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Abstract: We present a routing guidance approach that can be used in Intelligent Vehicle Highway
Systems (IVHS). We consider IVHS consisting of automated highway systems on which intelligent
vehicles organized in platoons drive to their destination, controlled by a hierarchical control framework.
In this framework there are roadside controllers that provide speed and lane allocation instructions to
the platoons. These roadside controllers typically manage single stretches of highways. A collection of
highways is then supervised by so-called area controllers that mainly take care of the route guidance
instructions for the platoons and that also coordinate the various roadside controllers in their area. In
this paper we focus on the optimal route choice control problem for the area controllers. In general, this
problem is a nonlinear integer optimization problem with high computational requirements, which makes
the problem intractable in practice. Therefore, we first propose a simplified but fast simulation model
to describe the flows of platoons in the network. Next, we show that the optimal route choice control
problem can be approximated by a linear or a mixed integer linear problem. With a simple case study
we illustrate that this results in a balanced trade-off between optimality and computational efficiency.

Keywords: Intelligent-Vehicle Highway Systems, Routing, Optimal Control.

1. INTRODUCTION

The recurring traffic congestion problems and their related costs
have resulted in various solution approaches. One of these in-
volves the combination of the existing transportation infrastruc-
ture and equipment with advanced technologies from the field
of control theory, communication, and information technology.
This results in integrated traffic management and control sys-
tems, called Intelligent Vehicle Highway Systems (IVHS), that
incorporate intelligence in both the roadside infrastructure and
in the vehicles. Although this step is considered to be a long-
term solution, this approach is capable of offering significant
increases in the performance of the traffic system (Sussman,
1993; Jurgen, 1991; Fenton, 1994).

In IVHS all vehicles are assumed to be fully automated with
throttle, braking, and steering commands being determined by
automated on-board controllers. Such complete automation of
the driving tasks allows to organize the traffic in platoons,
i.e., a closely spaced group of vehicles traveling together with
short intervehicle distances (Varaiya, 1993; Shladover et al.,
1991). Platoons can travel at high speeds and to avoid collisions
between platoons at these high speeds, a safe interplatoon
distance of about 20–60 m should be maintained. Also, the
vehicles in each platoon travel with small intraplatoon distances
of about 2–5 m, which are maintained by the automated on-
board speed and distance controllers. By traveling at high
speeds and by maintaining short intraplatoon distances, the
platoon approach allows more vehicles to travel on the network,
which improves the traffic throughput (Broucke and Varaiya,
1997; Li and Ioannou, 2004).

In (Baskar et al., 2007) we have proposed a hierarchical traffic
management and control framework for IVHS that builds upon
earlier research in this field such as the PATH framework
(Shladover et al., 1991). The control architecture of Baskar
et al. (2007) consists of a multi-level control structure with
local controllers at the lowest level and one or more higher
supervisory control levels (see also Figure 1). In this paper, we
will in particular concentrate on how the area controllers can
determine optimal routes for the platoons using optimal control.

The paper is organized as follows. In Section 2 we briefly
recapitulate the hierarchical traffic management and control
framework of Baskar et al. (2007). Next, we focus on the route
guidance tasks of the area controllers and we present a simpli-
fied flow model and the corresponding optimal route guidance
problem in Section 3. We consider both the static (constant
demands) and the dynamic case (time-varying demands). In
general, the dynamic case leads to a nonlinear nonconvex opti-
mization problem, but in Section 4 we show that this problem
can be approximated using mixed integer linear programming
(MILP). In Section 5 we present a simple example that il-
lustrates that the MILP approximation provides a good trade-
off between optimality and computational efficiency. Section 6
concludes the paper.

2. INTELLIGENT VEHICLE HIGHWAY SYSTEMS (IVHS)

We now briefly present the hierarchical control framework for
IVHS we have proposed in (Baskar et al., 2007). This frame-
work is based on the platoon concept and it distributes the
intelligence between the roadside infrastructure and the vehi-
cles using control measures such as intelligent speed adaption,
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Fig. 1. The hierarchical control framework of Baskar et al.
(2007) for IVHS.

adaptive cruise control, lane allocation, on-ramp access control,
route guidance, etc. to prevent congestion and to improve the
performance of the traffic network. The control architecture of
Baskar et al. (2007) consists of a multi-level control structure
with local controllers at the lowest level and one or more higher
supervisory control levels as shown in Figure 1. The layers of
the framework can be characterized as follows:

• The vehicle controllers present in each vehicle receive
commands from the platoon controllers (e.g., set-points
or reference trajectories for speeds (for intelligent speed
adaption), headways (for adaptive cruise control), and
paths) and they translate these commands into control
signals for the vehicle actuators such as throttle, braking,
and steering actions.

• The platoon controllers receive commands from the road-
side controllers and are responsible for control and coor-
dination of each vehicle inside the platoon. The platoon
controllers are mainly concerned with actually executing
the interplatoon maneuvers (such as merges with other
platoons, splits, and lane changes) and intraplatoon activ-
ities (such as maintaining safe intervehicle distances).

• The roadside controllers may control a part of a highway
or an entire highway. The main tasks of the roadside
controllers are to assign speeds for each platoon, safe dis-
tances to avoid collisions between platoons, appropriate
platoon sizes, and ramp metering values at the on-ramps.
The roadside controllers give instructions for merging,
splitting, and lane changes to the platoons.

• The higher-level controllers (such as area, regional, and
supraregional controllers) provide network-wide coordi-
nation of the lower-level and middle-level controllers. In
particular, the area controllers provide area-wide dynamic
route guidance for the platoons, and they supervise and
coordinate the activities of the roadside controllers in their
area by providing set-points and control targets. In turn, a
group of area controllers could be supervised or controlled
by a regional controller, and so on.

The lower levels in this hierarchy deal with faster time scales
(typically in the milliseconds range for the vehicle controllers
up to the seconds range for the roadside controllers), whereas
for the higher-level layers the frequency of updating can range
from few times per minute (for the area controllers) to a few
times per hour (for the supraregional controllers).

In (Baskar et al., 2008a,b, 2009) we have proposed model
predictive control methods for the roadside controllers to de-
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Fig. 2. Piecewise constant time-varying demand profile Do,d for
the dynamic case.

termine optimal speeds, lane allocations, and on-ramp release
times for the platoons. In the remainder of the paper we will
focus on the area controllers and in particular on how optimal
routes can be determined for the platoons.

3. OPTIMAL ROUTE CHOICE CONTROL IN IVHS

3.1 Approach

In principle, the optimal route choice control problem in IVHS
consists in assigning an optimal route to each individual platoon
in the network. However, this results in a huge nonlinear integer
optimization problem with high computational complexity and
requirements, making the problem intractable in practice. So,
since considering each individual platoon is too computation-
ally intensive, we will consider streams of platoons instead
(characterized by (real-valued) demands and flows expressed
in vehicles per hour). The routing problem will be recast as the
problem of determining the flows on each link.

Once these flows are determined, they can be implemented
by roadside controllers at the links and at the nodes. So the
area controllers provide flow targets to the roadside controllers,
which then have to control the platoons that are under their
supervision in such a way that these targets are met as well
as possible. This corresponds to slowing down or speeding up
platoons in the links if necessary (in combination with lane
allocation and on-ramp access timing), and to steering them in
a certain direction depending on the splitting rates for the flows.

3.2 Set-up

We consider the following set-up. We have a transportation
network with a set of origin nodes O , a set of destination nodes
D , and a set of internal nodes I . Define the set of all nodes
as V = O ∪I ∪D . Nodes can be connected by one or more
(unidirectional) links. The set of all links is denoted by L.

For each origin-destination pair (o,d) ∈ O ×D we define the
set Lo,d ⊆ L of links that belong to some route going from o to d.
For every link l ∈ L we define the set Sod,l of origin-destination
pairs (o,d) ∈ O ×D such that l belongs to some route going
from o to d.

For each pair (o,d) ∈ O ×D , there is a constant demand Do,d

(in the static case) or a dynamic, piecewise constant demand
pattern Do,d(·) as shown in Figure 2 with Do,d(k) the demand
of vehicles at origin o with destination d in the time interval
[kTs,(k + 1)Ts) for k = 0, . . . ,K − 1 with K the simulation
horizon and Ts the simulation time step (we assume that beyond
T = KTs the demand is 0).



For each link l ∈ L in the network 1 there is a maximal capacity
Cl . We assume that there is a fixed average speed vl on each link

l. Let τl denote the travel time on link l: τl =
ℓl
vl

where ℓl is the

length of link l. We denote the set of incoming links for node
v ∈ V by Lin

v , and the set of outgoing links by Lout
v . Note that

for origins o ∈ O we have Lin
o = /0 and for destinations d ∈ D

we have Lout
d = /0.

The aim is now to assign actual (real-valued) flows xl,o,d (in
the static case) or xl,o,d(k) (in the dynamic case) for every pair
(o,d) ∈ O × D and every l ∈ Lo,d , in such a way that the
capacity of the links is not exceeded and such that the given
performance criterion (e.g., total time spent) is minimized. In
the dynamic case xl,o,d(k) denotes the flow of vehicles from
origin o to destination d that enter link l in the time interval
[kTs,(k+1)Ts).

For the optimal route choice problem we now consider four
cases with a gradually increasing complexity:

• Static case with sufficient network capacity,
• Static case with queues at the boundaries of the network

only,
• Dynamic case with queues at the boundaries of the net-

work only,
• Dynamic case with queues inside the network.

3.3 Static case with sufficient network capacity

Here we assume that there is a constant demand for each origin-
destination pair and that the total network capacity is such that
the entire demand can be processed, so that there will be no
queues at the boundaries or inside the network. Let us now
describe the equations to model this situation.

For every origin node o ∈ O we have:

∑
l∈Lout

o ∩Lo,d

xl,o,d = Do,d for each d ∈ D . (1)

For every internal node v∈I and for every pair (o,d)∈O×D

we have

∑
l∈Lin

v ∩Lo,d

xl,o,d = ∑
l∈Lout

v ∩Lo,d

xl,o,d . (2)

We also have the following condition for every link l:

∑
(o,d)∈Sod,l

xl,o,d 6Cl . (3)

Finally, the objective function is given as follows 2 :

Jlinks = ∑
(o,d)∈O×D

∑
l∈Lo,d

xl,o,dτlT , (4)

which is a measure for the total time the vehicles or platoons
spend in the network. In order to minimize Jlinks we have to
solve the following optimization problem:

min Jlinks s.t. (1)–(3) (5)

Clearly, this is a linear programming problem.

1 This approach can easily be extended to the case where also the internal

nodes v ∈ I have a finite capacity.
2 Recall that T = KTs is the length of the simulation period.

3.4 Static case with queues at the boundaries of the network
only

In case the capacity of the network is less than the demand,
then problem (5) will not be feasible. In order to be able to
determine the optimal routing in this case, we have to take into
account that queues might appear at the origin of the network.

Let us first write down the equations for the flows inside the
network.

For every origin node o ∈ O we have:

∑
l∈Lout

o ∩Lo,d

xl,o,d 6 Do,d for each d ∈ D . (6)

Equations (2) and (3) also hold in this case.

Let us now describe the behavior of the queues. Since the actual
flow out of origin node o for destination d is given by

Fout
o,d = ∑

l∈Lout
o ∩Lo,d

xl,o,d ,

the queue length at the origin o for vehicles or platoons going
to destination d will increase linearly with a rate Do,d −Fout

o,d

(note that by (6) this rate is always nonnegative). At the end
of the simulation period (which has length T ) the queue length
will be (Do,d −Fout

o,d )T , and hence the average queue length is
1
2
(Do,d −Fout

o,d )T . So the total time spent in the origin queues is

Jqueue = ∑
(o,d)∈O×D

1

2
(Do,d −Fout

o,d )T
2

= ∑
(o,d)∈O×D

1

2

(

Do,d − ∑
l∈Lout

o

xl,o,d

)

T 2 .

In order to minimize the total time spent we have to solve the
following optimization problem:

min Jlinks + Jqueue s.t. (2), (3), and (6). (7)

This is also a linear programming problem.

3.5 Dynamic case with queues at the boundaries of the network
only

Now we consider a piecewise constant demand pattern for every
origin-destination pair. Moreover, we assume that the travel
time τl on link l is an integer multiple of Ts, say

τl = κlTs with κl an integer. (8)

Let qo,d(k) denote the partial queue length of vehicles at origin
o going to destination d at time instant t = kTs. In principle,
the queue lengths should be integers as their unit is “number of
vehicles”, but we will approximate them using reals.

For the sake of simplicity we also assume that initially the
network is empty (i.e., qo,d(k) = 0 and xl,o,d(k) = 0 for k 6 0).

For every origin node o ∈ O we now have:

∑
l∈Lout

o ∩Lo,d

xl,o,d(k)6 Do,d(k)+
qo,d(k)

Ts
for each d ∈ D , (9)

with by definition Do,d(k) = 0 for k > K and qo,d(k) = 0 for

k 6 0. Note that the term
qo,d(k)

Ts
in (9) is due to the assumption

that whenever possible and feasible the queue is emptied in the
next sample period, with length Ts.
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Fig. 3. Two possible cases for the evolution of the (continuous-
time) queue length qcont

o,d in the time interval [kTs,(k +

1)Ts).

Taking into account that every flow on link l has a delay of κl

time steps before it reaches the end of the link, we have

∑
l∈Lin

v ∩Lo,d

xl,o,d(k− τl) = ∑
l∈Lout

v ∩Lo,d

xl,o,d(k) (10)

for every internal node v∈I and for every pair (o,d)∈O×D ,
with xl,o,d(k) = 0 for k ≤ 0.
We also have the following condition for every link l:

∑
(o,d)∈Sod,l

xl,o,d(k)6Cl . (11)

Let us now describe the behavior of the queues. Since the actual
flow out of origin node o for destination d in the time interval
[kTs,(k+1)Ts) is given by

Fout
o,d (k) = ∑

l∈Lout
o ∩Lo,d

xl,o,d(k) , (12)

the queue length at the origin o for vehicles going to destination
d will increase linearly with a rate 3 Do,d(k)−Fout

o,d (k) in the

time interval [kTs,(k+1)Ts). Hence,

qo,d(k+1) = max
(

0, qo,d(k)+(Do,d(k)−Fout
o,d (k))Ts

)

(13)

In order to determine the time Jqueue,o,d(k) spent in the queue
at origin o in the time interval [kTs,(k+ 1)Ts) for traffic going
to destination d, we have to distinguish between two cases
depending on whether or not the continuous-time queue length
qcont

o,d becomes equal to zero inside 4 the interval [kTs,(k+1)Ts]
(see Cases (a) and (b) of Figure 3). For Case (b) we define

To,d(k) =
qo,d(k)

Fout
o,d (k)−Do,d(k)

(14)

as the time offset after kTs at which the queue length becomes
zero. Then we have

Jqueue,o,d(k) =











1

2
(qo,d(k)+qo,d(k+1))Ts for Case (a),

1

2
qo,d(k)To,d(k) for Case (b).

(15)

Due to the denominator term in (14) Jqueue,o,d(k) is in general a
nonlinear function. Now assume that we simulate the network
until time step Kend >K (e.g., until all queues and all flows have
become 5 equal to zero). Then we have

3 In contrast to Section 3.4 this rate can now also be negative.
4 So we are only Case (b) if qcont

o,d becomes equal to zero for some time t with

kTs < t < (k+1)Ts, i.e., if qo,d(k)> 0 and qo,d(k)+(Do,d(k)−Fout
o,d (k))Ts < 0.

All other situations belong to Case (a).
5 If this is not the case we have to add an end-point penalty on the queue

lengths and flows at time step Kend.

Jqueue =
Kend−1

∑
k=0

∑
(o,d)∈O×D

Jqueue,o,d(k) .

The time spent in the links is now given by

Jlinks =
Kend−1

∑
k=0

∑
(o,d)∈O×D

∑
l∈Lo,d

xl,o,d(k)κlT
2

s . (16)

In order to minimize the total time spent we have to solve the
following optimization problem:

min
(

Jlinks + Jqueue

)

s.t. (9)–(13). (17)

Due to the presence of constraint (13) and the nonlinear expres-
sion for Jqueue,o,d(k) in Case (b) this is a nonlinear, noncon-
vex, and nonsmooth optimization problem. In general, these
problems are difficult to solve and require multi-start local
optimization methods (such as Sequential Quadratic Program-
ming (SQP)) or global optimization methods (such as genetic
algorithms, simulated annealing, or pattern search) (Pardalos
and Resende, 2002). However, in Section 4 we will propose
an alternative approximate solution approach based on mixed
integer linear programming.

3.6 Dynamic case with queues inside the network

Now we consider the case with queues inside the network. If
there are queues formed, we assume that they are formed at the
end of the links and that the queues are vertical. In fact, for the
sake of simplicity and in order to obtain linear equations, we
assign the queues to the nodes instead of the links.

This case is similar to the previous case, the difference being
that (10) is now replaced by (cf. also (9)):

∑
l∈Lout

v ∩Lo,d

xl,o,d(k)6



 ∑
l∈Lin

v ∩Lo,d

xl,o,d(k− τl)



+
qv,o,d(k)

Ts
,

(18)

where qv,o,d(k) is the partial queue length at node v for vehicles
or platoons going from origin o to destination d at the time
instant t = kTs. Moreover,

qv,o,d(k+1) = max
(

0,qv,o,d(k)+(F in
v,o,d(k)−Fout

v,o,d(k)
)

Ts

with the flow into and out of the queue being given by

F in
v,o,d(k) = ∑

l∈Lin
v ∩Lo,d

xl,o,d(k− τl) (19)

Fout
v,o,d(k) = ∑

l∈Lout
v ∩Lo,d

xl,o,d(k) . (20)

Similar to the way Jqueue,o,d(k) has been defined in (15) we also
define the time Jqueue,v,o,d(k) spent in the queue at node v in the
time interval [kTs,(k+ 1)Ts) for traffic going from origin o to
destination d, and we extend the definition of Jqueue into

Jqueue =
Kend−1

∑
k=0

∑
(o,d)∈O×D

(

Jqueue,o,d(k)+

∑
v∈I

Jqueue,v,o,d(k)
)

Ts .

In order to minimize the total time spent we have to solve the
following optimization problem:

min
(

Jlinks + Jqueue

)

s.t. (9), (11)–(13), and (18)–(20),

with Jlinks still defined by (16). This also results in a nonlinear,
nonconvex, and nonsmooth optimization problem. However, in



the next section we will show that this problem can also be
approximated using mixed integer linear programming.

4. APPROXIMATION BASED ON MIXED INTEGER
LINEAR PROGRAMMING

Recall that the dynamic optimal route guidance problems of
Sections 3.5 and 3.6 are nonlinear, nonconvex, and nonsmooth.
Now we will show that by introducing an approximation these
problems can be transformed into mixed integer linear pro-
gramming (MILP) problems, for which efficient solvers have
been developed (Fletcher and Leyffer, 1998).

First we consider the case with queues at the origins only, i.e.,
we consider the optimization problem (17). Apart from (13) this
problem is a linear optimization problem.

Now we explain how we can transform (13) into a system of lin-
ear equations by introducing some auxiliary boolean variables
δ . To this aim we use the following properties (Bemporad and
Morari, 1999), where δ represents a binary-valued scalar vari-
able, y a real-valued scalar variable, and f a function defined on
a bounded set X with upper and lower bounds M and m for the
function values:

P1: [ f 6 0] ⇐⇒ [δ = 1] is true if and only if
{

f 6 M(1−δ )
f > ε +(m− ε)δ ,

where ε is a small positive number 6 (typically the ma-
chine precision),

P2: y = δ f is equivalent to










y 6 Mδ
y > mδ
y 6 f −m(1−δ )
y > f −M(1−δ ) .

Depending on the order in which these properties are applied
and in which additional auxiliary variables are introduced, we
may end up with more or less binary and real variables in the
final MILP problem. The number of binary variables — and to
a lesser extent the number of real variables — should be kept
as small as possible since this number has a direct impact of the
computational complexity of the final MILP problem.

To reduce the number of real variables in the final MILP
problem, we first eliminate Fout

o,d (k) and we write (13) as

qo,d(k+1) =max
(

0,qo,d(k)

+
(

Do,d(k)− ∑
l∈Lout

o ∩Lo,d

xl,o,d(k)
)

Ts

)

. (21)

Note that this is a nonlinear equation and thus it does not fit
the MILP framework. Let Dmax,o,d = maxk Do,d(k) be the max-
imal demand for origin-destination pair (o,d), let Fmax,o,d =
∑l∈Lout

o ∩Lo,d
Cl be the maximal possible flow out of origin node

o towards destination d, and let qmax,o,d = Dmax,o,dTsKend be
the maximal origin queue length at origin o for traffic going
to destination d. If we define mlow

o,d = −Fmax,o,dTs and m
upp
o,d =

qmax,o,d +Dmax,o,dTs, then we always have

mlow
o,d 6 qo,d(k)+

(

Do,d(k)− ∑
l∈Lout

o ∩Lo,d

xl,o,d(k)
)

Ts 6 m
upp
o,d .

6 We need this construction to transform a constraint of the form y > 0 into

y > ε , as in (mixed integer) linear programming problems only non-strict

inequalities are allowed.

Next, we introduce binary variables δo,d(k) such that

δo,d(k) = 1 if and only if

qo,d(k)+
(

Do,d(k)− ∑
l∈Lout

o ∩Lo,d

xl,o,d(k)
)

Ts > 0 .

Using Property P1 with the bounds mlow
o,d and m

upp
o,d this condition

can be transformed into a system of linear inequalities. Now we
have (cf. (21))

qo,d(k+1) =

δo,d(k)
(

qo,d(k)+
(

Do,d(k)− ∑
l∈Lout

o ∩Lo,d

xl,o,d(k)
)

Ts

)

.

This expression is still nonlinear since it contains a multipli-
cation of a binary variable δo,d(k) with a real-valued (linear)
function. However, by using Property P2 this equation can be
transformed into a system of linear inequalities.
So by introducing some auxiliary variables δo,d(k) we can
transform the original nonlinear equation (13) into a system of
additional linear equations and inequalities.

Recall that Jqueue,o,d(k) is in general a nonlinear function due
to the occurrence of Case (b) of Figure 3. However, if we
also use the expression of Case (a) for Case (b), then we can
approximate Jqueue,o,d(k) as 7

Jqueue,o,d(k) =
1

2
(qo,d(k)+qo,d(k+1))Ts ,

which is a linear expression. This implies that the overall
objective function Jlinks + Jqueue is now linear. So the problem
(17) can be approximated by an MILP problem.

Several efficient branch-and-bound MILP solvers (Fletcher and
Leyffer, 1998) are available for MILP problems. Moreover,
there exist several commercial and free solvers for MILP prob-
lems such as, e.g., CPLEX, Xpress-MP, GLPK, or lp solve (see
(Atamtürk and Savelsbergh, 2005; Linderoth and Ralphs, 2005)
for an overview). In principle, — i.e., when the algorithm is
not terminated prematurely due to time or memory limitations,
— these algorithms guarantee to find the global optimum. This
global optimization feature is not present in the other optimiza-
tion methods that can be used to solve the original nonlinear,
nonconvex, nonsmooth optimization problem (17). Moreover,
if the computation time is limited (as is often the case in on-
line real-time traffic control), then it might occur that the MILP
solution can be found within the allotted time whereas the
global and multi-start local optimization algorithm still did not
converge to a good solution. As a result, the MILP solution —
even although it solves an approximated problem — might even
perform better than the solution returned by the prematurely
terminated global and multi-start local optimization method.

In general, we can say that the MILP solution often provides
a good trade-off between optimality and computational effi-
ciency, as will be illustrated in the case study of Section 5.

Using a similar reasoning as above we can also transform the
routing problem with queues inside the network of Section
3.6 into an MILP problem. Note however that in this case the
number of binary variables may become quite large.

7 This is exact for Case (a) and an approximation for Case (b). However,

especially if Ts is small enough, the error we then make is negligible.
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Fig. 4. Set-up of case study network.

Period (min) 0–10 10–30 30–40 40–60

Do1 ,d1
(veh/h) 5000 8000 2500 0

Do1 ,d2
(veh/h) 1000 2000 1000 0

Table 1. Demand profiles used in the case study.

5. CASE STUDY

In this section we present a simple case study involving a
basic set-up to illustrate the area-level control approach for
IVHS proposed in this paper. In particular, we will consider
the dynamic case with queues at the origins of the network
only (cf. Section 3.5) and thus solve problem (17). First, we
will describe the set-up and the details of the scenario used for
our simulations. Next, we will discuss and analyze the obtained
results.

5.1 Scenario

We consider a simple network of highways with one origin o1

and two destinations d1, d2, and three internal nodes v1, v2, and
v3 (see Figure 4). The network consists of three high-capacity
links connecting o1 to v1, v2 to d1, and v3 to d2, as well as
six links connecting the internal nodes, allowing four possible
routes to each destination (e.g., d1 can be reached via l1, l2,
l3+l5, and l4+l5).

We simulate a period of 60 min. The simulation time step
Ts is set to 1 min. The demand pattern is piecewise constant
during the simulation period and is given in Table 1. The
demand to be processed in the period [10,30) is higher than
the capacity of the network, giving rise to an origin queue for
each destination. The capacities on the links directly connected
to the origin and destination nodes are assumed to be high
enough so that no queues are formed on them, and the travel
time on these links is assumed to be negligible. The maxi-
mum capacities associated with the links between the inter-
nal nodes are C1=1900 veh/h, C2=2000 veh/h, C3=1800 veh/h,
C4=1600 veh/h, C5=1000 veh/h, and C6=1000 veh/h. Depend-
ing on the speed and length of each link, different travel times
can be obtained, which are characterized by (cf. (8)) κ1=10,
κ2=9, κ3=6, κ4=7, κ5=2, and κ6=2. For the proposed scenario
the initial state of the network is taken to be empty.

We consider three different cases:

• Case A: no control,
• Case B: controlled using the MILP solution,
• Case C: controlled using the exact solution.

5.2 Results and analysis

We have used Matlab to compute the optimal route choice
solutions in Cases B and C. More specifically, the MILP prob-
lem of Case B has been solved using CPLEX, implemented

Case Jqueue improvement CPU time 8

(veh.h) (s)

no control 1434 0 % –

MILP 1081 24.6 % 0.27

SQP (5 initial points) 1067 25.6 % 90.0

SQP (50 initial points) 1064 25.8 % 983

SQP (with MILP solution
as initial point)

1064 25.8 % 1.29

Table 2. Results for the case study. The improve-
ment is expressed with respect to the no-control

case.

through the cplex interface function of the Matlab Tomlab
toolbox. For Case C we have used the SQP function SNOPT,
implemented via the function snopt of the Matlab Tomlab
toolbox. For Case C we have considered three different choices
for the starting points: 5 random initial points, 50 random initial
points, and the MILP solution as the initial point. The results of
the numerical experiments are listed in Table 2.

In case of no control (Case A), the capacities of the direct links
l1, l2, l3, and l4 are consumed up to their maximum while the
links l5 and l6 are not used due to the fact that all vehicles and
platoons want to take the shortest routes. At the point when
the demand exceeds the maximum capacity of the links, origin
queues are formed. As the simulation advances further, the
queue length also increases linearly with time, thus leading to a
large total time spent of 1434 veh.h.

When control is applied, the area controller assigns the routes to
the platoons in a system optimum manner. By system optimum,
we mean that some of the platoons and vehicles can even be
assigned a longer route rather than the direct or shortest routes,
if this leads to an improvement of the total traffic performance.
This results in a performance improvement of 24.6 % for the
MILP solution (Case B), and — depending also on the number
of initial points considered — in a performance improvement
of up to 25.8 % for the exact solution (Case C).

Note that for this case study using the MILP solution as the
starting point for SQP yields the optimal solution at very low
computational costs (1.29 s).

Although the exact solution will in general perform better than
the MILP solution, this comes at the cost of an increased com-
putation time due to the multi-start SQP, which results in a
total computation time that can be much larger than Ts (which
is equal to 1 min here). In practice, where the approach will
typically be applied on-line in a moving horizon approach,
this excessive computation time makes the multi-start SQP ap-
proach infeasible, whereas the MILP solution can be computed
within the sampling time interval Ts while having almost the
same performance as the multi-start SQP solution.

6. CONCLUSIONS

We have considered the optimal route guidance problem for
IVHS. In particular, we have proposed an optimal route guid-
ance approach for platoons by an area controller based on a
simplified flow model. Since the resulting optimization problem
could still be too involved for on-line, real-time implementa-
tion in the case of dynamic demands, we have explored an
approximation resulting in a mixed integer linear programming
problem, for which efficient solvers exist. With a case study we

8 On a 1 GHz Athlon 64 X2 Dual Core 3800+ processor with 3 GB of RAM.



have illustrated that the resulting approach can offer a balanced
trade-off between computational efficiency and optimality.

In our future research, we will investigate other methods and
approximations (such a receding horizon control, blocking, se-
lection of routes from a restricted set, etc.) to get an even better
balance between optimality and computational efficiency. We
will also consider additional case studies as well as the coordi-
nation and mutual interaction between various area controllers
and between the area controllers and the roadside controllers.
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