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Abstract: We develop a day-to-day route choice control method that is based on model predictive
control (MPC). For the route choice we assume that drivers base their decision on the experienced travel
times. These travel times can be influenced via existing control measures, e.g. outflow limits or variable
speed limits. This allows us to indirectly influence the route choice of the drivers. In previous work we
have developed a route choice control method for networks with simple, non-overlapping routes, single
destinations, and constant or piecewise constant flows. In this paper we extend this method to networks
with overlapping routes and with restricted link inflow capacities. We illustrate the control approach with
a case study for a simple network with four routes.

1. INTRODUCTION

Traffic demand is increasing rapidly, causing increased flows
on nearly all roads. On roads that are in residential areas, near
primary schools or shopping centers, a large flow can cause
undesired or unsafe situations. Large flows also cause pollution
and noise, which does not only affect humans living near the
roads, but can also have a negative impact on nature reserves.
Road administrators can influence the location of the large
flows by changing the routes that drivers select by influencing
the travel time on different routes, as proposed by Haj-Salem
and Papageorgiou (1995); Taale and van Zuylen (1999). The
travel times can be influenced indirectly using traffic control
measures, e.g. traffic signals, ramp metering installations, or
dynamic speed limits displayed on variable message signs.

We propose a control method that uses existing traffic control
measures to influence the route choice of the drivers in a net-
work where different routes are overlapping. We assume that
drivers adapt their route choice for the next day based on the
experienced travel time on the current day, as described by
Bogers et al. (2005). As control method we use model predic-
tive control (MPC) (Maciejowski, 2002). This is a model-based
control approach that uses a prediction model in combination
with an optimization algorithm to determine optimal settings
for the traffic control measures. The optimal settings are then
applied using a rolling horizon approach.

MPC has already been used previously to influence the route
choice within a day (see e.g. Hegyi (2004); Bellemans (2003);
Kotsialos et al. (2002); Peeta and Mahmassani (1995)). How-
ever, in this paper we focus on the day-to-day route choice.
Day-to-day route choice is described by e.g. Maher (1998);
Cascetta et al. (2000). The models used in those papers are
complex, and require large computation times. As a result, these
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models are unsuitable for the use in model-based controllers.
In previous work (van den Berg et al. (2008b,a)) we have
formulated a basic route choice model for networks with non-
overlapping routes and single destinations, and we have illus-
trated the possibilities of route choice control for these routes.
In van den Berg et al. (2009) this model has been extended to
include time-varying piecewise-constant demand patterns.

In the current paper we further extend the work of previous
papers as follows: we complete the model by including over-
lapping routes and link capacities, and we develop a control
method using the complete model. Note that the main purpose
of the model developed in this paper is to be able to quickly
assess the effect of control measures on route choice. For more
detailed assessments more complex — and thus also more time-
consuming — models should be used.

This paper is organized as follows. The control problem is
formulated in Section 2. Next, the route choice model is formu-
lated in Section 3, in particular the extensions for road capaci-
ties and overlapping routes. Section 4 presents the model-based
control approach. In Section 5 the proposed control approach is
illustrated with an example. Section 6 concludes the paper.

2. CONTROL PROBLEM

2.1 Network set-up

Throughout the paper we illustrate our approach based on the
network shown in Fig. 1. The network has 1 origin and 1
destination, 1 intermediate vertex, 4 links, and 4 possible routes,
as shown in Fig. 2.

Each link l (l ∈ L) in the network can be described by the
following parameters, where d is the counter for the days. The
length of link l is denoted by ℓl (km), and its inflow capacity is
denoted by Q

cap
l (veh/h). The speed limit vl(d) (km/h) gives the

maximum speed that is allowed on link l at day d. The outflow
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Fig. 3. Time-varying demand profile D(d, ·) on day d

limit Ql(d) (veh/h) gives the number of vehicles per hour that
are allowed to leave the link.

We assume that the demand D(d, ·) on day d is a piecewise
constant function during [0,T ], see Fig. 3. The demand is
distributed over the routes according to the turning rates β ,
where βr(d) is the fraction of the vehicles that select route r
on day d.

2.2 Control measures

According to Bogers et al. (2005) we assume that the route
choice of the drivers is based on the experienced travel times.
This means that each route can be characterized by its average
travel time τ route

r (d). Hence, route choice can be controlled
by influencing the travel times of the different routes, via
existing traffic control measures. Examples are outflow control,
mainstream metering, or variable speed limit control. Outflow
control, and mainstream metering, can be applied with traffic
signals. The outflow limits are bounded between a minimum
value Qmin

l (veh/h) and a maximum value Qmax
l (veh/h). Speed

limit control uses variable message signs displaying the speed
limits. The variable speed limits vl(d) (km/h) are also bounded,

between vmin
l (km/h) and vmax

l (km/h).

2.3 Control objective

The objective of the control is to optimize the performance
of the network, which can be formalized by selecting a cost
function. Typical examples of cost functions in the context of
route choice are the total time the vehicles spend in the network,
the total queue length, or the norm of the difference between
the realized flows and the desired flows on the routes. These

cost functions serve either to handle as much traffic as possible
in a short time, or to keep vehicles away from protected routes
(e.g. routes through residential areas or nature reserves). We
will give two examples of possible cost functions. The weighted
total travel time can be computed as follows

JTT =
N

∑
d=1

∑
r∈R

ωrβr(d)

(

n

∑
i=0

D(d, i)(ti+1 − ti)

)

τ route
r (d) (1)

with R the set of all routes in the network, N the number of
considered days, and weights ωr > 0. Another option is to
impose desired travel times τdesired

l (d):

JDTT =
N

∑
d=1

∑
r∈R

ωr(τ
route
r (d)− τdesired

r (d))2 (2)

with R the set of all routes. To prevent large variations in the
control input c, a penalty can be formulated for these variations:

Jvar =
N

∑
d=2

(c(d)− c(d −1))2 . (3)

The total cost function is often a weighted combination of the
different costs: J =w1JTT+w2JDTT+ · · ·+wmJvar with w j > 0.

2.4 Constraints

Minimizing the cost function can have negative side effects.
For example, reducing the flow on one route could in general
lead to an increased flow on other routes, with congestion
and longer travel times as results. This can be solved by
introducing constraints on e.g. the travel times or flows. In
general, typical constraints related to route choice are upper
and/or lower bounds on the control variables, the flows, the
travel times, and the queue lengths.

2.5 Overall control problem

The overall control problem can then be formulated as follows.
Find the optimal control input that minimizes the cost function
given the network, a route choice model, and the constraints.

3. ROUTE CHOICE MODEL

In this section we will extend the model of van den Berg et al.
(2009) to include overlapping routes and link capacities.

3.1 Travel times

We assume that there are vertical queues in the network. This
means that the drivers first drive through the link experiencing
the free flow travel time. Next, they enter the vertical queue
that is possibly formed due to the limited outflow capacity of
the link. In this queue, if present, the drivers wait until they can
leave the link, which leads to an experienced waiting time in
the queue. This means that the average experienced travel time
τ route

r (d) on a route r has two components: the free flow travel
time on the route, and the total time spent in the queues:

τ route
r (d) = ∑

l∈Lr

(

τ free
l (d)+ τ

queue
l,r (d)

)

where Lr is the set of all links l in route r. The free flow travel
time τ free

l (d) on link l is given by

τ free
l (d) =

ℓl

vl(d)
.

The computation of the average time spent in the vertical queue
is more involved. We assume that the queue on a link is divided
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Fig. 4. A link l with upstream vertex vu
l and downstream vertex
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into several independent partial queues, one for each route that
uses the link. Let us now compute the time spent in each of
these partial queues.

For each vertex v in the network we introduce event times
tv,i(d). Between two events, the variables in the network are
constant. An event time can correspond to two types of changes
around the vertex:

• a change in the input flow of one of the upstream links
connected to the vertex,

• a partial queue becoming empty on one of the upstream
links of vertex.

Since these changes are not known beforehand, the traffic is
simulated from the current event time tv,i(d) until the next
known event time tv,i+1(d). When during the simulation of
this period one of the two changes appears, a new event time
tv,new(d) is created. The computations then have to be (re-)done
for the period [tv,i(d), tv,new(d)], which leads to re-definition
of the time instants with tv,i+2(d) := tv,i+1(d) and tv,i+1(d) :=
tv,new(d).

3.2 Link variables

Consider link l, with its upstream vertex vu
l and its downstream

vertex vd
l , as in Fig. 4.

The inflow Qin
l,r(d, i) of each link l is given in the tim-

ing of the upstream vertex, and present during the period
[tvu

l
,i(d), tvu

l
,i+1(d)], which is the ith period for the vertex vu

l .

This flow experiences a time delay equal to the free flow travel
time, and then becomes the flow that enters the queue in the

link Q
in,queue
l,r (d, i) during [tvd

l
,i(d), tvd

l
,i+1(d)], which is period i

in the timing of the downstream vertex:

Q
in,queue
l,r (d, i) = Qin

l,r(d, i)

with tvd
l
,i(d) = tvu

l
,i(d)+ τ free

l (d) for all i.

Recall that we assume that in each link there is a partial queue
for each route. The average number of vehicles at the start of
time period i in the queue at the end of link l belonging to route
r is denoted by Nveh

l,r (d, i). As indicated above, the inflow of the

queue is given by Q
in,queue
l,r (d, i). The amount of traffic that can

leave the queue depends on different factors: (1) the outflow
limit Ql(d) of the link, (2) the number of queues on the link
and their length, (3) the capacity of the downstream links, and
(4) the size of the flows that want to enter the downstream links.

We first introduce factors γl,r(d, i) that divide the outflow limit
Ql(d) proportionally over the different queues (see Fig. 5):

γl,r(d, i) =

Nveh
l,r (d, i)

τ
+Q

in,queue
l,r (d, i)

∑
ρ∈Rl

(Nveh
l,ρ (d, i)

τ
+Q

in,queue
l,ρ (d, i)

)

where τ is a delay factor representing the time that vehicles
require to leave the queue.

Ql(d)

Q
desired,out
l,1 (d, i)

Q
desired,out
l,2 (d, i)

Q
desired,out
l,3 (d, i)

Nveh
l,1 (d, i)

Nveh
l,2 (d, i)

Nveh
l,3 (d, i)

Q
in,queue
l,1 (d, i)

Q
in,queue
l,2 (d, i)

Q
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l,3 (d, i)

link l
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Fig. 5. Routes on a link should share the available outflow
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The flow that wants to leave a queue in the link during the pe-
riod [tvd

l
,i(d), tvd

l
,i+1(d)] provided that the downstream capacity

is large enough is then given by

Q
desired,out
l,r (d, i) =min(γl,r(d, i)Ql(d),

Nveh
l,r (d, i)

τ
+Q

in,queue
l,r (d, i)) .

Now we introduce the effect of the inflow capacity of the
links, see Fig. 6. Due to this capacity, the desired outflow,

Q
desired,out
l,r (d, i), is limited to the effective outflow Qeff

l,r(d, i) as

follows. The inflow capacity of a downstream link ld of link l
is divided proportionally over the flows that want to enter the
link, using the factor αld(d, i). This factor should be computed

for each downstream link ld ∈ Dl :

αld(d, i) = min
(

1,
Q

cap

ld

∑
ξ∈U

ld

∑
ρ∈R

ld

Q
desired,out

ξ ,ρ
(d, i)

)

where Uld is the set of upstream links of link ld, and Dl the set
of all links immediately downstream of link l.

The flow that effectively leaves link l on route r toward link ld
r

is then given by:

Qeff
l,r(d, i) = αld

r
(d, i)Qdesired,out

l,r (d, i)

where ld
r is de link downstream of link l, on route r. This

outflow equals the inflow of the downstream link

Qin
ld
r ,r
(d, i) = Qeff

l,r(d, i) .

The number of vehicles in the queue can now be computed:
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queue becomes zero during this period.

Nveh
l,r (d, i+1)) = max

(

0,Nveh
l,r (d, i)+

(Q
in,queue
l,r (d, i)−Qeff

l,r(d, i))(tvd
l
,i+1(d)− tvd

l
,i(d))

)

.

If Nveh
l,r (d, i)+(Q

in,queue
l,r (d, i)−Qeff

l,r(d, i))(tvd
l
,i+1(d)−tvd

l
,i(d))<

0, the queue length already becomes 0 at some time tvd
l
,i(d)+

Tl,r(d, i) with

Tl,r(d, i) = Nveh
l,r (d, i)/(Qeff

l,r(d, i)−Q
in,queue
l,r (d, i)) .

At this moment the partial queue for the traffic on link l going
via route r becomes empty, (see Fig. 7). This means that a new
time instant tvd

l
,i+1,new(d) = tvd

l
,i(d)+Tl,r(d, i) should be added

to the timing of the downstream vertex vd
l , and the computations

for the current period should be re-done.

After the computations for the whole period are performed, the
total number of vehicles in a link can be plotted as in Fig. 8.

3.3 Average time in the queue

In order to compute the average time the vehicles spend in the
queue, we first compute the area under the Nveh

l,r (d, ·) curve. This

is done at the end of the simulation, so that the event timing
is completely fixed. We assume that T is large enough and
that the demands become small enough towards the end of the
period [0,T ] so that the queues are completely empty at the end

of the simulation 1 . If we denote the area under the Nveh
l,r (d, ·)

curve between tvd
l
,i(d) and tvd

l
,i+1(d) by Al,r(d, i), there are two

possible cases:

• If Nveh
l,r (d, i)> 0 or Nveh

l,r (d, i+1)> 0 then we have

Al,r(d, i) =
1

2

(

Nveh
l,r (d, i)+Nveh

l,r (d, i+1)
)

(tvd
l
,i+1(d)− tvd

l
,i(d)) .

• If Nveh
l,r (d, i) = 0 and Nveh

l,r (d, i+1)= 0 we have Al,r(d, i) =

0 since the Nveh
l,r (d, ·) curve is horizontal.

Now we can compute the average time spent in the queue
according to

1 If this assumption does not hold, an end-point penalty should be included in

the objective function.
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τ
queue
l,r (d) =

n
vd
l

∑
i=0

Al,r(d, i)

n
vd
l

∑
i=0

Qeff
l,r(d, i)

(

tvd
l
,i+1(d)− tvd

l
,i(d)

)

,

where nvd
l

is the number of periods in the timing of vertex vd
l .

3.4 Origin modeling

We model the origin as a virtual link with length 0, see Fig.
9. The demand is given by D(d, ·), with event times ti. This
demand is divided over the routes via the turning rates

Qin
o,r(d, i) = βr(d)D(d, i) .

where Qin
o,r(d, i) is the flow that enters the virtual link during

the period [ti(d), ti+1(d)]. This flow enters the partial queues
that can be present on this link. Further, the origin is modeled
in the same way as the links inside the network (see Sections
3.2 and 3.3).

3.5 Turning rates

The turning rates are computed based on the difference in travel
time experienced by the drivers. The drivers will change their
route when the travel time on another route is shorter:

ζr(d +1)=max
(

0,βr(d)+ ∑
ρ∈R,ρ 6=r

κρ(τ
route
ρ (d)− τ route

r (d))
)

.

Here κρ includes the fraction of drivers on route ρ that change
their route from one day to the next based on the travel time
difference. Since the sum of the turning rates should be 1, they
should be normalized:

βr(d +1) =
ζr(d +1)

∑
ρ∈R

ζρ(d +1)
.

4. CONTROL APPROACH

In Section 2 we have formulated the control problem, which
is actually an optimal control problem. Except when the pre-
diction and control horizons are small, this problem cannot be



solved on-line due to the required computation time. To obtain
a good and more robust solution, we determine sub-optimal
settings for the control measures with a route choice control
approach based on Model Predictive Control (MPC).

4.1 Model predictive control

In MPC for route choice control the goal is to determine the
control inputs c that — given the current state of the network,
the future demand, and a model of the system — optimize a cost
function J(d) over a given prediction period of Np days ahead,
subject to operational and other constraints. This results in a
sequence of optimal control inputs c∗(d),c∗(d +1), . . . ,c∗(d +
Np − 1). To reduce the computational complexity a control
horizon Nc (Nc < Np) is introduced and the control sequence
is constrained to vary only for the first Nc days, after which the
control inputs are set to stay constant, i.e. c( j) = c(d +Nc −1)
for j = d +Nc, . . . ,d +Np −1.

MPC uses a receding horizon approach, i.e. of the optimal
control signal sequence only the first sample c∗(d) is applied
to the system. Next, at day d + 1, the procedure is repeated
given the new state of the system, and a new optimization is
performed for days d +1 up to d +Np. Of the resulting control
signal again only the first sample is applied, and so on.

In this paper we use real values for the control signal, and as
prediction model we use the model described in Section 3. Note
however that the proposed approach is generic and modular. So
if required other, more complex models could be used instead.

The cost function that is selected for the optimal control prob-
lem in Section 2 can now be adapted for the MPC controller.
Each day, the model is used to predict the traffic and to compute
the cost for the prediction period covering days d up to d+Np−
1. For the total travel time this results in:

JTT(d) =
d+Np−1

∑
j=d

∑
r∈R

βr( j)

(

n

∑
i=0

D( j, i)(ti+1 − ti)

)

τ route
r ( j)

The other MPC cost functions can be defined in a similar way.

4.2 Optimization algorithms

MPC uses an optimization algorithm to determine the optimal
settings for the control variables. Since the prediction model
is a nonlinear model, and since we assume real-valued control
inputs, the optimization problem is a nonlinear nonconvex real-
valued problem. To solve this type of problems multi-start lo-
cal search methods (like SQP) and (semi-)global optimization
methods (like genetic algorithms, pattern search, or simulated
annealing) can be used. Those approaches in principle only
yield a suboptimal solution since — in particular for larger
networks or longer control horizons — it is in practice often not
tractable to find the global optimum of the optimization prob-
lems that arise in MPC for route choice control. In van den Berg
et al. (2008a) we have addressed this problem by considering a
limited set of discrete values for the control inputs, by consider-
ing a constant demand, and by considering linear cost functions,
which allowed us to transform the MPC optimization problem
into a mixed integer linear programming (MILP) problem. In
van den Berg et al. (2009) the introduction of piecewise con-
stant demands resulted in an optimization problem that can be
transformed into an MILP problem under certain assumptions.
This approach is still valid for the extension to overlapping
routes that is described in this paper.

O D

link 1

link 2

link 3

link 4
v

Fig. 10. Network used for the simulation example

Table 1. Piecewise constant demand pattern used
in the simulation example

time interval (h) 0–0.33 0.33–0.66 0.66–1.00 1.00–1.33 1.33–2

demand (veh/h) 1000 3000 6000 4000 0

5. SIMULATION EXAMPLE

Now we illustrate the proposed route choice control approach
with a simple simulation example involving variable speed limit
control. Consider the network with multiple routes given in
Fig. 10 with the routes defined as in Fig. 2. This network
consists of four links. Link 1 is a long freeway link, with
ℓ1 = 100 km, has a high capacity, Q

cap
1 = 6000 veh/h, and a

high maximum speed, vmax
1 = 120 km/h. Link 2 is an urban link,

with ℓ2 = 40 km, Q
cap
2 = 1000 veh/h, and vmax

2 = 50 km/h. The
third link is a freeway link with ℓ3 = 80 km, a regular capacity
Q

cap
3 = 4000 veh/h, and vmax

3 = 120 km/h. Link 4 is an arterial

road with ℓ4 = 60 km, Q
cap
4 = 2000 veh/h, and vmax

4 = 100 km/h.
A driver has to choose between link 1 and 2, and between link
3 and 4. Link 2 has a lower free flow travel time than link 1, and
will thus get the preference of the drivers. But due to the low
capacity a large queue could be formed, which would increase
the travel time and make link 1 more favorable than link 2.
Similarly, link 4 has a shorter free-flow travel time than link
3, but due to the lower capacity a longer queue will be formed.
In this case it can be expected that the drivers will not a priori
prefer one link above the other.

We simulate a period of 15 days, with T = 120 min = 2 h. The
demand pattern is given in Table 1. We have a learning rate of
κr = 0.25 for all routes r ∈ R, a time constant τ = 0.33 h, and
the following initial turning rates: β1(0) = 0.5, β2(0) = 0.1,
β3(0) = 0.3, and β4(0) = 0.1. Variable speed limit control is

applied, with vmin
1 = 60 km/h, vmin

2 = 15 km/h, vmin
3 = 60 km/h,

and vmin
4 = 30 km/h. The overall objective of the controller is

given by J = JDTT +wJvar, with JDTT and Jvar defined by (2)
and (3) respectively, and with desired travel times τdesired

1 (d) =

τdesired
2 (d) = 1.5 h and τdesired

3 (d) = τdesired
4 (d) = 2 h for all days

d, and weights ω1 = ω2 = ω3 = ω4 = 1 and w = 10−5. The
JDTT part of the objective function penalizes traffic traveling
via routes 3 and 4 (which contain the urban link 2) and favors
the others routes so as to divert traffic away from the urban
area. In addition, we impose that constraint that the total flow
on link 4 should stay below 1750 veh/h in order to prevent too
much noise and emissions in the nature reserve along this road.
We set Np to 6 days and Nc to 5 days. The MPC optimization
problem is solved using multi-start SQP.

The results are shown in Fig. 11 for the uncontrolled situation
and the controlled situation with the constraint on the maximal
flow on link 4. The JDTT value without control is 10.531 h2. If
we apply MPC-based control without the constraint for link 4,
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(a) Evolution of the travel time on the different routes. The desired travel time is

indicated by the dotted line.
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(b) Evolution of the maximum flow on link 4. The upped bound imposed by

the control constraint is indicated by the dotted line.

Fig. 11. Simulation results

we obtain a value of 6.268 h2 for JDTT. However, in both cases
the maximal flow on link 4 goes as high as 2000 veh/h. If we
apply MPC-based control with the constraint for link 4, then
the JDTT value is equal to 10.248 h2 and then the flow on link 4
stays below the maximal allowed value of 1750 veh/h.

These results illustrate that MPC can be used to control the
travel times on the various routes in a traffic network via
dynamic speed limits.

6. CONCLUSIONS

We have developed a control approach based on model predic-
tive control to influence the route choice of drivers, using exist-
ing control measures like outflow limits or variable speed limits.
In previous work (van den Berg et al. (2008b,a, 2009)) we have
considered route choice control for basic networks and constant
or piecewise constant demands. In this paper we have extended
the model to include networks with overlapping routes and with
restricted link inflow capacities. We have used the resulting
model in a control approach based on model predictive control
(MPC). This approach has been illustrated the control approach
with an example, where we applied speed limit control for a
simple network with four routes.

Future research will include: extending the approach to multiple
origins and destinations, including more traffic control mea-
sures, and developing faster optimization algorithms.
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