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A.N. Tarău ∗ B. De Schutter ∗,∗∗ J. Hellendoorn ∗

∗ Delft Center for Systems and Control
Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

{a.n.tarau, j.hellendoorn}@tudelft.nl
∗∗ Marine and Transport Technology Department

Delft University of Technology, The Netherlands, b@deschutter.info

Abstract: State-of-the-art baggage handling systems transport luggage in an automated way using
destination coded vehicles (DCVs). These vehicles transport the bags at high speeds on a “mini”
railway network. In this paper we consider the problem of controlling the route of each DCV in
the system. This is a nonlinear, nonconvex, mixed integer optimization problem. Nonlinear model
predictive control (MPC) for mixed integer problems is usually very expensive in terms of computational
effort. Therefore, in this paper we present an alternative approach for reducing the complexity of the
computations by simplifying and approximating the nonlinear optimization problem by a mixed integer
linear programming (MILP) problem. The advantage is that for MILP optimization problems solvers
are available to allow us to efficiently compute the global optimal solution. The solution of the MILP
problem can then be used as a good initial starting point for the original nonlinear optimization problem.
To assess the performance of the proposed formulation of the MPC optimization problem, we consider
a benchmark case study, the results being compared for several scenarios.

Keywords: Baggage handling systems, route choice control, model predictive control.

1. INTRODUCTION

Modern baggage handling systems in airports transport lug-
gage at high speeds using destination coded vehicles (DCVs).
These vehicles transport the bags at high speed on a “mini”
railway network. Low-level controllers ensure the coordination
and synchronization when loading a bag onto a DCV, in order to
avoid damaging the bags or blocking the system, and when un-
loading it to the corresponding end point. Low-level controllers
also compute the velocity of the DCVs such that collisions are
avoided. Currently, the DCVs are routed through the system
using routing schemes based on preferred routes. These routing
schemes can be adapted to respond on the occurrence of pre-
defined events. However, as argued by de Neufville (1994), the
patterns of loads on the system are highly variable, depending
on e.g. the season, time of the day, type of aircraft at each gate,
number of passengers for each flight. Therefore, in the research
we conduct we do not consider predefined preferred routes.
Instead we develop advanced control methods to determine the
optimal routing in case of dynamic demand.

For applications such as automated guided vehicles route plan-
ning or traffic route guidance, the route assignment problem
has been addressed by e.g. Gang et al. (1996); Kaufman et al.
(1998). But, in our case we do not deal with a shortest-path
or shortest-time problem, since we need the bags at their cor-
responding end point within a given time window. Fay (2005)
solved the routing problem of DCVs transporting bags using an
analogy of how data are transmitted via internet, but without
presenting any experimental results. Also, Hallenborg and De-
mazeau (2006) present a multi-agent approach for the control

software of a DCV-based baggage handling system. However,
this multi-agent system is faced with major challenges due to
the extensive communication required. The goal of our work is
to develop and compare efficient control approaches for route
choice control of each DCV on the track network.

Theoretically, the maximum performance of such a DCV-based
baggage handling systems would be obtained if one computes
the optimal routes using optimal control (Lewis, 1986). How-
ever, as shown by Tarău et al. (2008), this control method
becomes intractable in practice due to the heavy computation
burden. Therefore, in order to make a trade-off between com-
putational effort and optimality, in (Tarău et al., 2009), we
have also implemented centralized and decentralized model
predictive control (MPC), and also a decentralized heuristic
approach. As the results confirmed, centralized MPC requires
high computation time to determine a solution. The use of
decentralized control lowers the computation time, but at the
cost of suboptimality.

In this paper we investigate whether the computational effort
required for computing the route of each DCV by using MPC
can be lowered even more by using mixed integer linear pro-
gramming (MILP). The large computation time obtained in
previous work comes from solving the nonlinear, nonconvex,
mixed integer optimization problems. Note that such problems
may also have multiple local minima and are NP hard, and
therefore, difficult to solve. So, in this paper we rewrite the
route choice problem as an MILP problem for which efficient
solvers are available. The solution of this MILP can then be



used as an initial starting point for the original nonlinear opti-
mization problem.

The paper is organized as follows. Section 2 briefly introduces
the concepts of MPC that will be later on used in solving
the route choice problem. In Section 3, we briefly recapitulate
an event-driven route choice model that we have developed
(Tarău et al., 2008). Afterwards, in Section 4 we approximate
the model by using MILP equivalences. Both the nonlinear
and MILP model are then used to determine the route of
DCVs using MPC. The analysis of the simulation results and
the comparison of the proposed formulations are elaborated
in Section 6. Finally, Section 7 draws the conclusions for the
paper.

2. BACKGROUND

Since later on we will use model predictive control (MPC) for
determining the routes of the DCVs in the network, in this
section we briefly introduce the basic MPC concepts.

MPC is an on-line model-based predictive control design
method (Maciejowski, 2002) that uses a receding horizon prin-
ciple. As illustrated in Fig. 1, in the basic MPC approach, given
a horizon N, at step k ≥ 0, where k is integer valued, corre-
sponding to the time instant tk = kTs with Ts the sampling time,
the future control sequence u(k),u(k + 1), . . . ,u(k +N − 1) is
computed by solving a discrete-time optimization problem over
the period [tk, tk+NTs] so that a performance index defined over
the considered period [tk, tk +NTs] is optimized subject to the
operational constraints. After computing the optimal control
sequence, only the first control sample is implemented, and
subsequently the horizon is shifted. Next, the new state of
the system is measured or estimated, and a new optimization
problem at time tk+1 is solved using this new information. In
this way, a feedback mechanism is introduced.

past future

horizon
kkk ++ N1

u

u(k)

u(k+1) u(k+N −1)

Fig. 1. Prediction horizon in MPC.

3. MODELS

3.1 System description and original model

In this section we briefly recapitulate the event-driven route
choice model of a baggage handling system that we have
developed in (Tarău et al., 2008).

The DCV-based baggage handling system operates as follows:
given a demand of bags and the network of tracks, the route of
each DCV (from a given loading station to the corresponding
unloading station) has to be computed subject to operational
and safety constraints such that the performance of the system
is optimized.

The model of the baggage handling system we have developed
in (Tarău et al., 2008) consists of a continuous part describing
the movement of the individual vehicles transporting the bags
through the network, and of the following discrete events:
loading a new bag onto a DCV, unloading a bag that arrives at
its end point, updating the position of the switches into and out
of a junction, and updating the speed of a DCV. The state of the
system consists of the positions of the DCVs in the network and
the positions of each switch of the network. According to the
discrete-event model of (Tarău et al., 2008), as long as there are
bags to be handled, given the current state, the system evolves
as follows: we shift the current time to the next event time, take
the appropriate action, and update the state of the system.

The operational constraints derived from the mechanical and
design limitations of the system are the following: the speed
of each DCV is bounded between 0 and vmax, while a switch
at a junction has to wait at least Ts time units between two
consecutive switches in order to avoid the quick and repeated
back and forth movements of the switch which may lead to
mechanical damage.

3.2 Simplified route choice model

Network We represent the mini railway network that DCVs
use to transport the luggage as a directed graph. Then the
nodes via which the DCVs enter the network are called loading
stations, the nodes via which the DCVs unload the transported
bags are called unloading stations, while all other nodes in
the network are called junctions. The section of track between
two nodes is called track segment (or link). For each track
segment a free-flow travel time is assigned. This free-flow travel
time represents the time period that a DCV requires to travel
through a track segment in case of no congestion, using, hence,
maximum speed. In order to simplify the explanation of our
approach we assume that the free-flow travel time of a link is
always a multiple of Ts.

We assume without loss of generality that in our network
each junction has maximum two incoming and maximum two
outgoing links indexed by l ∈ {0,1} as illustrated in Fig. 2.
This assumption of a network corresponds to current practice
in state-of-the-art baggage handling systems.

Extra model assumptions In order to transform the route
choice problem into an MILP problem, we first simplify it by
assuming the following:

• We only determine the position of the switches out of
junctions. We do not control the position of the switches
into junctions. For these switches we assume that low-
level controllers are installed to toggle the position such
that a DCV can enter the junction as soon as possible. This
assumption lowers the computational complexity. Note
however that an extension to also controlling the switch
into the junction is straightforward.

link 0

link 0

link 1

link 1

Fig. 2. Incoming and outgoing links at a junction. Both switches
are positioned on link 1.
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Fig. 3. Demand profile.

• The DCVs run with maximum speed along the track
segment and, if necessary, they wait before crossing the
junction in a vertical queue.

• The dynamic demand Di of loading station Li, i ∈
{1, . . . ,L}, where L is the number of loading stations, is
approximated with a piecewise constant demand as illus-
trated in Fig. 3. The piecewise constant demand Di has
level changes occurring only at integer multiples of Ts.
This is necessary in order to easily combine the time when
a bag reaches a queue at a junction with the time when the
demand changes. So, in the time interval [tk, tk+1), with
tk = kTs, the demand is Di(k).

Simplified model In order to illustrate the derivation of the
route choice model let us now consider the most complex cell a
network can contain, which is depicted in Fig. 4 where junction
Sr has two neighboring junctions Ss and Sp connected via its
incoming links.

Next we present how the evolution of the queue length at
junction Sr is determined.

The control time step for each junction in the network is Ts.
So, at each step k ≥ 0 the control actions us(k) and up(k) are
computed for junctions Ss and Sp. A control action at step k
corresponds to the position of the switch on the outgoing link 0
or 1 of a junction during the period [tk, tk+1). So, at step k each
of the control signals us(k) and up(k) is either 0 or 1.

Let qr(k) denote the length of the queue at junction Sr at time
step k. Recall that each link in the network has been assigned
a given free-flow travel time. Let us denote the link between
two nodes a and b as a → b. Then, as illustrated in Fig. 4, the
free-flow of the link Ss → Sr is Tsr and the free-flow of the
link Sp → Sr is Tpr. Hence, the control signals us(k) and up(k)

influence qr after
Tsr

Ts
and respectively

Tpr

Ts
time steps.

The evolution of queue qr, the length of which is always greater
than or equal to 0, is given by:

qr(k+1) = max
(

0, fr(k)
)

(1)

where fr(k) is defined as:

fr(k) = qr(k)+
(

Ir(k)−Omax

)

Ts

ld1

ld0

Ss

Sr

Sp

Tsr Tpr

link 0

link 0
link 0

link 1

link 1

link 1

Fig. 4. Network elements.

with Ir(k) denoting the number of vehicles that enter junction
Sr or the vertical queue at Sr during the period [tk, tk+1) and

Omax the maximum outflow 1 of a junction.

The variable Ir(k) is defined as follows:

Ir(k) =us(k−
Tsr

Ts
)Os(k−

Tsr

Ts
)+

(

1−up(k−
Tpr

Ts
)
)

Op(k−
Tpr

Ts
) (2)

where Os(k) and Op(k) are the outflow of junction Ss and
respectively Sp during [tk, tk+1). If k < 0, then O j(k) is equal
to 0 by definition.

The term us(k)Os(k) represents the inflow 2 of the link Ss → Sr

at step k due to the control action us(k). So, if us(k) = 0 the
inflow of the link Ss → Sr at step k is 0. Similarly, the term
(

1−up(k)
)

Op(k) represents inflow of the link Sp → Sr at step

k. Note that, in (2), these terms appear with a delay of
Tsr

Ts
and

respectively
Tpr

Ts
time steps due to the free-flow of links Ss → Sr

and respectively Sp → Sr.

For k ≥ 0 the outflow O j(k) with j ∈ {s, p}, is defined as:

O j(k) = min

(

Omax,
q j(k)

Ts
+ I j(k)

)

(3)

4. MIXED INTEGER LINEAR PROGRAMMING

In this section we transform the model presented above using
mixed integer linear programming (MILP) theory.

4.1 Background

To remove the nonlinearities of (1)-(3) we will use the follow-
ing equivalences, see (Bemporad and Morari, 1999), where f
is a function defined on a bounded set X with upper and lower
bounds M and m for the function values, δ is a binary valued
scalar variable, y is a real valued scalar variable, and ε is a small
tolerance (typically the machine precision):

P1: [ f (x)6 0] ⇐⇒ [δ = 1] is true if and only if
{

f (x)6 M(1−δ )
f (x)> ε +(m− ε)δ ,

P2: y = δ f (x) is equivalent to










y 6 Mδ
y > mδ
y 6 f (x)−m(1−δ )
y > f (x)−M(1−δ ) .

The tolerance ε is needed to transform a constraint of the
form y > 0 into y ≥ 0, since in MILP problems only nonstrict
inequalities are allowed.

4.2 MILP model

In this section we use the MILP properties presented above in
order to obtain an MILP model for the simplified route choice
model given by equations (1)-(3).

1 The outflow of a junction is defined as the number of vehicles that cross that

junction per time unit.
2 The inflow of a link equals the number of vehicles that entered that link per

time unit.



We start by transforming (3) using Property P1. So, we intro-
duce the binary variable δ out

j (k) with j ∈ {s, p} which equals

1 if and only if Omax ≤
q j(k)

Ts
+ I j(k). Then we rewrite (3) as

follows:

O j(k) = δ out
j (k)Omax +

(

1−δ out
j (k)

)(q j(k)

Ts
+ I j(k)

)

(4)

where the condition δ out = 1 if and only if Omax −
q j(k)

Ts
−

I j(k)≤ 0 is equivalent to (conform Property P1):










q j(k)

Ts
+ I j(k)≥ Omaxδ out

j (k)

Omax −
q j(k)

Ts
− I j(k)≥ ε +(Omax −qmax − Imax − ε)δ out

j (k)

with qmax the maximum possible length of the queue and Imax

the maximum possible value for I j with j ∈ {s, p}.

But (4) is not yet linear, so, we use Property P2 and introduce
the real-valued scalar variable y

queue
j (k) such that:

y
queue
j (k) = δ out

j (k)q j(k)

or equivalently:














y
queue
j (k)6 qmaxδ out

j (k)

y
queue
j (k)> 0

y
queue
j (k)6 q j(k)

y
queue
j (k)> q j(k)−qmax(1−δ out

j (k)) .

and the real-valued scalar variable yinflow
j (k) such that:

yinflow
j (k) = δ out

j (k)I j(k)

or its equivalent set of inequalities of Property P2 for f (x) =
I j(k), M = Imax, and m = 0.

Hence, one obtains:

O j(k)= δ out
j (k)Omax+

1

Ts
q j(k)+I j(k)−

1

Ts
y

queue
j (k)−yinflow

j (k)

which is linear.

Now, in order to transform (2), we introduce the extra vari-
ables yus(k) = us(k)Os(k) and yup(k) = up(k)Op(k) and the
corresponding set of linear inequalities of Property P2 for
f (x) = Os(k) and respectively f (x) = Op(k), with M = Omax,
and m = 0, and we obtain the linear equation:

Ir(k) =yus(k−
Tsr

Ts
)+Op(k−

Tpr

Ts
)− yup(k−

Tpr

Ts
) (5)

Finally, we want to transform (1). So, we introduce the binary
variable δr(k) which equals 1 if and only if fr(k) ≤ 0 and we
rewrite (1) as:

qr(k+1) =
(

1−δr(k)
)

fr(k)) (6)

together with the set of linear inequalities of Property P1 for
M = qmax +OmaxTs and m =−OmaxTs.

However (6) is not yet linear. Therefore, we introduce an
additional variable yr(k) = δr(k) fr(k) and the set of linear
inequalities of Property P2 for f (x) = fr(k), M = qmax +
OmaxTs, and m =−OmaxTs, and we obtain:

qr(k+1) = fr(k)− yr(k) (7)

which is linear.

If we now collect all the variables for the model (i.e. qr(k),
fr(k), Ir(k), yr(k), yus(k), yup(k), y

queue
s (k), yinflow

s (k), y
queue
p (k),

kTs (k+1)Ts
t

q j

(a)

kTs (k+1)Ts
t

q j

(b)

Fig. 5. Two situations for queue evolution.

yinflow
p (k), us(k), up(k), δr(k), δ out

s (k), δ out
p (k)) in one vector

v(k), we can express qr(k+1) as an affine function of v(k):

qr(k+1) = av(k)+b

with a vector properly defined a and a scalar b, where v(k)
satisfies a system of linear equations Cv(k) = e and linear
inequalities Fv(k) ≤ g, system which corresponds to the lin-
ear equations and constraints introduced above by the MILP
transformations.

5. MODEL PREDICTIVE ROUTE CHOICE CONTROL

In this section we define the MPC optimization problem for
both the nonlinear and the MILP case.

Recall that we want to assess the performance of MPC when
using the original nonlinear model and when using the ap-
proximated MILP model. Therefore, the performance index
should be linear or piecewise affine. In this paper we consider
minimizing the total time spent in the queue for a network
with S junctions. This performance index has been considered
since the time spent in the queue τ

queue
j at a junction S j, with

j ∈ {1,2, . . . ,S}, can be approximated to a linear one, see e.g.
(van den Berg et al., 2008) for road traffic. However, note that
the piecewise affine performance index used in (Tarău et al.,
2009) can also be used after linearizing it using the MILP
equivalences presented above.

When the length of a queue decreases during the sampling
period Ts, we deal with the two situations sketched in Fig. 5
where at step k + 1 either the queue length q j(k + 1) > 0 or
where q j becomes 0 before step k+1. Note that in this second
case if the queue vanishes before step k+1, then q j stays equal
to 0 at least until t ≥ (k+ 1)Ts since Ts is the sampling period,
and both the demand and the control action are piecewise
affine. Then, as in De Schutter (2002), we approximate the
gray area under the curve of Fig. 5(b) with the dashed area

A j(k) =
1
2
(q j(k)+q j(k+1))Ts, a formula which holds also for

Fig. 5(a). Then, the total time that the DCVs traveling toward
junction S j spend in the queue at junction S j from the beginning
of the simulation (step 0) until the last predicted time instant
(step k+N −1) is given by:

τ
queue
j,k,N =

k+N−1

∑
i=0

A j(i)

OmaxTs
(8)

Let Jk,N =
S

∑
j=1

w jτ
queue
j,k,N denote the performance index at step k,

for a prediction horizon N, where w j is a weighting parameter
that represents the penalization of DCVs waiting at junction S j.

Then the nonlinear MPC optimization problem is defined as:

min
u(k)

Jk,N(u(k))



subject to
the system dynamics
operational constraints

where u(k) = [u(k)u(k + 1) . . . u(k + N − 1)]T with u(k) =
[u1(k)u2(k) . . . uS(k)]

T, while the time spent in the queue is
determined via simulation.

In order to solve this mixed integer nonlinear optimization
problem above one could use e.g. genetic algorithms, simulated
annealing, or tabu search see e.g. Reeves and Rowe (2002),
Dowsland (1993), and Glover and Laguna (1997).

Similarly, the linear MILP MPC optimization problem is de-
fined as:

min
v(k)

Jk,N(v(k))

subject to
MILP model
operational constraints

where v(k) = [v(k)v(k + 1) . . . v(k +N − 1)]T, while the time
spent in the queue is computed using (8).

To solve the MILP optimization problem one could use solvers
such as CPLEX, Xpress-MP, GLPK, see e.g. (Atamtürk and
Savelsbergh, 2005).

We expect that computing the route for each DCV in the
network when solving the nonlinear optimization problem will
give better performance than when solving the approximated
MILP, but at the cost of much higher computational efforts.
So, one could use MILP to compute a good initial point for
the nonlinear optimization problem and this would reduce the
computation time.

6. CASE STUDY

We consider as benchmark case study the network depicted in
Fig. 6. This network consists of four loading stations and one
unloading station connected via single direction track segments,
where the free-flow travel time is provided for each link.

L1

L2 L3

L4

S1

S2

S3

S4

3Ts
6Ts

2Ts 2Ts

7Ts

4Ts

5Ts
6Ts

3Ts

link 0 link 1

U1

Fig. 6. Case study for a DCV-based baggage handling system.

Then the evolution of queue q j, for j = 1,2,3,4 is given by:

q j(k+1) = max
(

0, f j(k)
)

where f j(k) is defined as follows:

f1(k) = q1(k)+(D1(k−3)+
(

1−u2(k−6)
)

O2(k−6)−
Omax)Ts

f2(k) = q2(k)+(D2(k−2)+D3(k−2)−Omax)Ts

demanddemanddemand

tt t

TloadTloadTload

a) b) c)

Fig. 7. Demand profile.

f3(k) = q3(k)+(D4(k−4)+u2(k−7)O2(k−7)−Omax)Ts

f4(k) = q4(k)+(O1(k−5)+O3(k−6)−Omax)Ts

To compare the results we have considered 18 scenarios where
460 bags have to be handled for different initial states of
the system, queues on different links, and different weighting
parameters. For these scenarios we consider that the bags arrive
at loading stations according to the three different classes of
demand profiles sketched in Fig. 7, where Tload is the total
loading time.

Let us now compare the results obtained when using the pro-
posed predictive control method with different formulations of
the optimization problem.

To solve the original mixed integer nonlinear MPC optimization
problem we have chosen a genetic algorithm with multiple
runs since simulations show that this optimization technique
gives good performance with the shortest computation time.
For solving the MILP optimization we have used the CPLEX
solver. As prediction horizon we have considered N = 10 for
all MPC optimization problems. Note that we have chosen this
horizon since simulations show that this value gives acceptable
computational effort and performance index for all problem
formulations.

Based on simulations we now compare, for the given scenarios,
the results obtained for the proposed formulations of the opti-
mization problem. The results of the simulations are reported in
Fig. 8 where the total performance of the system is defined as

J =
S

∑
j=1

∑
i∈Λ

w jτ
queue
i, j , with Λ the set of bags that wait at junction

S j during the simulation, and τ
queue
i, j the real time that bag i

spends in the queue at junction j while being transported to its
corresponding end point. These results confirm that computing
the route choice using the original nonlinear formulation for the
MPC optimization problem gives typically better performance
than using the MILP formulation, but at the cost of higher
computational effort. However, it can be noted that for some
scenarios, the use of MILP formulation results in better perfor-
mance. This happens due to the fact that the prediction horizon
is not sufficiently large. But, increasing the prediction horizon
will result in increasing the computational effort even more.

Recall that we have used a genetic algorithm for solving the
original nonlinear MPC optimization problem. But, genetic
algorithms do not allow a given initial guess, therefore, to
further reduce the computational effort, at each MPC step,
we have solved the MILP optimization problem and we have
used this solution as a feasible initial guess for computing a
solution of the original nonlinear MPC problem with simulated
annealing. As illustrated in Fig. 8, the results confirm that this
last method offers a good trade-off between performance and
computational effort.
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Fig. 8. Comparison of the proposed approaches.

7. CONCLUSIONS

In this paper we have considered the problem of efficiently
computing routes for destination coded vehicle (DCV) that
transport bags in an airport on a “mini” railway network. This
is a nonlinear, nonconvex, mixed integer optimization problem,
and very expensive to solve in terms of computational effort.
Therefore, we have used an alternative approach for reducing
the complexity of the computations by simplifying and approx-
imating the nonlinear optimization problem by a mixed integer
linear programming (MILP) problem. The advantage is that for
MILP optimization problems the global optimal solution can be
efficiently computed with available solvers. These two formu-
lations of the optimization problem have been used to compute
the route of DCVs using model predictive control (MPC) for a
benchmark case study.

Simulation results confirm that computing the route choice
using the original nonlinear formulation for the MPC opti-
mization problem gives usually better performance than using
the MILP formulation, but at the cost of significantly higher
computational efforts. To reduce the computation time while
obtaining good results, one can solve the original MPC opti-
mization problem, but using at each step the local solution of
the corresponding MILP formulation as initial guess.

In future work we will apply this method to more complex case
studies where we will also consider controlling the switch into
junctions.
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