segments) and
Link L, (with two segments). Segments 3 and 4 of with L;
are equipped with dynamic speed limits (marked by SL;
and SL,). There also is on on-ramp (O;) equipped with
ramp metering (marked by RM). The traffic flow direction
is from the left to the right.

section, we are in fact referring to “equivalent vehicles” as
defined in Section 3. Alternatively, one could assume that the
two vehicles considered in the example have the same nominal
vehicle length.

5.1 Set-up

The benchmark network of Hegyi et al. (2005a) (see Fig. 3)
consists of a mainstream freeway with two speed limits, and a
metered on-ramp. The second speed limit is included to have
more control over the state (speed, density) in the segment that
is just before the on-ramp. The network considered consists of
two origins (a mainstream and an on-ramp), two freeway links,
and one destination. Oj is the main origin and has two lanes
with a capacity of 2100 veh/h each. The freeway link L; has
two lanes, and is 4 km long consisting of four segments of 1 km
each. Segments 3 and 4 are equipped with a variable message
sign (VMS) where speed limits can be displayed. At the end
of L; a single-lane on-ramp (O,) with a capacity of 2000 veh/h
is attached. Link L, follows with two lanes and two segments
with length of 1 km each, and ends in destination D1, which has
an unrestricted outflow. We assume that the queue length at O,
may not exceed 100 vehicles, in order to prevent spill-back to a
surface street intersection.

As nominal network parameters we use the ones also used in
Hegyi et al. (2005a) and Kotsialos et al. (1999b)*: T = 105,
L=1km, 7= 18s, kK =40 veh/km/lane, 1 = 60 ka/h, Pmax =
180 veh/km/lane, § = 0.0122, & = 0.1, Vfreesn = 102 km/h,
am = 1.867, Perit,m = 33.5 veh/km/lane for m = 1,2.

Moreover, we consider two vehicle classes with the following
parameters: L}*" = LY, vgee 1 = 110km/h, a1 = 1.8, 0 =
0.12, and Pcrit,m,1 = 30 veh/km/lane for m = 1,2. The parame-
ters Viree m,2, Am,2, 02, and Perig 2 for class 2 are selected in such
a way that the nominal parameters defined above correspond to
70 % vehicles of class 1 (i.€., Viree n = 0. 7Vree,m,1 + 0.3Vfree m,25
etc.). The other parameters are equal to the nominal ones.

Just like in (Hegyi et al., 2005a) we consider a total simulation
period of 2.5h and we select 7. = 1min, N, =7, N; =5,

4 The factor § mentioned here is used in the expression for the on-ramp
merging term, see (Messmer and Papageorgiou, 1990; Kotsialos et al., 2002a,
1999b; Papageorgiou et al., 1990a) for details.
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Fig. 4. The demand scenario considered in the simulation

experiments.

6, no control | non-heterogenous MPC | multi-class MPC
0.9 1532.6 1347.8 1250.4

0.7 2299.4 2206.8 2207.3

0.5 2816.2 2758.2 2754.7

0.3 3143.4 3103.9 3090.2

0.1 3307.1 3276.4 3258.3

Table 1. The TTS (veh.h) for the various scenarios.

Gramp = Gspeed = 0.4, and the demand profile given in Fig. 4:
The mainstream origin demand has a constant, relatively high
level and a drop after 2 hours to a low value in 15 minutes.
The demand on the on-ramp increases to near capacity, remains
constant for 15 minutes, and decreases finally to a constant low
value.

5.2 Scenarios

We will now simulate five possible input scenarios and three
control scenarios. The input scenarios are characterized by
different (constant) percentages of class 1 vehicles in the de-
mand with 6 at the origin and the on-ramp ranging in the set
{0.1,0.3,0.5,0.7,0.9}. For the control scenarios we consider

e 1o control, i.e., the speed limits and the ramp metering are
inactive (or equivalently, set to their maximum values),

e non-heterogenous MPC, i.e., in the prediction model we
always take the nominal values for the model parameters
(corresponding to a fixed value of 6; = 0.7),

e heterogenous, multi-class MPC, i.e., for the prediction
model we use the multi-class METANET model of Sec-
tion 3, with the real values of 6 at the origin and the on-
ramp being considered.

In all three cases the multi-class METANET model of Section 3
is used as simulation model. Moreover, we have used equation
(12) for the desired speed V in both the multi-class prediction
model and in the simulation model.

5.3 Results

The results for the various scenarios are displayed in Table
1. The TTS listed in the table corresponds to the total time
spent over the entire simulation period of 2.5 h. The MPC cases
correspond to closed-loop operation where MPC is applied in a



moving horizon approach. These results show that not taking
the heterogeneity of the traffic flows into account leads to a
degraded performance (note that for 8 = 0.7, where one would
expect the same value for both cases, the small difference in the
results is due to the effects of the random choice of the initial
starting points in the multi-start SQP optimization).

6. CONCLUSIONS

We have extended the original METANET traffic flow model
to the case of multi-class traffic flows. In particular, for each
class of vehicles partial (equivalent) states were introduced and
adapted METANET equations for their relation and evolution
were proposed. Next, we have applied the proposed model in a
model predictive control approach to traffic networks with vari-
able speed limits and ramp metering. This idea was illustrated
by a simple example network from literature for which we have
compared the non-heterogenous and the heterogenous, multi-
class control approach. with the total time spent in the network
as performance measure. From the simulation experiments we
can conclude that taking into account the heterogenous nature
of the traffic flows can substantially improve the network per-
formance.

Topics for future research include: further extension and re-
finement of the model (e.g., extending the approach that was
derived in Logghe (2003) for the LWR model to the METANET
model), model validation against real traffic data, and compari-
son with other (multi-class) traffic flow models.
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