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Abstract: Modern baggage handling processes in airports use destination coded vehicles (DCVs) to
transport the luggage at high speeds. These vehicles transport the bags on a “mini” railway network. In
order optimize the performance of a DCV-based baggage handling system, the route of each DCV has
to be determined. In this paper we consider an event-based model of this system. For routing the DCVs
through the network we propose decentralized control methods that independently compute local control
actions viz. decentralized model predictive control (MPC) and decentralized heuristic approaches. The
considered control methods are compared for several scenarios. Results indicate that decentralized MPC
can be used to suboptimally solve the problem. Moreover, the decentralized heuristic approaches usually
give worse results than those obtained when using decentralized MPC, but on the other hand they require
very low computation time.

Keywords: Baggage handling systems, decentralized route choice control, discrete-event simulation.

1. INTRODUCTION

The increasing need for reductions of costs of the air transport
industry and the rise of low-cost carriers require a cost effec-
tive operation of the airports. The state-of-the-art technology
used in a baggage handling system to transport the bags in an
automated way incorporates scanners that scan the labels on
each piece of luggage, baggage screening equipment for secu-
rity scanning, networks of conveyors equipped with junctions
that route the bags through the system, and destination coded
vehicles (DCVs). As illustrated in Figure 1, a DCV is a metal
cart with a plastic tub on top. These carts transport the bags at
high speed on a “mini” railway network.

Buffer with
empty DCVs

Fig. 1. Loading a DCV.

The first objective of a baggage handling system is to transport
all the checked-in or transfer bags to the corresponding end
points before the planes have to be loaded. However, due to the
airport’s logistics, an end point is allocated to a plane only with
a given amount of time before the plane’s departure. Hence, the
baggage handling system performs optimally if each of the bags
to be handled arrives at its given end point within a specific time
window.

In this paper we consider a DCV-based baggage handling
system. Higher-level control problems are route assignment for
each bag (and implicitly the switch control of each junction),
line balancing (route assignment for each empty DCV such
that all the loading stations have enough empty DCVs at any
time instant), and prevention of buffer overflows. The low-level
control problems of this system are velocity control of each
DCV, coordination and synchronization when loading a bag
onto a DCV, in order to avoid damaging the bags or blocking the
system, and when unloading it to the corresponding end point.
Controllers that solve these low-level problems are assumed to
be present in the system.

We consider higher-level control problems. In particular, in this
paper we focus on the route choice of DCVs that transport the
bags. In the literature, the route assignment problem has been
addressed by e.g. Gang et al. (1996), Kaufman et al. (1998).
But, in our case we do not deal with a shortest-path or shortest-
time problem, since we need the bags at their corresponding end
point within a given time window. Centralized control methods
for a DCV-based baggage handling system require large com-
putational effort see e.g. (Tarău et al., 2008). Therefore, the goal
of this paper is to develop and compare efficient decentralized
approaches for controlling the route choice of the DCVs.

The paper is organized as follows. In Section 2, an event-
driven model of the system is briefly presented. Afterwards, in
Section 3 and Section 4, we propose several control methods
to determine the route of each DCV in a decentralized man-
ner. The proposed control methods are: decentralized model
predictive control and two decentralized heuristic approaches.
The analysis of the simulation results and the comparison of the
proposed control methods are elaborated in Section 5. Finally,
the conclusions for this paper are drawn in Section 6.
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Fig. 2. Baggage handling system using DCVs.

2. SYSTEM DESCRIPTION AND MODEL

We use the general DCV-based baggage handling system
sketched in Figure 2. This system operates as follows: given a
demand of bags (identified by their unique code) together with
their arrival times at the loading stations, and the network of
tracks, the route of each DCV (from a given loading station
to the corresponding unloading station) has to be computed
such that the performance of the system is optimized subject to
operational and safety constraints. We assume that the velocity
of each DCV is always at its maximum unless overruled by the
local on-board collision avoidance controller. These on-board
collision avoidance controllers ensure a minimum safe distance
between DCVs and also hold DCVs at switching points, if
required.

We assume that there is a sufficient number of DCVs present
in the system so that when a bag is at the loading station there
is always a DCV ready to transport it. Also, we consider that
the capacity of the end points is large enough that no buffer
overflow can occur.

In (Tarău et al., 2008) we have developed an event driven
model of the DCV-based baggage handling system. This model
consists of a continuous part describing the movement of the
individual vehicles transporting the bags through the network,
and of the following discrete events: loading a new bag onto a
DCV, unloading a bag that arrives at its end point, updating the
position of the switch going into a junction (called switch-in
hereafter) and the position of a switch going out of a junction
(called switch-out hereafter), and updating the speed of a DCV.
For details we refer to (Tarău et al., 2008).

The operational constraints are derived from the mechanical
and design limitations e.g. the position of a switch at a junction
can only change after minimum τx time units in order to avoid
the quick and repeated back and forth movements of the switch,
which may lead to mechanical damage.

As shown by Tarău et al. (2008), centralized approaches to
determine the optimal route of the DCVs become intractable in
practice due to the large computational effort required. There-
fore, in order to lower the computational effort, in the sequel
we propose decentralized approaches to control the route of the
DCVs such as decentralized model predictive control and fast
heuristic approaches.

3. DECENTRALIZED MODEL PREDICTIVE CONTROL

Model predictive control (MPC) is an on-line model-based
control design method that uses the receding horizon principle
Maciejowski (2002). This control approach can be used for
DCV-based baggage handling systems, see.(Tarău et al., 2008).
In this section we define the local MPC problem.

link 0 link 1

(a) switch-in

link 0 link 1

(b) switch-out

Fig. 3. Incoming and outgoing links at a junction. The switch-in
and switch-out are positioned on link 1.

3.1 Local system boundaries

In decentralized MPC we consider local systems, each con-
sisting of a junction Ss with s ∈ {1,2, . . . ,S}, its incoming
and its outgoing links. Note that without loss of generality we
can assume that each junction has maximum 2 incoming links
and maximum 2 outgoing links, both indexed by l ∈ {0,1} as
sketched in Figure 3. For the sake of simplicity of notation,
in the remainder of this section, we will not explicitly indicate
the subscript s for variables that refer to junction Ss since we
refer to one junction only. For all the other junctions, the same
procedure is applied.

3.2 Local control measures

In contrast to basic MPC, we do not use a time index, but a bag
index. So, we index the bags that successively cross a junction
Ss during the entire simulation period as b1,b2, . . . ,bNbags

, where

Nbags is the number of bags that cross Ss during the simulation
period.

In this section we control the positions of the switch-in and
switch-out of junction Ss for each bag that crosses Ss. The local
control will be updated every time some bag has just crossed a
junction. Let tcrt denote a time instant at which the local controls
are updated. For junction Ss we now determine bag step k such
that tcross,k ≤ tcrt < tcross,k+1, where tcross,k is defined as the time
instant when bag bk has just crossed the junction.

The local optimization is performed over the next N ≤ Nbags

bags that pass junction Ss after bag step k. By solving this local
optimization problem we compute the control sequence u(k) =
[usw in(k+1) . . . usw in(k+N)usw out(k+1) . . . usw out(k+N)]T

corresponding to the next N bags bk+1,bk+2, . . . ,bk+N that
will cross the junction. The control decisions usw in(k +
1), . . . ,usw in(k+N) of the switch into Ss determine the order
in which the bags cross the junction and the corresponding time
instants at which the bags bk+1, . . . ,bk+N enter Ss. The control
decisions usw out(k + 1), . . . ,usw out(k +N) determine the next
junction towards which the bags bk+1, . . . ,bk+N will travel.

3.3 Local objective function

When solving the local MPC optimization problem, we will use
a local objective function JDMPC,N . The local objective function
is computed via a simulation of the local system for the next N
bags that will cross the junction. This computation is performed
as follows. We first define the performance index Jpen,bk+ j

for

bag bk+ j, j = 1,2, . . . ,N. This performance index penalizes the
overdue time and the additional storage time:
Jpen,bk+ j

(tunload,bk+ j
) =

σbk+ j
max(0, tunload,bk+ j

− tload plane,bk+ j
)+

λ1 max(0, tload plane,bk+ j
−θmax storage,bk+ j

− tunload,bk+ j
)

where



• tunload,bk+ j
is the time instant when bag bk+ j is unloaded at

its corresponding end point;
• tload plane,bk+ j

is the time instant when the end point closes;

• σbk+ j
≥ 1 is the static priority of bag bk+ j (e.g. a measure

of the priority of the flight);
• θmax storage,bk+ j

is the maximum possible length of the time

window for which the end point of bag bk+ j is open for
that specific flight;

• λ1 ≤ 1 is a weighting parameter that represents the relative
cost between buying additional storage space at the end
points and the cost of customers that have their baggage
delayed.

Note that the above performance function has some flat parts,
which yields difficulties for optimization algorithms that use
gradient information. To get some additional gradient we also
include the dwell time (the time that the bag spends on the track
network), resulting in:

Jbk+ j
(tunload,bk+ j

) = Jpen,bk+ j
(tunload,bk+ j

)+λ2tdwell,bk+ j

where λ2 is a small weighting factor (λ2 < λ1).

Then the local objective function JDMPC,N(u(k)) is defined as:

JDMPC,N(u(k)) =
N

∑
j=1

Jbk+ j
(t̂∗unload,bk+ j

)

where t̂∗unload,bk+ j
is the predicted unloading time instant of bag

bk+ j. Next we present how the predicted unloading time instant
is computed.

3.4 Prediction model

Our local prediction model is an even driven model for the local
system where for each outgoing link l ∈ {0,1} we consider a
fixed release rate during the prediction period. The computation
of a fixed link release rate is required due to the fact that we
use a local simulation as prediction. Next we present how we
calculate the release rate of a link given the state of the local
system at tcrt. Let nl denote the number of DCVs that left the
outgoing link l within the time window [tcrt − τq, tcrt] of length

τq time units. Then, if 1 tcrt ≥ τq, the fixed release rate of link
l that will be used during the entire prediction period at bag

step k is given by ζl =
nl

τq
. Otherwise the release rate is at its

maximum.

Recall that usw out(k+ j) with j ∈ {1,2, . . . ,N} represents the
position of the switch-out when bag bk+ j will cross Ss, deter-
mining the next junction towards which bag bk+ j will travel.
Let Snext,l where l = usw out(k+ j) denote the junction that bag
bk+ j will cross next, and let Sdest,bk+ j

denote the corresponding

end point of bag bk+ j.

For each possible route r ∈ Rnext,bk+ j ,l , where Rnext,bk+ j ,l is the

set of routes from Snext,l to Sdest,bk+ j
, we predict the time when

bag bk+ j will arrive at Sdest,bk+ j
via route r as follows:

t̂unload,bk+ j ,l,r = t̂cross,bk+ j
+ τ̂link l,bk+ j

+ τ̂router (1)

where

1 We assume the initial time of the simulation to be equal to 0 time units.

• t̂cross,bk+ j
is the predicted time instant (computed by the

local prediction model) at which bag bk+ j crosses Ss.
• τ̂link l,bk+ j

is the time we predict that bag bk+ j spends on

link l out of Ss. For this estimation we take:

τ̂link l,bk+ j
= max

(

dlink l

vmax
,

NDCV,bk+ j ,l

ζl

)

where dlink l is the length of link, vmax is the maximal
speed of a DCV, and NDCV,bk+ j ,l is the number of DCVs

on the link at the time instant t̂cross,bk+ j
.

• τ̂router is the average travel time on route r ∈ Rnext,bk+ j ,l

for an average speed determined based on historical data.

Then the optimal predicted unloading time instant is defined as
follows:

t̂∗unload,bk+ j
= argmin

{t̂unload,bk+ j ,l,r
|r∈Rnext,bk+ j ,l

}

Jbk+ j
(t̂unload,bk+ j ,l,r).

3.5 Optimization problem

So, the decentralized MPC optimization problem at junction Ss

and bag step k is defined as follows:

min
u(k)

JDMPC,N(u(k))

subject to
the local prediction model
operational constraints

Since the optimization problem above involves integer vari-
ables, to solve it one could use integer optimization algorithms
such as genetic algorithms or tabu search see e.g. Reeves and
Rowe (2002); Glover and Laguna (1997).

The main advantage of decentralized MPC consists in a smaller
computation time than the one needed when using centralized
control due to the fact that we now compute in parallel the
solution of a smaller and simplified optimization problem.

4. HEURISTIC APPROACHES

In order to lower the computation time of solving the switch
control problem even more, in this section we propose two
decentralized heuristic approaches to control the route of each
DCV. In contrast to decentralized MPC, the heuristic ap-
proaches use a prediction horizon N = 1. Each switch is now
locally controlled based on heuristic rules as presented next.
We first consider the case where we determine the local switch
control based only on local information regarding the flow of
DCVs on the incoming and outgoing links of a junction. Let
this junction be called Ss with s∈ {1,2, . . . ,S}. Later on we also
consider the case where additional data is used viz. information
regarding the flow of DCVs on the incoming and outgoing links
of the neighboring junctions of Ss.

For the sake of simplicity of notation, we will not explicitly
include the subscript s in the remainder of this section since
we describe the control of the switch-in and switch-out for one
junction only.

4.1 Local information only

We now consider that the switch control is performed only
based on local information regarding the flow of DCVs on the
incoming and outgoing links of Ss.



Control of the switch-in For a junction Ss, we define the
following variables:

• Γl is the set of bags transported by DCVs that travel on the
incoming link l ∈ {0,1} of junction Ss at the time instant
tenter,l when a new bag enters the incoming link l;

• ρstatic
l is total static priority of link l, ρstatic

l = ∑
i∈Γl

σi;

• ρ
dyn
l is the total dynamic priority of link l,

ρ
dyn
l = ∑

i∈Γl

δ̂i

δmax,i
with δ̂i the estimate of the actual time

bag i requires to get from its current position to its final
destination in case of no congestion and maximum speed,
and δmax,i the maximum time left to bag i to spend in
the system while still arriving at the plane on time. If
bag i misses the flight, then the bag has to wait for
a new plane with the same destination. Hence, a new
departure time is assigned to bag i, and consequently a
new loading time tnew load plane,i for bag i is considered.
Then the variable δmax,i is defined as δmax,i = tload plane,i −
tenter,l if tload plane,i − tcrt > 0 and δmax,i = tnew load plane,i −
tenter,l if tload plane,i − tenter,l ≤ 0.

In order to determine the next position of the switch-in at
junction Ss we compute the performance measure psw in,l for
l = 0,1 every time a new bag enters the incoming link l. This
performance measure takes into account the static and dynamic
priorities of the bags transported by DCVs on the link l, and
the current position of the switch-in at junction Ss (due to
the operational constraint according to which the position of
a switch at a junction can only change after minimum τx time
units):

psw in,0 = wst prρ
static
0 +wdyn prρ

dyn
0 −wsw inτxIcrt

psw in,1 = wst prρ
static
1 +wdyn prρ

dyn
1 −wsw inτx(1− Icrt)

where Icrt denotes the current position of the switch-in at
junction Ss (i.e. Icrt = 0 if the switch-in is positioned on the
incoming link 0 and Icrt = 1 if the switch-in is positioned on the
incoming link 1). The weighting parameters wst pr, wdyn pr, and
wsw in can be calibrated as explained in Section 4.3.

Let zl ∈ Γl denote the bag closest to Ss on the incoming link
l. The variable dzl

denotes the distance between the current
position of bag zl and Ss and vzl

denotes the current speed of
the DCV transporting bag zl . Then we define the time period
τarrival at Ss,l that the DCV transporting bag zl needs to travel the
distance dzl

in case of no speed-update event as τarrival at Ss,l =
dzl

vzl

if dzl
> 0, and τarrival at Ss,l = 0 if dzl

= 0.

The position of the switch-in at Ss is toggled only if psw in,0 >

psw in,1 and Icrt = 1, or if psw in,1 > psw in,0 and Icrt = 0. If a
toggle has to take place, then the switch-in changes position
after τsw in,s = max(τx−τsw in prev,s,τarrival at Ss,1−Icrt

) time units
where τsw in prev,s is the time for which the switch-in at junction
Ss has been in its current position.

Control of the switch-out Every time when a bag is at junction
Ss we compute the variable τsw out which represents the time
period until the position of the switch-out has to be changed.
This goes as follows.

Assume that bag i is at junction Ss. Then, using (1), we can
predict the arrival time t̂unload,i,l,r of bag i at its corresponding
end point Sdest,i, when traveling on link l ∈ {0,1} out of Ss and
route r ∈ Rnext,i,l where Rnext,i,l is the set of routes from Snext,l

to Sdest,i.

Next we compute the cost criterion csw out,i,l for l = 0,1 that
takes into account Ji(t̂

∗
unload,i,l), where

t̂∗unload,i,l = argmin
{t̂unload,i,l,r |r∈Rnext,i,l}

Ji(t̂unload,i,l,r),

and the current position Ocrt of the outgoing switch:

csw out,i,0 = wpenJi(t̂
∗
unload,i,0)+wsw outτxOcrt

csw out,i,1 = wpenJi(t̂
∗
unload,i,1)+wsw outτx(1−Ocrt).

The weighting parameters wpen and wsw out can be calibrated as
explained in the Section 4.3.

The position of the switch-in at junction Ss is then toggled only
if csw out,i,0 < csw out,i,1 and Ocrt = 1, or if csw out,i,1 < csw out,i,0

and Ocrt = 0. If the toggle has to take place, then the current
position of the switch-out is changed after τsw out =max(0,τx−
τsw out prev) where τsw out prev,s is the time for which the switch-
out at junction Ss has been in its current position.

4.2 Additional information from neighbors

In the sequel of this section we develop an approach where the
switch control is performed based on both local information
and additional data regarding the flow of DCV on the incoming
and outgoing links of the neighboring junctions. This is an
extension of 4.1.

Control of the switch-in Additionally to the variables defined
in 4.1, for the junction Ss we define:

• Ωl is the set of bags transported at the time instant tenter,l

on the incoming links of the neighboring junction Sprev,l

that is linked to Ss via the incoming link l of Ss;

• ϕstatic
l is total static priority of the incoming links of

junction Sprev,l , defined as cl = ∑
i∈Ωl

σi;

• ϕ
dyn
l is the total dynamic priority of the incoming links of

Sprev,l , defined as dl = ∑
i∈Ωl

δ̂i

δmax,i
.

The time when junction Ss toggles its position is computed
as in the paragraph Control of the switch-in of Section 4.1.
The difference is that here we use the following performance
measures:

psw in,0 = wst prρ
static
0 +wdyn prρ

dyn
0 +wad(wst prϕ

static
0 +

wdyn prϕ
dyn
0 )−wsw inτxIcrt

psw in,1 = wst prρ
static
1 +wdyn prρ

dyn
1 +wad(wst prϕ

static
1 +

wdyn prϕ
dyn
1 )−wsw inτx(1− Icrt).

The additional weighting parameter wad represents the influ-
ence of the additional information on the performance index
psw in,l , for l = 0,1. This weighting parameter is calibrated as
explained in Subsection 4.3.

Control of the switch-out The position of the switch-out of
junction Ss is computed similarly to Section 4.1. However, in
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Fig. 4. Relevant neighbors of Ss.

this case, when computing the predicted objective function for
link l = 0,1 and bag i, we do not look only at the congestion
on the outgoing links of junction Ss, but also at the congestion
on the outgoing links of Snext,l (where Snext,l is the neighboring
junction of Ss connected via the outgoing link l of Ss).

As sketched in Figure 4, let Snext,l,m for m = 0,1 denote the
neighboring junction of Snext,l connected via link m out of
Snext,l . Also, let Nnew DCV,i,l,m denote the number of DCVs on
link l out of Ss that will choose link m out of Snext,l . We assume
that for a junction Snext,l , l ∈ {0,1} with 2 outgoing links, half
of the DCVs traveling from Ss to Snext,l take link m = 0 out of
Snext,l , and the other half take link m = 1. Then

τ̂link l,m,i = max

(

dlink l,m

vmax
,

NDCV,i,l,m +Nnew DCV,i,l,m

ζl,m

)

is the

time period that bag i needs to travel link m out of Snext,l

considering the release rate ζl,m of link m out of Snext,l , where
dlink l,m is the length of the link m out of Snext,l and NDCV,i,l,m is
the number of DCVs on this link at the time instant when bag i
crosses junction Ss.

Let Rnext,i,l,m with l ∈ {0,1} and m ∈ {0,1} denote the set of
routes from junction Snext,l,m to Sdest,i. In this case, for each
route r ∈ Rnext,i,l,m we predict the time t̂unload,i,l,m,r when bag i
will reach Sdest,i if the bag takes link l out of Ss, link m out of
Snext,l , and route r. This time is given by:

t̂unload,i,l,m,r = tcross Ss,i + τ̂link l,i + τ̂link l,m,i + τ̂router

where tcross Ss,i is the time instant when bag i crosses junction
Ss, τ̂travel link l,i is the time we predict that bag i will spend on
link l out of Ss, and τ̂router is the average travel time on route r
for an average speed empirically determined.

Finally, in computing the cost criterion csw out,i,l for l = 0,1
defined in Section 4.1 we use Ji(t̂

∗
unload,i,l) where t̂∗unload,i,l is the

predicted unloading time that optimizes the performance index
of bag i when choosing link m ∈ {0,1} out of Snext,l , and route
r ∈ Rnext,i,l,m:

t̂∗unload,i,l = argmin
{t̂unload,i,l,m,r |m∈{0,1}∧r∈Rnext,i,l,m}

Ji(t̂unload,i,l,m,r).

4.3 Calibration

The calibration of the weighting parameters presented in the
Sections 4.1 and 4.2 will be done by solving the following
optimization problem for a set of typical scenarios:

min
w

Nscenario

∑
j=1

J j,tot(w)

subject to
the system dynamics and control actions

depending on w
operational constraints

where w is [wst pr wdyn pr wpen wsw in wsw out]
T for 4.1, or [wst pr wdyn pr wpen wsw in wsw out

wad]
T for 4.2, Nscenario is the number of scenarios over which the
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Fig. 5. Case study for a DCV-based baggage handling system.

calibration is performed, and J j,tot is the total performance in-
dex corresponding to scenario j, j ∈{1,2, . . . ,Nscenario}. The to-
tal performance index of the DCV-based baggage handling sys-
tem for a given scenario is defined as Jtot = ∑i∈Λ Jpen,i(tunload,i),
where Λ is the set of bags to be handled during the entire
simulation.

The above optimization problem is nonlinear and nonconvex,
and has continuous variables. So, in order to solve this problem,
one could use global optimization algorithms such as multi-
start sequential quadratic programming, pattern search, sim-
ulated annealing algorithms, or multi-start genetic algorithms,
see e.g. (Pardalos and Resende, 2002).

5. CASE STUDY

In this section we compare the proposed control methods based
on a simulation example.

5.1 Set-up

We consider the network of tracks depicted in Figure 5 with 6
loading stations, 1 unloading station, and 10 junctions. We con-
sider this network because on the one hand it is simple, allowing
an intuitive understanding of and insight in the operation of the
system and the results of the control, and because on the other
hand, it also contains all the relevant elements of a real set-up.

We assume that the velocity of each DCV varies between
0 m/s and vmax = 20 m/s, being controlled by on-board collision
avoidance controllers. The lengths of the track segments are
indicated in Figure 5.

In order to faster assess the efficiency of our control method we
assume that we do not start with an empty network but with a
network already populated by DCVs transporting bags.

5.2 Scenarios for calibration and control

For the calibration of the weighting parameters we have defined
27 scenarios where 180 bags have to be handled.

We have considered typical scenarios with different classes of
demand profiles for each loading station, different initial states
of the system, queues on different links, and different time
criticality measures (e.g. cases where the transportation of the
bags is very tight, i.e. the last bag that enters the system can only



Table 1. Comparison of average performance of
the system and computation time for the proposed

control methods.

control Javg,control approach CPU time

approach (s) (s)

CMPC (N = 5) 1.79 ·103 1.59 ·105

DMPC (N = 5) 2.33 ·103 2.95 ·103

HR (local) 4.32 ·103 0.99

HR (more info) 3.46 ·103 2.17

arrive in time at the corresponding end point if the shortest path
is used and its DCV is continuously running with maximum
speed, or cases where the timing is more relaxed).

For comparing the control methods we have used the same
scenarios, but different samples of the demand profiles than
those considered for calibrating the weighting parameters w.

5.3 Results

To solve the local optimization problem of decentralized MPC
and the calibration problem of the heuristic approaches we
have chosen a genetic algorithm with multiple runs since ex-
periments indicate that this optimization technique gives good
performance, with the shortest computation time.

Based on simulations we now compare, for the same scenarios,
the proposed control methods. Let J j,control approach denote the
performance index of the baggage handling system correspond-
ing to scenario index j and the considered control approach.

In Table 1 we list the average results

Javg,control approach =
1

Nscenario

Nscenario

∑
j=1

J j,control approach

obtained when using centralized MPC, decentralized MPC, and
the decentralized heuristic approaches, where Nscenario is the
number of considered scenarios.

The results indicate that decentralized MPC involves a good
trade-off between computation time 2 and optimality, the per-
formance being influenced by the considered horizon. In Figure
6 we illustrate the dependence of the performance and computa-
tion time upon the prediction horizon N when using decentral-
ized MPC for a typical scenario. The simulations show that by
increasing the horizon the performance typically improves, but
at the cost of higher computation time. Moreover, the heuristic
approaches perform very fast, but, usually, the results are worse
than those obtained when using decentralized MPC.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have considered baggage handling processes
using destination coded vehicles (DCVs) that transport bags
at high speed on a “mini” railway network. In particular we
have considered the route choice control problem for each DCV
transporting bags on the track network. The best performance
of the system is obtained when using centralized switch control.
However, in practice, this approach is not tractable due to the
very high computational effort that centralized control methods
require to solve an optimization problem that is nonlinear, non-
convex, and with integer valued variables. Therefore, in this pa-
per, we have developed and compared approaches to control the
switches of the network (and implicitly the route for each DCV

2 The simulations were performed on a 3.0 GHz P4 with 1 GB RAM.
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Fig. 6. Dependence of the performance and CPU time upon the
prediction horizon for DMPC, for a typical scenario with
non tight timing.

transporting bags) in a decentralized way. Three approaches
have been proposed viz. decentralized model predictive con-
trol (MPC) and two heuristic approaches. Experiments indicate
that decentralized MPC can offer a good trade-off between the
optimality and the time required to compute the route for each
DCV. On the other hand, the heuristic approaches perform very
fast, but usually, the results are worse than those obtained when
using decentralized MPC.

In future work we will include coordination between the neigh-
boring junctions, and assess the benefits that can be obtained by
using such distributed control.
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