
Delft University of Technology
Delft Center for Systems and Control

Technical report 09-034

A distributed version of Han’s method for
DMPC of dynamically coupled systems

with coupled constraints∗

D. Doan, T. Keviczky, I. Necoara, M. Diehl, and B. De Schutter

If you want to cite this report, please use the following reference instead:
D. Doan, T. Keviczky, I. Necoara, M. Diehl, and B. De Schutter, “A distributed
version of Han’s method for DMPC of dynamically coupled systems with coupled
constraints,” Proceedings of the 1st IFAC Workshop on Estimation and Control of
Networked Systems (NecSys 2009), Venice, Italy, pp. 240–245, Sept. 2009. doi:10.
3182/20090924-3-IT-4005.00041

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/09_034.html

https://doi.org/10.3182/20090924-3-IT-4005.00041
https://doi.org/10.3182/20090924-3-IT-4005.00041
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/09_034.html


A Distributed Version of Han’s Method for

DMPC of Dynamically Coupled Systems

with Coupled Constraints ⋆

Dang Doan ∗ Tamás Keviczky ∗ Ion Necoara ∗∗

Moritz Diehl ∗∗∗ Bart De Schutter ∗

∗ Delft University of Technology, Delft, The Netherlands
(e-mail: {m.d.doan,t.keviczky}@tudelft.nl, b@deschutter.info)
∗∗ Politehnica University of Bucharest, Bucharest, Romania

(e-mail: i.necoara@ics.pub.ro)
∗∗∗ K.U.Leuven, Heverlee, Belgium

(e-mail: moritz.diehl@esat.kuleuven.be)

Abstract: Most of the literature on Distributed Model Predictive Control (DMPC) for
dynamically coupled linear systems typically focuses on situations where coupling constraints
between subsystems are absent. In order to address the presence of convex coupling constraints,
we present a distributed version of Han’s parallel algorithm for a class of convex programs.
The algorithm we propose relies on local iterative updates only, instead of using system-wide
information exchange as in Han’s original algorithm. The new algorithm is then used to develop
a new distributed MPC method that is applicable to sparsely coupled linear dynamical systems
with coupled linear constraints. Convergence to the global optimum, recursive feasibility, and
stability can be established using only local communications between the subsystems.

Keywords: distributed optimization and control, model predictive control, large-scale systems

1. INTRODUCTION

Model predictive control (MPC) (Maciejowski, 2002;
Mayne et al., 2000) is a very popular controller design
method in the process industry. A key advantage of MPC
is that it can accommodate hard constraints on the inputs,
states, and outputs of the controlled system. In essence,
MPC is an on-line receding-horizon control approach in
which a model is used to predict the future behavior of the
system and in which a cost criterion is optimized subject
to constraints on the inputs, states, and outputs.

For large-scale systems centralized MPC is considered to
be impractical, inflexible, and unsuitable due to its compu-
tational and information exchange requirements. In order
to deal with these limitations, distributed model predic-
tive control (DMPC) has been proposed, by decomposing
the overall system into small subsystems (Jia and Krogh,
2001; Camponogara et al., 2002; Rawlings and Stewart,
2008). The subsystems employ distinct MPC controllers
that solve local optimization problems, use local informa-
tion from neighboring subsystems only, and collaborate to
achieve globally attractive solutions.

Several classes of DMPC approaches can be distinguished.
Dunbar and Murray (2006) proposed a DMPC scheme for
systems with decoupled dynamics, focusing on multiple ve-
hicles with coupled cost functions, and utilizing predicted
trajectories of the neighbors in each subsystem’s optimiza-

⋆ Research supported by the European 7th framework STREP
project ”Hierarchical and distributed model predictive control (HD-
MPC)”, contract number INFSO-ICT-223854.

tion. A DMPC scheme with a sufficient stability test for
dynamically decoupled systems was proposed by Keviczky
et al. (2006), in which each subsystem optimizes also over
the behaviors of its neighbors. Richards and How (2007)
proposed a robust DMPC method for decoupled systems
with coupled constraints, based on constraint tightening
and a serial solution approach. For systems with coupled
dynamics and decoupled constraints Venkat et al. (2008)
proposed a distributed MPC scheme, based on a Jacobi
algorithm that deals with the primal problem, using a
convex combination of new and old solutions.

We propose a DMPC algorithm that is able to handle
linear time-invariant dynamics with linear dynamical cou-
plings and coupled linear constraints. Each local controller
will only need to communicate with its direct neighbors to
exchange predictions, which are iteratively updated by the
local controllers. The algorithm can be implemented using
only local communications, while guaranteeing global fea-
sibility and stability.

This paper is organized as follows. Section 2 describes the
setup of the problem. In Section 3, the centralized MPC
problem is formulated. The resulting optimization problem
can be solved using a parallel computing scheme based
on Han’s method, which is summarized in Section 4. The
main contribution of this paper is then presented in the
form of a distributed algorithm exploiting the structure
of the optimization problem for local communications,
followed by the proof of its equivalence to Han’s algorithm
in Section 5. As a consequence of this equivalence, the pro-
posed DMPC scheme using this distributed optimization



procedure achieves the global optimum upon convergence
and thus inherits feasibility and stability properties from
its centralized MPC counterpart.

2. PROBLEM DESCRIPTION

Consider a plant consisting of M subsystems. The dy-
namics of each subsystem are assumed to be influenced
directly by only a small number of other subsystems.
Moreover, each subsystem i is assumed to have local linear
coupled constraints involving only variables from a small
number of other subsystems. We define the neighborhood
of subsystem i, N i, as the set of indices of subsystem i
and the subsystems that have either a direct dynamical
or linear constraint coupling with subsystem i. In order to
benefit from an increased computational speed when using
a distributed algorithm, the couplings between subsystems
are assumed to be sparse, i.e., the size of each neighbor-
hood N i is relatively small in comparison with the total
number of subsystems M .

So we assume that each subsystem can be represented by
a discrete-time, linear time-invariant model of the form:

xi
k+1 =

∑

j∈N i

Aijxj
k +Bijuj

k, (1)

where xi
k ∈ R

ni

and ui
k ∈ R

mi

are the states and control
inputs of the i-th subsystem at time step k, respectively.

Moreover, each subsystem i is assumed to have local linear
coupled constraints involving only variables within its
neighborhood N i. Let N be the prediction horizon. All
constraints that subsystem i is involved in are written as

∑

j∈N i

N−1
∑

k=0

Dij
k xj

k + Eij
k uj

k = ceq (2)

∑

j∈N i

N−1
∑

k=0

D̄ij
k xj

k + Ēij
k uj

k ≤ c̄ineq (3)

3. CENTRALIZED MPC PROBLEM

We will formulate the centralized MPC problem for sys-
tems of the form (1) using a terminal point constraint
approach that imposes that all states are steered to 0 at
the end of the prediction horizon. Under the conditions
that a feasible solution of the centralized MPC problem
exists, and that the point with zero states and inputs is in
the relative interior of the constraint set, this MPC scheme
ensures feasibility and stability, as shown by Mayne et al.
(2000) and Keerthi and Gilbert (1988). We will further
assume without loss of generality that the initial time is 0.

3.1 Problem formulation

The optimization variable of the centralized MPC problem
is constructed as a stacked vector of predicted subsystem
control inputs and states over the prediction horizon:

x =
[

(

u1
0

)T
, . . . ,

(

uM
0

)T
, . . . ,

(

u1
N−1

)T
, . . . ,

(

uM
N−1

)T
,

(

x1
1

)T
, . . . ,

(

xM
1

)T
, . . . ,

(

x1
N

)T
, . . . ,

(

xM
N

)T
]T

(4)

Recall that N denotes the prediction horizon and that
ni and mi denote the numbers of states and inputs

of subsystem i. The size of x is thus equal to nx =

N
∑M

i=1 m
i +N

∑M

i=1 n
i.

The cost function of the centralized MPC problem is
assumed to be decoupled and convex quadratic:

J =

M
∑

i=1

N−1
∑

k=0

(

(

ui
k

)T
Riu

i
k +

(

xi
k+1

)T
Qix

i
k+1

)

(5)

with positive definite weights Ri, Qi. It is easy to verify
that this cost function can be rewritten as J = xTHx
where H is a block-diagonal, positive definite matrix.

The overall centralized MPC problem is then defined as:

min
x

xTHx (6)

s.t.

xi
k+1 =

∑

j∈N i

Aijxj
k +Bijuj

k,

i = 1, . . . ,M, k = 0, . . . , N − 1 (7)

xi
N = 0, i = 1, . . . ,M (8)

∑

j∈N i

N−1
∑

k=0

Dij
k xj

k + Eij
k uj

k = ceq, i = 1, . . . ,M (9)

∑

j∈N i

N−1
∑

k=0

D̄ij
k xj

k + Ēij
k uj

k ≤ c̄ineq, i = 1, . . . ,M (10)

3.2 Centralized optimization problem

We can rewrite the problem (6)–(10) in a compact form as

min
x

xTHx (11)

s.t. aTl x = bl, l = 1, . . . , neq

aTl x ≤ bl, l = neq + 1, . . . , s

with s = neq + nineq. Note that due to sparse couplings
between subsystems, al has very few non-zero elements.

4. HAN’S ALGORITHM

First, we summarize the main elements of Han’s method
(Han and Lou, 1988) for a class of convex programs,
followed by a simplified version for the case of definite
quadratic programs (QPs).

4.1 Han’s algorithm for general convex problems

The class of optimization problems tackled by Han’s
algorithm is defined as follows:

min
x

q(x) (12)

s.t. x ∈ C , C1 ∩ · · · ∩ Cs

where q(x) is uniformly convex and differentiable on R
nx

and where C1, · · · , Cs are closed convex sets and C 6= ∅.

Algorithm 1. Han’s method for convex programs
The algorithm is an iterative procedure. We use p as
iteration counter of the algorithm and a superscript (p)
to denote the values of variables computed at iteration p.

Let α be a sufficiently large numberand define y(0) =

y
(0)
1 = · · · = y

(0)
s = 0, with y(0),y

(0)
l ∈ R

nx , l =

1, . . . , s, and x(0) = ∇q∗
(

y(0)
)

with q∗ being the conjugate



function 1 of q. For p = 1, 2, . . . , we perform the following
computations:

1) For l = 1, . . . , s, find z
(p)
l that solves

min
z

1

2
‖z+ αy

(p−1)
l − x(p−1)‖

2

2
(13)

s.t. z ∈ Cl

2) Assign

y
(p)
l = y

(p−1)
l + (1/α)

(

z
(p)
l − x(p−1)

)

(14)

3) Set y(p) = y
(p)
1 + · · ·+ y

(p)
s

4) Compute x(p) = ∇q∗
(

y(p)
)

.

Han and Lou (1988) showed that ‖y(p) − y(p−1)‖2 → 0

and ‖x(p) − x(p−1)‖2 → 0 as p → ∞. They also showed
that their algorithm converges to the global optimum if
q(x) is uniformly convex and differentiable on Rnx .

4.2 Han’s algorithm for definite QPs

In case the optimization problem has a positive definite
cost function and linear constraints as in (11), the opti-
mization problem (13) and ∇q∗ have analytical solutions,
and then Han’s method becomes simpler. In the following
we revise how the analytical solutions of (13) and ∇q∗ can
be obtained when applying Algorithm 1 to problem (11).
Note that the result of simplifying Han’s method in this
section is slightly different from the original one described
in Han and Lou (1988), to correct the minor mistakes we
found in that paper.

As in (11), each constraint x ∈ Cl is implicitly expressed
by a scalar linear equality or inequality constraint. So (13)
takes one of following two forms:

min
1

2
‖z+ αy

(p−1)
l − x(p−1)‖

2

2
(15)

s.t. aTl z = bl

or

min
1

2
‖z+ αy

(p−1)
l − x(p−1)‖

2

2
(16)

s.t. aTl z ≤ bl

First consider (16):

• If aTl

(

x(p−1) − αy
(p−1)
l

)

≤ bl, then z
(p)
l = x(p−1) −

αy
(p−1)
l is the solution of (16). Substituting this z

(p)
l

into (14), leads to the following update of y
(p)
l :

y
(p)
l = y

(p−1)
l + (1/α)

(

x(p−1) − αy
(p−1)
l − x(p−1)

)

⇒ y
(p)
l = 0 (17)

• If aTl

(

x(p−1) − αy
(p−1)
l

)

> bl, then the constraint

is active. The optimization problem (16) is to find
the point in the half-space aTl z ≤ bl that minimizes

its distance to the point x(p−1) − αy
(p−1)
l (which is

outside that half-space). The solution is the projec-

1 The conjugate function of a function q(x), x ∈ R
nx is defined by:

q∗(y) = sup
x∈Rnx

(

y
T
x− q(x)

)

.

tion of the point x(p−1) − αy
(p−1)
l on the hyperplane

aTl z = bl, which is given by the following formula:

z
(p)
l = x(p−1) − αy

(p−1)
l −

aTl
(

x(p−1) − αyl

)

− bl

aTl al
al

(18)

Substituting this z
(p)
l into (14), leads to:

y
(p)
l = y

(p−1)
l +

1

α



−αy
(p−1)
l −

aTl

(

x(p−1) − αy
(p−1)
l

)

− bl

aTl al
al





= −
aTl

(

x(p−1) − αy
(p−1)
l

)

− bl

αaTl al
al (19)

Then defining γ
(p)
l = aTl

(

x(p−1) − αy(p−1)
)

−bl yields

y
(p)
l = −

γ
(p)
l

αaTl al
al (20)

If we define γ
(p)
l = max{aTl

(

x(p−1) − αy(p−1)
)

− bl, 0},
then we can use the update formula (20) for both cases.

Similarly, for the minimization under equality constraint

(15), we define γ
(p)
l = aTl

(

x(p−1) − αy(p−1)
)

− bl and the
update formula (20) gives the result of (14).

Now consider step 4) of Algorithm 1. As shown by Boyd
and Vandenberghe (2004), the function q(x) = xTHx with
H being a positive definite matrix, is strongly convex and
has the conjugate function q∗(y) = 1

2y
TH−1y. Hence,

∇q∗(y) = H−1y. Consequently, in Han’s algorithm for
the definite QP (11), it is not necessary to compute z(p),
and y(p) can be eliminated using (20), which leads to the
following simplified algorithm:

Algorithm 2. Han’s method for definite QPs
The optimization problem to be considered is (11). As
discussed in Han and Lou (1988), we choose α = s/ρ,
where s = neq + nineq is the number of constraints and ρ
is one half of the smallest eigenvalue of H.

For l = 1, . . . , s, compute cl =
−1

αaTl al
H−1al.

Initialize γ
(0)
1 = · · · = γ

(0)
s = 0 and x(0) = 0. For

p = 1, 2, . . . , we perform the following computations:

1) For each l corresponding to an equality constraint

(1 ≤ l ≤ neq), compute γ
(p)
l = aTl x

(p−1) + γ
(p−1)
l − bl.

For each l corresponding to an inequality constraint

(neq + 1 ≤ l ≤ s), compute γ
(p)
l = max{aTl x

(p−1) +

γ
(p−1)
l − bl, 0};

2) Set

x(p) =

s
∑

l=1

γ
(p)
l cl (21)

Note that Han’s method splits up the computation into
s parallel subproblems, with s the number of constraints.
Although Algorithm 2 is simpler than the original form in
Algorithm 1, it still requires a global update scheme and the
parallel problems still operate with the full-sized decision



vector. Implementing the scheme in a DMPC system,
where the goal is to reduce the size of local computations
and to rely on local communication between subsystems
only, is not straightforward. In the following section, we
will exploit the structure of the problem (11), resulting
in a distributed algorithm that does not require global
communications.

5. DISTRIBUTED ALGORITHM FOR THE
CENTRALIZED MPC OPTIMIZATION PROBLEM

For our algorithm, we use M local controllers attached

to M subsystems. Each controller i then computes γ
(p)
l

with regard to a small set of constraints indexed by
l. Subsequently, it performs a local update for its own
variables, such that the parallel local update scheme will
be equivalent to the global update scheme in Algorithm 2.

5.1 Initialization of the algorithm

We choose α and compute s invariant values cl as in
Algorithm 2:

cl =
−1

αaTl al
H−1al, l = 1, . . . , s (22)

in which each cl corresponds to one constraint of (11).
Recall that for the centralized MPC problem (6)–(10), H
is block-diagonal; so the same holds for H−1. Hence, cl
is as sparse as the corresponding al. We can see that cl
can be computed locally by a local controller with a priori
knowledge of the parameter al and the weighting blocks on
the diagonal ofH that correspond to the non-zero elements
of al.

We assume that each local controller i knows its local dy-
namics, and the input and state weights of its neighbors in
the cost function. Then each local controller i can compute
the cl associated with its dynamic equality constraints.

5.2 Assign responsibility of each local controller

Each local controller is in charge of updating the variables
of its subsystem. Moreover, we also assign to each local
controller the responsibility of updating some intermediate
variables that relate to several equality or inequality con-
straints in which its subsystem’s states or inputs appear.
The control designer has to assign each of the s scalar
constraints to one of the M local controllers 2 such that
the following requirements are satisfied:

• Each constraint is taken care of by one and only one
local controller (even for a coupled constraint, there
will be only one controller that is responsible).

• A local controller can only be in charge of constraints
that involve its own variables.

Note that in general this division is not unique. Let Li

denote the set of indices l that local controller i is in charge
of. We also define LN i as the set of indices l corresponding
to the constraints that are taken care of by subsystem i or
by any neighbor of i: LN i =

⋃

j∈N i Lj .

If a local controller is in charge of the constraints indexed
by ℓ, then it computes cℓ using (22) and exchanges these

2 Note that s is often much larger than M .

values with its neighbors. Then each local controller i
stores {cℓ}ℓ∈L

Ni
in its memory throughout the optimiza-

tion process.

5.3 Iterative procedure

The distributed algorithm consists of an iterative proce-
dure running within each sampling interval. At each iter-
ation, four steps are executed: two steps are communica-
tions between each local controller and its direct neighbors,
and two are computation steps that are performed locally
by controllers in parallel. Since feasibility is only guar-
anteed upon convergence of Han’s algorithm, we assume
that the sampling time used is large enough such that the
algorithm can converge within one sampling interval.

Definition 5.1. (Index matrix of subsystems). In order to
present the algorithm compactly, we introduce the index
matrix of subsystems : each subsystem i has a square
matrix I

i ∈ Rnx×nx that is diagonal, with an entry on
the diagonal being 1 if it corresponds to the position of a
variable of subsystem i in the vector x, and 0 otherwise. In
short, Ii is a selection matrix such that the multiplication
I
ix only retains the variables ui

0, . . . , u
i
N−1, x

i
1, . . . , x

i
N of

subsystem i in its nonzero entries. We have
M
∑

i=1

I
i = I (23)

Definition 5.2. (Self image). We denote with x(p)|i ∈ R
nx

the vector that has the same size as x, containing

u
i,(p)
0 , . . . , u

i,(p)
N−1, x

i,(p)
1 , . . . , x

i,(p)
N (i.e. the values of i’s vari-

ables computed at iteration p) at the right positions, and
zeros for the other entries. This vector is called the self
image of x(p) made by subsystem i. Using the index matrix
notation, the relation between x(p)|i and x(p) is:

x(p)|i = I
ix(p) (24)

Definition 5.3. (Neighborhood image). Extending the con-

cept of self image, we denote with x(p)|N i

the neighborhood
image of subsystem i made from x. At step p of the

iteration, subsystem i constructs x(p)|N i

by putting the
values of its neighbors’ variables and its own variables to
the right positions, and filling in zeros for the remaining

slots of x. The neighborhood image x(p)|N i

satisfies

x(p)|N i

=
∑

j∈N i

x(p)|j (25)

x(p)|N i

=





∑

j∈N i

I
j



x(p) (26)

By definition, we also have the following relation between
the self image and the neighborhood image made by the
same subsystem:

x(p)|i = I
ix(p)|N i

(27)

Algorithm 3. Distributed algorithm for the central-
ized MPC optimization problem

Initialize with p = 0, x
i,(0)
k = 0, u

i,(0)
k = 0, ∀i, k 6= 0 (this

means x(0)|i = 0, ∀i, and the centralized variable x(0) = 0),

and γ
(0)
l = 0, l = 1, . . . , s (recall that s is the number of

constraints of the centralized optimization problem).



Next, for p = 1, 2, . . . , the following steps are executed:

1) Communications to get the updated main vari-
ables
Each controller i communicates with its neighbors j ∈
N i to get updated values of their variables, contained
in x(p−1)|j . Vice versa, i also sends its updated
variables in x(p−1)|i to its neighbors as requested.
After getting information from the neighbors, con-

troller i constructs the neighborhood image x(p−1)|N i

using formula (25).
2) Update intermediate variables γl in parallel

In this step, the local controllers update γl corre-
sponding to each constraint l under their responsibil-
ity. More specifically, each local controller i updates
γl for each l ∈ Li in the following manner:
• If constraint l is an equality constraint (1 ≤ l ≤

neq), then γ
(p)
l = aTl x

(p−1)|N i

+ γ
(p−1)
l − bl.

• If constraint l is an inequality constraint (neq +

1 ≤ l ≤ s), then γ
(p)
l = max{aTl x

(p−1)|N i

+

γ
(p−1)
l − bl, 0}.

3) Communications to get the updated interme-
diate variables
Each local controller i communicates with its neigh-

bors to get updated γ
(p)
l values that the neighbors

just computed in step 2).
4) Update main variables in parallel

Local controller i uses all γ
(p)
l values that it has (by

communications and those computed by itself) to
compute an assumed neighborhood image of x:

x
(p)|N i

assumed =
∑

l∈L
Ni

γ
(p)
l cl (28)

Note that x
(p)|N i

assumed has the same structure as x(p−1)|N i

.
However, it is not the exact update of the neigh-

borhood image, instead x
(p)|N i

assumed is only an assumed
neighborhood image. An interpretation will be given
later (see Remark 5.4 below).
Then controller i selects the values of its variables

in x
(p)|N i

assumed to construct the new self image:

x(p)|i = I
ix

(p)|N i

assumed (29)

which contains u
i,(p)
0 , . . . , u

i,(p)
N−1, x

i,(p)
1 , . . . , x

i,(p)
N .

After updating their variables, each local controller
checks the local termination criteria. When all local
controllers have converged 3 , the algorithm stops and
the local control actions are implemented, otherwise
the controllers proceed to step 1) to start a new
iteration.

Remark 5.4 : Interpretation of the assumed neigh-
borhood image
At the end of step 4), each local controller i has an

assumed neighborhood image x
(p)|N i

assumed of x that contains
information within its interest (i.e., has non-zero values
only corresponding to the variables within its neighbor-
hood). However, controller i knows exactly only its own
variables, while the variables of i’s neighbors contained

3 Checking the termination criteria in a distributed fashion requires
a dedicated logic scheme, the description of which is omitted for
brevity.

in x
(p)|N i

assumed are the assumption of controller i (since i
does not know the interaction between its neighbors and
their other neighbors, thus their updates will be different
from what i assumes for them). Therefore, i only extracts

u
i,(p)
0 , . . . , u

i,(p)
N−1, x

i,(p)
1 , . . . , x

i,(p)
N from x

(p)|N i

assumed and throws
away the other values. The real neighborhood image will be
made in the next iteration after i receives updated values
of its neighbors. In fact, for the actual implementation of
the algorithm, we can combine (28) and (29) since we do

not need to use x
(p)|N i

assumed.

Remark 5.5 The equivalence between global and local
update schemes will be shown later in Section 5.4 by prov-

ing that x(p) =
∑M

i=1 x
(p)|i where x(p) is the centralized

variable update resulting from the global update scheme
in Algorithm 2, while x(p)|i are the updates at the end of
step 4) in Algorithm 3.

5.4 Proof of equivalence to Han’s algorithm using a global
update scheme

In Algorithm 2, at step 2), the centralized variable x(p) is
updated via a global update scheme. In Algorithm 3, by
the local update scheme we obtain x(p)|i for i = 1, . . . ,M .
The equivalence of these two algorithms is stated in the
following proposition:

Proposition 1. Applying Algorithms 2 and 3 to the same
problem (11) with the same parameter α, at any iteration
p, the following properties hold:

a) γ
(p)
l are the same in Algorithms 2 and 3, for all

l ∈ {1, . . . , s}.

b) x(p) =
∑M

i=1 x
(p)|i, in which x(p) is calculated in

Algorithm 2 while x(p)|i, i = 1, . . . ,M are calculated
in Algorithm 3.

Hence, Algorithm 2 and Algorithm 3 are equivalent.

Proof: The proposition will be proved by induction.

It is clear that properties a) and b) hold for p = 0.

Now consider iteration p, and assume that the properties
a) and b) hold for all iterations before iteration p.

First, we prove property a). For any l and i such that
l ∈ Li, we have:

aTl x
(p−1) = aTl

M
∑

j=1

I
jx(p−1)|j (30)

= aTl





∑

j∈N i

I
jx(p−1)|j +

∑

j 6∈N i

I
jx(p−1)|j





Due to the definition of neighborhood, a subsystem outside
N i does not have any coupled constraints with subsystem
i. Therefore, aTl

∑

j 6∈N i I
jx(p−1)|j = 0, which leads to:

aTl x
(p−1) = aTl

∑

j∈N i

I
jx(p−1)|j = aTl x

(p−1)|N i

(31)

The second equality holds due to (25). Equation (31)

guarantees that γ
(p)
l computed at step 1) of Algorithm 2

and at step 2) of Algorithm 3 are the same.



Now consider property b), where the main argument is the

following: In order to calculate x
(p)|N i

assumed, subsystem i uses

all γ
(p)
l and cl that involve any variable of i. The updates

of i’s variables in x
(p)|N i

assumed are thus equal to the updates

of i’s variables made by the centralized scheme in x(p)

(in step 4) of Algorithm 2). The vector x(p)|i only contains

values of i’s variables selected from x
(p)|N i

assumed. Similarly, the
updates made by each other subsystem for its variables are
guaranteed to be the same as the results of the centralized
update scheme. Making the sum of all x(p)|i is similar to
composing them into one vector, which leads to x(p).

More specifically, we can express the formula of x(p)|i

computed in Algorithm 3 as

x(p)|i = I
ix

(p)|N i

assumed = I
i
∑

l∈L
Ni

γ
(p)
l cl

⇒
M
∑

i=1

x(p)|i =

M
∑

i=1

I
i
∑

l∈L
Ni

γ
(p)
l cl (32)

Note that in the following equations, x(p) refers to the
update of the decision variable computed by (21) in
Algorithm 2, which we can express as

x(p) =

M
∑

i=1

I
ix(p) =

M
∑

i=1

I
i

s
∑

l=1

γ
(p)
l cl (33)

in which the first equality is due to the relation (23), the
second equality is from (21).

Recall that cl has the same structure as al, and if l 6∈
LN i then al and cl do not have any non-zero values at
the positions associated with variables of subsystem i.
Therefore

I
i

s
∑

l=1

γ
(p)
l cl = I

i





∑

l 6∈L
Ni

γ
(p)
l cl +

∑

l∈L
Ni

γ
(p)
l cl





= I
i
∑

l∈L
Ni

γ
(p)
l cl (34)

This equality shows that (33) and (32) are equivalent, thus

proving the equality in property b): x(p) =
∑M

i=1 x
(p)|i. ✷

The equivalence of Algorithms 2 and 3 implies that prob-
lem (11) can be solved using Algorithm 3. This allows us to
implement a DMPC scheme using Algorithm 3 that does
not need global communications. In this DMPC scheme,
no computation using global variables is required; more-
over, each local controller only needs to communicate with
its direct neighbors and the only information to exchange
is the updates of their predicted variables.

Convergence, feasibility and stability properties of the
DMPC scheme using Algorithm 3 are established by the
following corollaries (see also (Doan et al., 2009)):

Corollary 5.6. Assume thatQi and Ri are positive definite
for i = 1, . . . ,M , and (6)–(10) has a feasible solution. Then
Algorithm 3 converges to the centralized solution of (6)–
(10) at each sampling step.

Corollary 5.7. Assume that at every sampling step, Algo-
rithm 3 converges. Then the DMPC scheme is recursively
feasible and stable.

6. CONCLUSIONS

We have presented a distributed version of Han’s method
and proposed its use for distributed model predictive con-
trol of a class of linear time-invariant system with coupled
dynamics and coupled linear constraints. The proposed
approach makes use of local communications only between
directly connected subsystems, which is especially benefi-
cial in the case of sparse subsystem interconnection topolo-
gies. Global optimality is achieved, leading to feasibility
and stability.

Future research topics include a detailed convergence anal-
ysis, extensive comparison with other DMPC algorithms,
finding efficient communication schemes for checking the
termination criteria, and relaxing the terminal point con-
straint requirement.

REFERENCES

Boyd, S. and Vandenberghe, L. (2004). Convex Optimiza-
tion. Cambridge University Press, Cambridge, MA.

Camponogara, E., Jia, D., Krogh, B., and Talukdar, S.
(2002). Distributed model predictive control. IEEE
Control Systems Magazine, 22(1), 44–52.

Doan, D., Keviczky, T., Necoara, I., Diehl, M., and
De Schutter, B. (2009). A distributed version of Han’s
method for DMPC using local communications only.
Control Engineering and Applied Informatics, 11(3).

Dunbar, W.B. and Murray, R.M. (2006). Distributed
receding horizon control for multi-vehicle formation sta-
bilization. Automatica, 42, 549–558.

Han, S.P. and Lou, G. (1988). A parallel algorithm for
a class of convex programs. SIAM Journal on Control
and Optimization, 26(2), 345–355.

Jia, D. and Krogh, B. (2001). Distributed model predictive
control. In American Control Conference, volume 4,
2767–2772. Arlington, VA.

Keerthi, S.S. and Gilbert, E.G. (1988). Optimal infinite-
horizon feedback control laws for a general class of
constrained discrete-time systems: stability and moving-
horizon approximations. Journal of Optimization The-
ory and Applications, 57(2), 265–293.

Keviczky, T., Borrelli, F., and Balas, G.J. (2006). Decen-
tralized receding horizon control for large scale dynam-
ically decoupled systems. Automatica, 42, 2105–2115.

Maciejowski, J.M. (2002). Predictive Control with Con-
straints. Prentice Hall, Harlow, England.

Mayne, D.Q., Rawlings, J.B., Rao, C.V., and Scokaert,
P.O.M. (2000). Constrained model predictive control:
Stability and optimality. Automatica, 36(7), 789–814.

Rawlings, J.B. and Stewart, B.T. (2008). Coordinating
multiple optimization-based controllers: New opportu-
nities and challenges. Journal of Process Control, 18(9),
839–845.

Richards, A. and How, J. (2007). Robust distributed
model predictive control. International Journal of Con-
trol, 80(9), 1517–1531.

Venkat, A., Hiskens, I., Rawlings, J., and Wright, S.
(2008). Distributed MPC strategies with application
to power system automatic generation control. IEEE
Transactions on Control Systems Technology, 16(6),
1192–1206.


