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Abstract: A model predictive control (MPC) approach offers several advantages for controlling and
coordinating urban traffic networks. To apply MPC in large urban traffic networks, a fast model that
has a low on-line computational complexity is needed. In this paper, a simplified macroscopic urban
traffic network model is proposed and tested. Compared with a previous model, the model reduces
the computing time by enlarging its updating time intervals, and preserves the computational accuracy
as much as possible. Simulation results show that the simplified model reduces the computing time
significantly, compared with the previous model that provided a good trade-off between accuracy and
computational complexity. We also illustrate that the simplifications introduced in the simplified model
have a limited impact on the accuracy of the simulation results. As a consequence, the simplified model
can be used as prediction model for MPC for larger urban traffic network.

Keywords: Macroscopic traffic modeling; Urban traffic control; Model predictive control; Urban traffic
network.

1. INTRODUCTION

In recent years, the number of vehicles has grown larger and
larger, and the requirements for traveling by vehicles are getting
more and more stringent. To reduce traffic jams and to promote
efficiency in traveling, effective traffic control algorithms are
necessary. Many control theories have been applied to control
traffic (Kachroo and Özbay, 1999; Papageorgiou, 1983), like
fuzzy control, PID control, model predictive control, and multi-
agent control, in combination with different control structures
like centralized, distributed, and hierarchical control.

We focus on model-based control methods, and on MPC in par-
ticular. Considering on-line computational complexity, macro-
scopic traffic models are usually used in MPC. However, for
different model-based control approaches, there still exist dif-
ferent levels of requirements for the macroscopic model. Some
models just need to express the relation between the input val-
ues and the performance indicators, but some are more detailed
so as to describe the dynamics of the traffic evolution; some
models are more precise in modeling the dynamics, while some
are simpler so as to be fast for on-line computing. As a result,
there exists a wide variety of macroscopic traffic models with
different levels of detail. For different control methods, appro-
priate traffic models with the required modeling power need to
be selected.

In the past few years, various macroscopic urban traffic models
were developed and used for traffic control. The store-and-
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forward model, proposed by Gazis and Potts (1963) and later
used by Diakaki et al. (2002), is a simple model with low
computational complexity, but it can only be used for saturated
traffic, i.e., if the vehicle queues resulting from the red phase
cannot be dissolved completely at the end of the following
green phase. The model proposed by Barisone et al. (2002)
and extended by Dotoli et al. (2006) is computationally more
intensive and it can describe different scenarios, but it is also
more complicated. The model proposed by Kashani and Saridis
(1983) has lower modeling power, but can not depict scenar-
ios other than saturated traffic either. The model of van den
Berg et al. (2003); Hegyi (2004); van den Berg et al. (2004)
is capable of simulating the evolution of traffic dynamics in
all traffic scenarios (unsaturated, saturated, and over-saturated
traffic conditions) by updating the discrete-time model in small
simulation steps. This model provides a good trade-off between
accuracy and computational complexity compared with the mi-
croscopic model, which is tested and further extended in Lin
and Xi (2008) and Lin et al. (2008).

In principle, a centralized MPC method guarantees globally
optimal control actions for traffic networks. It can maximize
the throughput of the whole network, and provide network-wide
coordination of the traffic control measures. However, the prob-
lem is that the on-line computational complexity for centralized
MPC grows significantly, when the network scale gets larger,
the prediction time span gets longer, and the traffic model be-
comes more complex or gets a higher modeling power. There
are two main approaches to address this problem: (1) simpli-
fying the traffic model in order to reduce the computational
complexity, and (2) cutting the traffic network into small sub-
networks or even intersections, which are then controlled using
distributed or multi-agent control. In this paper we consider



the first approach, i.e., we develop simplified, yet sufficiently
accurate, traffic models, in particular, for urban traffic networks.

We start with an urban traffic model based on previous work
of Kashani and Saridis (1983); van den Berg et al. (2003);
Lin and Xi (2008). To reduce the computational burden, the
simplified model enlarges the simulation time interval to one
cycle time. During each simulation time interval, traffic states
are updated once in each link according to the average input and
output traffic flow rates in the current cycle. To add flexibility,
every intersection in the network can have a different cycle
time, and the intersections share the same control time interval.
This control time interval is the least common multiple of
all the cycle times of the intersections in the network. It is
necessary to define this common control time interval to keep
the model running and communicating synchronously under
both centralized control and distributed control. For a given link
the average input traffic flow rates are provided by the upstream
links, which transform their own output traffic flow rates into
input flow rates for the given link taking the different simulation
time intervals into account.

We will demonstrate with examples that this simplified traffic
model reduces the simulation time significantly, compared with
the model in van den Berg et al. (2003) and Lin and Xi (2008),
with only a limited reduction in accuracy. This makes it possible
to apply centralized MPC to larger urban traffic networks.

2. TWO MACROSCOPIC URBAN TRAFFIC NETWORK
MODELS

In this section we present the original model of van den Berg
et al. (2003) and Lin and Xi (2008) (indicated as the BLX
model) as well as a new simplified model (called the S model).
But first we introduce some common notation for both models.

Define J the set of nodes (intersections), and L the set of links
(roads) in the urban traffic network. Link (u,d) is marked by
its upstream node u (u ∈ J) and downstream node d (d ∈ J).
The sets of input and output links for link (u,d) are Iu,d ⊂ L
and Ou,d ⊂ L (e.g., for the situation of Fig. 1 we have Iu,d =
{i1, i2, i3} and Ou,d = {o1,o2,o3}).

In order to describe the evolution of the models, we first define
some variables (see also Fig. 1):

Iu,d : set of input links of link (u,d),
Ou,d : set of output links of link (u,d),
k : simulation step counter for the urban traffic

model,
nu,d(k) : number of vehicles in link (u,d) at step k,
qu,d(k) : queue length at step k in link (u,d), qu,d,om

is the
queue length of the sub-stream turning to link
om,

ml
u,d,om

(k) : number of cars leaving link (u,d) and turning to
om,

ma
u,d(k) : number of cars arriving at the (end of the) queue

in link (u,d) at step k, ma
u,d,om

(k) is the number

of arriving cars in the sub-stream towards om,
Su,d(k) : available storage space of link (u,d) at step k

expressed in number of vehicles,

α l
u,d(k) : flow rate leaving link (u,d) at step k, α l

u,d,om
(k)

is the leaving flow rate of the sub-stream towards
om,

αa
u,d(k) : flow rate arriving at the end of the queue in link

(u,d) at step k, αa
u,d,om

(k) is the arriving flow rate

of the sub-stream towards om,
αe

u,d(k) : flow rate entering link (u,d) at step k,

βu,d,om
(k) : relative fraction of the traffic turning to om at step

k,
µu,d : saturated flow rate leaving link (u,d),
gu,d,om

(k) : green time length during step k for the traffic
stream towards om in link (u,d),

bu,d,om
(k) : boolean value indicating whether the traffic sig-

nal at intersection d for the traffic stream in link
(u,d) turning to om is green (1) or red (0) at step
k,

vfree
u,d : free-flow vehicle speed in link (u,d),

Cu,d : capacity of link (u,d) expressed in number of
vehicles,

Nlane
u,d : number of lanes in link (u,d),

∆cu,d : offset between node u and node d,
lveh : average vehicle length.

2.1 BLX model

In the BLX model a queue is modeled as follows. For the sake
of simplicity, the assumption is made that at an intersection
the cars going to the same destination move into the correct
lane, so that they do not block the traffic flows going to other
destinations. For each lane (or destination), a separate queue is
constructed (with queue lengths denoted by q). Furthermore,
the simulation time step Ts is typically set to 1 s and cars
arriving at the end of a queue in simulation period [kTs,(k +
1)Ts) are allowed to cross the intersection in that same period
(provided that they have green, that there is enough space in the
destination link, and that there are no other restrictions).

Consider link (u,d) (see Fig. 1). For each om ∈ Ou,d the number
of cars leaving link (u,d) for destination om in the period
[kTs,(k+1)Ts) is given by

ml
u,d,om

(k) =










0 if bu,d,om
(k) = 0

max
(

0,min(qu,d,om
(k)+ma

u,d,om
(k),

Som(k), βu,d,om
(k) ·µu,d ·Ts)

)

if bu,d,om
(k) = 1 .

The traffic arriving at the end of the queue in link (u,d) is given
by the traffic entering the link via the upstream intersection
delayed by the time τ(k) · Ts + γ(k) needed to drive from the
upstream intersection to the end of the queue in the link; to this
extent ma

u,d is updated as follows:

ma
u,d(k) = (1− γ(k)) · ∑

im∈Iu,d

ml
im,u,d (k− τ(k))+

γ(k) · ∑
im∈Iu,d

ml
im,u,d (k− τ(k)−1) ,

where

τ(k) = floor

{

(

Cu,d −qu,d(k)
)

· lveh

Nlane
u,d · vfree

u,d ·Ts

}

,

γ(k) = rem

{

(

Cu,d −qu,d(k)
)

· lveh

Nlane
u,d · vfree

u,d ·Ts

}

,
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Fig. 1. A link connecting two traffic-signal-controlled intersections

with floor(x) referring to the largest integer smaller than or
equal to x, and rem(x) is the remainder. The fraction of the
arriving traffic in link (u,d) turning to om ∈ Ou,d is

ma
u,d,om

(k) = βu,d,om
(k) ·ma

u,d(k) .

The new queue lengths are given by the old queue lengths plus
the arriving traffic minus the leaving traffic

qu,d,om
(k+1) = qu,d,om

(k)+ma
u,d,om

(k)−ml
u,d,om

(k)

for each om ∈ Ou,d , and

qu,d(k) = ∑
om∈Ou,d

qu,d,om
(k) .

The new available storage stage depends on the number of cars
that enter and leave the link in the period [kTs,(k+1)Ts):

Su,d(k+1)=Su,d(k)− ∑
im∈Iu,d

ml
im,u,d(k)+ ∑

om∈Ou,d

ml
u,d,om

(k) .

2.2 Simplified Model (S Model)

In the simplified model, every intersection takes the cycle time
as its simulation time interval. The cycle times for intersection
u and d, which are denoted by cu and cd respectively, can be
different from each other, as Fig. 2 illustrates. Moreover, the S
model works with (average) flow rates rather than with number
of cars for describing flows leaving or entering links.

Taking the cycle time cd as the length of the simulation time
interval for link (u,d) and kd as the corresponding time step
counter, the number of the vehicles in link (u,d) is updated
according to the input and output average flow rate over cd at
every time step kd by

nu,d(kd +1) = nu,d(kd)+
(

αe
u,d(kd)−α l

u,d(kd)
)

· cd . (1)

The leaving average flow rate is the sum of the leaving flow
rates turning to each output link:

α l
u,d(kd) = ∑

om∈Ou,d

α l
u,d,om

(kd), om ∈ Ou,d . (2)

The leaving average flow rate over cd is determined by the
capacity of the intersection, the number of cars waiting and/or
arriving, and the available space in the downstream link:

α l
u,d,om

(kd) = min
(

βu,d,om
(kd) ·µu,d ·gu,d,om

(kd)/cd ,

qu,d,om
(kd)/cd +αa

u,d,om
(kd),

βu,d,om
(kd)(Com −nom(kd))/cd

)

.

(3)

The number of vehicles waiting in the queue turning to link om

is updated as

qu,d,om
(kd +1) = qu,d,om

(kd)+
(

αa
u,d,om

(kd)−α l
u,d,om

(kd)
)

· cd . (4)

Then, the number of waiting vehicles in link (u,d) is

qu,d(kd) = ∑
om∈Ou,d

qu,d,om
(kd) . (5)

The flow rate entered link (u,d) will arrive at the end of the
queues after a time delay τ(kd) · cd + γ(kd), i.e.,

αa
u,d(kd) = (1− γ(kd)) ·α

e
u,d (kd − τ(kd))+

γ(kd) ·α
e
u,d (kd − τ(kd)−1) , (6)

τ(kd) = floor

{

(

Cu,d −qu,d(kd)
)

· lveh

Nlane
u,d · vfree

u,d · cd

}

,

γ(kd) = rem

{

(

Cu,d −qu,d(kd)
)

· lveh

Nlane
u,d · vfree

u,d · cd

}

. (7)

Before reaching the tail of the waiting queues in link (u,d), the
flow rate of arriving vehicles need be divided by multiplying
the turning rates:

αa
u,d,om

(kd) = βu,d,om
(kd) ·α

a
u,d(kd). (8)

The flow rate entering link (u,d) is made up from the flow rates
from all the input links:

αe
u,d(kd) = ∑

im∈Iu,d

α l
im,u,d(kd). (9)

In this formula, we see that the flow rate entering link (u,d) is
provided by the combination of the flow rates leaving the up-
stream links. Recall that we have different cycle times between
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Fig. 2. Relationship between cycle times and control time
interval

the upstream and downstream intersections, so the simulation
time steps are not the same. Some operations need to be carried
out to synchronize the leaving and entering flow rates.

In order to control the urban traffic network, a common control
time interval need to be defined for the network model, so
that intersections can communicate with each other and be
synchronous.

Tc = N j · c j, for j ∈ J (10)

with N j an integer.

So Tc is the least common multiple of all the intersection cycle
times in the traffic network. As Fig. 2 shows, we have

Tc = Nu · cu = Nd · cd . (11)

For a given kc the simulation time step counters for both
intersections can range as follows:

ku = Nu · kc + pu, pu = 0,1, . . . ,Nu −1
kd = Nd · kc + pd , pd = 0,1, . . . ,Nd −1.

(12)

Now we show how the flow rates expressed in the timing of
intersection u can be recast into the timing of intersection d.
First, we smooth the leaving flow rates from the upstream links
as

α l
im,u,d(t) = α l

im,u,d(ku), ku · cu ≤ t < (ku +1) · cu, (13)

and then sample them again to obtain the average flow rates in
time step kd so as to be able used by the downstream link, as
Fig. 3 shows:

α l
im,u,d(kd) =

∫ (kd+1)·cd+∆cu,d

kd ·cd+∆cu,d

α l
im,u,d(t)

cd

dt . (14)

3. SIMULATION EXPERIMENTS

In centralized MPC, a fast running traffic network model is
needed to satisfy the on-line optimization requirements. So,
simulations are designed and carried out to verify whether the
new simplified model (S model) can save time compared with
the more detailed model (BLX model) while retaining a suffi-
ciently high level of accuracy. The two models are compared for
different network input flow rates, different prediction horizons,
and different traffic network scales. During the experiment, the
simulation time interval of the BLX model is set to 1 s, while
the simulation time intervals of the S model are cycle times

α l
im,u,d

(ku)

α l
im,u,d

(kd)

kc ·Nu

kc ·Nd

ku

kd

1 2

0 1 2 3

Fig. 3. Illustration for synchronizing flow rates

link 1

Node

Two way link

Structure: (3,3)

# nodes: 9

Fig. 4. The layout of a urban traffic network

which are 120 s, the same for all intersections in the network.
The prediction horizons and traffic network scales are listed in
Table 1.

Table 1. Traffic network characteristics and predic-
tion horizon for each of the 5 simulation cases

Case number 1 2 3 4 5

Network
Structure (1,2) (3,3) (8,8) (13,13) (18,18)

# nodes 2 9 64 169 324

Np 5 10 20 30 40

Each network considered is a grid-like network, where the
“Structure” of the network is expressed as the number of nodes
in each row and each column, and “# nodes” indicates the
number of nodes. For example, Fig. 4 shows the layout of a
(3,3) network containing 9 nodes. “Np” is the number of the
control time intervals the model will run (i.e., simulation or
prediction horizon expressed in steps of length Tc).

When using network 3, and Np = 10, the computing times of
the two models under different network input flow rates are
shown in Fig. 5. The figure shows that the computing times
are almost independent of the network input flow rates for both
models. This means the traffic scenarios almost do not have any
influence on the running time. Moreover, we can see from the
figure that the S model required a much shorter computation
time, around 0.5 s, while the BLX model took about 7 s, which
is 14 times longer.
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In each step of MPC for traffic control, a numerical opti-
mization problem needs to be solved to obtain the optimal
input value for the next step (using, e.g., a multi-start Se-
quence Quadratic Programming (SQP) algorithm). During the
optimization, the model may need run hundreds to thousands
of times. Therefore, by decreasing the computing time of the
model, the on-line optimization time in MPC can be dramati-
cally reduced.

Fig. 6 shows the changing of the running time with Np, when the
traffic network is set to network 5. Fig. 7 shows the changing of
the running time with network scale, when Np = 40. From the
two figures, we can see that the longer the model is predicting,
the larger scale the network is set to, the more time that the S
model will save. The same conclusions can also be drawn from
Fig. 8.

The S model is much faster than the BLX model, especially
for longer prediction horizons Np and larger network scales,
but this extra speed is obtained by ignoring some details when
modeling. Therefore, we need to verify whether the S model
can still satisfy the requirements of control. The number of
leaving vehicles can reflect the control effect of traffic lights
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Fig. 8. The computing time consumed for both different predic-
tion horizons and different traffic network scales
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on urban traffic, and Total Time Spent (TTS) is usually used as
the control performance. If the S model shows behavior that is
similar to that of the BLX model for these two indexes, then it
can be used as urban traffic control model guaranteeing similar
control effects but with less control efforts. Fig. 9 and 10 are
drawn for link 1 of network 2 (see Fig. 4), and Np = 10. The
figures show that the simplified model is accurate enough as a
control model for urban traffic network.

4. CONCLUSIONS

A simplified macroscopic model has been established for con-
trolling urban traffic network using model predictive control
(MPC). This model takes the cycle times of the intersections
as simulation time steps, where every intersection can have a
different simulation time step. A control time interval, which is
the least common multiply of all the cycle times, is defined to
guarantee the communication and synchronization in the urban
traffic network. The simplified model also describes how to en-
sure communication and synchronization between intersections
with different simulation time steps.

The simplified model can take all typical traffic scenarios (sat-
urated, unsaturated, and over-saturated traffic) into consider-
ation, and is more flexible by having different cycle times.
Moreover, it significantly reduces the computing time, which
make it possible to be used for controlling larger urban traffic
network.

However, the increasing of computing speed is obtained by
enlarging the simulation time interval, which makes it lose
some details and sacrifice some accuracy at the same time. But
simulation results show that it guarantees enough accuracy to
be used as the control model for urban traffic network.

Further research will focus on developing MPC algorithm to
control urban traffic network based on this model, as well as an
extensive assessment and comparison of the simplified model
with a wide range of other traffic models for various network
layouts and traffic demands when used for MPC-based traffic
control.
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