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Distributed route choice control

in DCV-based baggage handling systems

Alina N. Tarău, Bart De Schutter, and Hans Hellendoorn

Abstract— In this paper we develop advanced control meth-
ods for routing individual vehicles which ensure automatic
transportation of bags in a baggage handling system of an
airport. In particular we consider distributed model predictive
control and a distributed heuristic control approach. The
baggage handling system performs efficiently if all the bags
are transported to the corresponding end points within a
specific time window, and this makes the process of handling
baggage time-critical. The proposed control approaches are
effective for the given application. To assess their performance
we consider a benchmark case study, in which the methods
are compared for several scenarios. Results indicate that the
distributed approaches improve the performance of the vehicle-
based baggage handling system with up to 20%.

I. INTRODUCTION

State-of-the-art baggage handling systems transport lug-

gage in an automated way using destination coded vehicles

(DCVs). These vehicles transport the bags at high speeds on

a “mini” railway network. Currently, low-level controllers

ensure the coordination and synchronization when loading

a bag onto a DCV, in order to avoid damaging the bags or

blocking the system, and when unloading it to the corre-

sponding end point. Low-level controllers also compute the

velocity of the DCVs such that collisions are avoided. The

networks on which the DCVs run are simple and, therefore,

the performance of these systems is limited. In the research

we conduct more complex networks are considered. The

aim of this work is to optimally route the DCVs in case

of dynamic demand.

For applications such as automated guided vehicles route

planning or traffic route guidance, the route assignment

problem has been addressed in e.g. [1], [2]. But, in our

case we do not deal with a shortest-path or shortest-time

problem, since we need the bags at their corresponding end

points within a given time window. An attempt to solve the

routing problem of DCVs transporting bags using an analogy

of how data are transmitted via internet is presented in [3],

but without presenting any experimental results. Also, in [4],

a multi-agent approach for the control software of a DCV-

based baggage handling system is presented. However, this

multi-agent system is faced with major challenges due to the

extensive communication required. Therefore, the goal of our
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work is to develop and compare control approaches for route

choice control for each DCV.

Theoretically, the maximum performance of a DCV-based

baggage handling system is obtained if one computes the

optimal routes using optimal control [5]. However, as we

have shown in [6], this control method becomes intractable

in practice due to the heavy computation burden. Therefore,

in order to make a trade-off between computational effort and

optimality, in [7], we have also implemented centralized and

decentralized1 model predictive control, and also a decentral-

ized heuristic approach. As the results confirmed, centralized

model predictive control requires high computation time

to compute a solution. The use of decentralized predictive

control lowers the computation time, but at the cost of subop-

timality. Finally, we have seen that the decentralized heuristic

approach needs very low computation time to calculate a

solution, but usually the results are worse than those obtained

when using decentralized predictive control. In this paper

we investigate whether the performance of the system can

be increased by using additional communication and coor-

dination between neighboring junctions when computing the

control. Hence, we now develop and implement distributed2

control approaches viz. distributed model predictive control

and a distributed heuristic approach. The heuristic approach

uses rules to determine the position of the switches leading

into and out of a junction. These rules depend on the static

and dynamic priorities of the bags transported by DCVs on

the incoming links, the optimal path to destination, and the

current position of each switch.

The paper is organized as follows. In Section II, we

present a continuous-time event-driven model that we have

developed together with the performance index that describes

the efficiency of a DCV-based baggage handling system and

a general description of model predictive control. Afterwards,

in Section III, we develop several distributed predictive

control methods for computing the route of each DCV

transporting a bag with various degrees of complexity. Due

to the large computation effort that these approaches require,

in Section IV we also propose distributed heuristics. The

analysis of the simulation results and the comparison of

the proposed control methods are elaborated in Section V.

Finally, Section VI draws the conclusions of this paper.

1If the local control actions are computed without any communication or
coordination between the local controllers, the control approach is said to
be decentralized.

2If the local control actions are computed considering also communication
and coordination between neighboring controllers, then the control approach
is said to be distributed.
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Fig. 1. Baggage handling system using DCVs.

II. BACKGROUND

A. System description and model

In this paper we use the general DCV-based baggage

handling system sketched in Figure 1. This system operates

as follows: given a demand of bags and the network of tracks,

the route of each DCV (from a given loading station to

the given unloading station) has to be computed subject to

operational and safety constraints such that the performance

of the system is optimized.

The model of the baggage handling system we have

developed in [6] consists of a continuous part describing the

movement of the individual vehicles transporting the bags

through the network, and of the following discrete events:

loading a new bag onto a DCV, unloading a bag that arrives

at its end point, updating the position of the switch into a

junction (called switch-in hereafter), and the position of the

switch going out of a junction (called switch-out hereafter),

and updating the speed of a DCV. The state of the system

consists of the positions of the DCVs in the network and the

positions of the switch-ins and switch-outs of the junctions.

According to the discrete-event model we have developed

in [6], as long as there are bags to be handled, given the

current state of the system, we shift the current time to the

next event time, take the appropriate action, and update the

state of the system.

The operational constraints derived from the mechanical

and design limitations of the system are the following: the

speed of each DCV is bounded between 0 and vmax, while

a switch at a junction can only change its position after

minimum τx time units in order to avoid the quick and

repeated back and forth movements of the switch, which

may lead to mechanical damage.

B. Global performance index

In this section we define the global performance index that

will be used in this paper.

On the one hand the baggage handling system performs

successfully if all the bags are transported to their end point

before a given time instant, so, the overdue time has to be

minimized. On the other hand, due to the airport’s logistics,

an end point is allocated to a plane only a given amount of

time before the departure of the plane. Hence, one way to

construct the objective function corresponding to bag i is to

penalize the overdue time and the additional storage time.

Accordingly, we define the following penalty for bag i:

Jpen,i(t) = σi max(0, t − tend,i)+

λ1 max(0, tend,i −θmax storage,i − t) (1)

where tend,i is the time instant when the end point closes and

the bags are loaded onto the plane, σi is the static priority of

the bag i (the flight priority), and θmax storage,i is the maximum

possible time window for which the end point of bag i is

open for that specific flight. The weighting parameter λ1 ≤ 1

represents the relative cost between buying additional storage

space at the end points and the cost of customers that have

their baggage delayed.

In order to minimize the energy consumption we also in-

clude the dwell time. Then we obtain the following objective

function for bag i:

Ji(t) = Jpen,i(t)+λ2(tdwell,i) (2)

where λ2 is a small weight factor (λ2 ≪ λ1).

The final performance index is given by Jtot =

∑
Nbags

i=1 Ji(tunload,i), where Nbags is the number of bags to be

handled and tunload,i is the time instant when bag i is unloaded

at its corresponding end point.

C. Model predictive control

Since later on we will be using the concept of model

predictive control (MPC), in this section we briefly present

this control method.

MPC is an on-line model-based predictive control design

method [8] that uses the receding horizon principle. In the

basic MPC approach, given a horizon N, at step k, the

future control sequence u(k + 1),u(k + 2), . . . ,u(k + N) is

computed by solving a discrete-time optimization problem

over a period [tk, tk + TsN], where tk = t0 + kTs with Ts the

sampling time, so that a cost criterion defined over the period

[tk, tk + TsN] is optimized subject to the operational con-

straints. After computing the optimal control sequence, only

the first control sample is implemented, and subsequently

the horizon is shifted. Next, the new state of the system is

measured or estimated, and a new optimization problem at

time tk+1 is solved using this new information. In this way,

a feedback mechanism is introduced.

In the next section, we define a variant of MPC, where

k is not a time index, but a bag index. Also, the horizon

N corresponds to the number of bags that we consider for

prediction.

III. DISTRIBUTED MODEL PREDICTIVE CONTROL

In order to determine the route of each DCV transporting

a bag, in this section, we first propose several distributed

predictive control methods. Note that the velocity of each

DCV is always at its maximum, vmax, unless overruled by

the local on-board collision avoidance controller. These col-

lision avoidance controllers ensure a minimum safe distance

between DCVs and also hold DCVs at switching points, if

required.
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A. Levels of influence

In distributed model predictive route choice control we

consider local subsystems, each consisting of a junction Ss

with s ∈ {1,2, . . . ,S}, its incoming and its outgoing links.

Distributed MPC uses communication and coordination be-

tween neighboring junctions. Data will be communicated

between consecutive levels of influence. A level of influence

consists of junctions for which we compute the local control

in parallel.

Let us first assign levels of downstream influence to each

junction in the network. We assign downstream influence

level 1 to each junction in the network connected via a direct

link to a loading station. Next, we consider all junctions

connected by a link to some junction with influence level

1, and we assign influence level 2 to them. In that way we

recursively assign an influence level to each junction with the

constraint that at most κd,max downstream influence levels

are assigned to a given junction3. For example see Figure 2

where we define maximum 2 levels of downstream influence

for each junction {s1,s2,s3,s4,s5,s6} ⊆ {1,2, . . . ,S} with S

the number of junctions in the network.

Similarly we can also assign levels of upstream influence

to each junction in the network. We assign upstream influ-

ence level 1 to each junction in the network connected via a

direct link to an unloading station. Next, we assign upstream

influence level 2 to all the junctions connected by a link to

some junction on upstream influence level 1. Recursively,

we then assign levels of upstream influence to each junction

with the constraint that at most κu,max levels of upstream

influence are assigned to a given junction.

B. Distributed MPC with a single iteration of downstream

communication

Let us now consider distributed MPC with a single itera-

tion of downstream communication. This means that the local

controller of each junction on influence level κd = 1 solves

the local optimal control problem depending on the current

traffic in the local subsystem and the demand of bags at

loading stations. Furthermore, for each junction on the same

influence level κd > 1, the intended switch control sequence

of the junctions on influence level κd −1 is communicated.

So, the junctions on influence level κd use as additional

information the expected arrival time of the bags sent from

3The constraint that at most κd,max downstream influence levels are
assigned to a junction influences the computational complexity.

influence level κd −1. Then, for each junction on influence

level κd, we compute a local solution to the local MPC

problem (see Section III-D for the exact definition of the

local MPC problem ) over a horizon of N bags —the bags

are already traveling on the incoming links of the junction

or coming from the neighboring junctions on influence level

κd −1.

The computation of the local control is performed accord-

ing to the following algorithm where Kdownstream is the largest

level of downstream influence assigned in the network.

Algorithm 2. Distributed computation of local control —

a single iteration of downstream communication

1: for κd = 1 to Kdownstream do

2: compute in parallel local switching sequences for

influence level κd taking into account the control on

influence level κd −1

3: end for

For simplicity we update the local control of all the

junctions in the network every time a bag has crossed a

junction. Note that the controllers of the junctions on level

κd have to wait for the completion of the computation of

the switching sequences of the controllers on the previous

level before starting to compute their future control action.

Therefore, when comparing with decentralized MPC, such

distributed MPC may improve the performance of the sys-

tem, but at the cost of higher computation time due to

the required synchronization and iteration in computing the

control actions.

C. Distributed MPC with a single iteration of downstream

and upstream coordination

Now we add an extra round of coordination and consider

distributed MPC with a single iteration of downstream and

upstream coordination. This method involves the following

steps. Every time a bag has crossed a junction we first

compute the local control sequences according to the down-

stream levels of influence. Then we identify the junctions

on the last level of downstream influence Kdownstream that are

connected to unloading stations (these are junctions on level

1 of upstream influence). For these junctions we update the

release rate corresponding to their incoming links. Then we

compute the local control of all junctions on the upstream

level κu > 1 taking into account the updated release rates and

the intended control known from the downstream iteration.

The computation of the local control is performed according

to the following algorithm where Kupstream is the largest level

of influence assigned in the network. The local MPC problem

is defined in Section III-D

Algorithm 3. Distributed computation of local control —

a single iteration of downstream and upstream coordi-

nation

1: for κd = 1 to Kdownstream do

2: compute in parallel local switching sequences for

influence level κd taking into account the local control

on downstream influence level κd −1

3: end for
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4: for κu = 1 to Kupstream do

5: compute in parallel local switching sequences for

influence level κu taking into account the local control

on upstream influence level κu − 1 and the updated

release rate

6: end for

By performing also the upstream optimization more in-

formation about the future congestion is provided via the

updated release rate. This information might change the

initial intended control actions of each junction. Therefore,

this new variant of distributed MPC may increase the perfor-

mance of the system by ensuring more coordination between

the neighboring junctions, but also the computational effort

increases.

D. Local MPC problem

In this section we define the local MPC problem.

1) Local system boundaries: We consider that each local

systems consists of a junction Ss with s ∈ {1,2, . . . ,S}, its

maximum 2 incoming and 2 outgoing links as sketched

in Figure 3. For the sake of simplicity of notation, in the

remainder of this subsection, we will not explicitly indicate

the subscript s for variables that refer to junction Ss since

we refer to one junction only. For all the other junctions, the

same procedure is applied.

2) Local control: As noted in Section II we do not use

a time index, but a bag index. So, we control the positions

of the switch-in and switch-out of junction Ss for each bag

that crosses Ss. Recall that we update the local control every

time some bag has just crossed a junction. Let tcrt denote

a time instant at which the local controls are updated. For

junction Ss we now determine bag step k such that tcross,k ≤
tcrt < tcross,k+1, where tcross,k is defined as the time instant

when bag bk has just crossed the junction.

We index the bags that successively cross a junction

Ss during the entire simulation period as b1,b2, . . . ,bNbags
,

where Nbags is the number of bags that cross Ss during the

simulation period. The local optimization is performed over

the next N ≤ Nbags bags that will pass junction Ss at bag

step k. By solving this local optimization problem we com-

pute the control sequence4 u(k) = [usw in(k+1) . . . usw in(k+
N)usw out(k + 1) . . . usw out(k + N)]T corresponding to the

next N bags bk+1,bk+2, . . . ,bk+N that will cross the junction.

The control decisions usw in(k+ 1), . . . ,usw in(k+N) of the

4For junctions with only one incoming link we have u(k) = [usw out(k+
1) . . . usw out(k+N)]T, while for junctions with only one outgoing link we
have u(k) = [usw in(k+1) . . . usw in(k+N)]T.

switch into Ss determine the order in which the bags cross

the junction and the corresponding time instants at which

the bags bk+1, . . . ,bk+N enter Ss. The control decisions

usw out(k+1), . . . ,usw out(k+N) determine the next junction

towards which the bag bk+1, . . . ,bk+N will travel.

3) Local objective function: When solving the local MPC

optimization problem, we will use a local objective function

JDMPC,N . The local objective function is computed via a

simulation of the local system for the next N bags that will

cross the junction, being defined as follows:

JDMPC,N(u(k)) =
N

∑
j=1

Jk+ j(t̂
∗
unload,k+ j)

where t̂∗unload,k+ j is the estimated unloading time instant of

bag bk+ j. Next we present how the estimated unloading time

instant is computed.

4) Prediction model: Our prediction model is a simulation

of the local system.

Given the state of the local system at tcrt we compute

the release rate of each outgoing link l for l = 0,1. The

computation of the release rate is required due to the fact

that we use a local simulation as prediction. Let nl denote

the number of DCVs that left the outgoing link l within the

time window [tcrt −τq, tcrt], of length τq time units. Then the

fixed release rate of link l which will be used during the

entire prediction period at bag step k is given by ζl =
nl

τq
.

However, for links that connect Ss with unloading stations,

the release rate is by definition unbounded.

Let Snext,l where l = usw out(k + j) denote the junction

that bag bk+ j will cross next, and let Sdest,k+ j denote the

corresponding end point of bag bk+ j.

For each possible route r ∈Rnext,k+ j,l , where Rnext,k+ j,l is

the set of routes from Snext,l to Sdest,k+ j, we estimate the time

when bag bk+ j will arrive at Sdest,k+ j via route r as follows:

t̂unload,k+ j,l,r = t̂cross,k+ j + τ̂link l,k+ j + τ̂router

where

• t̂cross,k+ j is the estimated time instant (computed by the

local prediction model) at which bag k+ j crosses Ss.

• τ̂link l,k+ j is the time we estimate that bag bk+ j spends

on link l out of Ss. For this estimation we take:

τ̂link l,k+ j =















max

(

dl

vmax
,

Nk+ j,l

ζl

)

if Ql < αQmax,l

max

(

dl

vjam

,
Nk+ j,l

ζl

)

otherwise

where dl is the length of the traveled link, vjam is the

speed to be used in case of jam (determined using

empirical data), Nk+ j,l is the number of DCVs on the

link at the time instant t̂cross,k+ j, Ql and Qmax,l are the

flow and respectively the maximum capacity of the link,

and α is a weighting parameter.

• τ̂router is the average travel time on route r ∈ Rk+ j,next,l

for an average speed vavg,router determined based on

historical data.



Then the optimal estimated unloading time instant is

defined as follows:

t̂∗unload,k+ j = argmin
{t̂unload,k+ j,r |r∈Rnext,k+ j,l}

Jk+ j(t̂unload,k+ j,r)

5) Optimization problem: So, the MPC optimization

problem at junction Ss and bag step k is defined as follows:

min
u(k)

JDMPC,N(u(k))

subject to

the local dynamics of the Ss with

its incoming and outgoing links and

additional data from neighboring junctions

operational constraints

After computing the optimal control only usw in(k+ 1) and

usw out(k + 1) are applied. Next the state of the system is

updated. At bag step k+1, a new optimization will be then

solved over the next N bags.

Since the optimization problem above involves integer

variables, to solve it one has to use integer optimization

algorithms such as genetic algorithms or tabu search see e.g.

[9], [10].

IV. DISTRIBUTED HEURISTIC APPROACH

In order to lower the computation time of the previous

control methods, in this Section we present a distributed

heuristic approach. Now the local control sequence is only

one sample in contrast to distributed MPC where we have

computed local control sequences of N samples. The control

variables of this approach represent the time span after

which the switch-in and respectively switch-out will change

position.

Note that since the control of all local systems is sim-

ilar we only refer to the control of junction Ss with s ∈
{1,2, . . . ,S}. Consequently, for the sake of simplicity of

notation, we will not explicitly include the subscript s in

the remainder of this section.

A. Local heuristic control of the switch-in

The local control of the switch-in is updated every time

a bag crosses the neighboring junction Sprev,l with l ∈ {0,1}
connected to Ss via the incoming l. Let tcrt denote this

time instant. Then each switch is locally controlled based on

heuristic rules as presented next. The local switch control is

determined based on both local information —the incoming

and outgoing links of junction Ss— and additional data

regarding the flow of DCV on the incoming links of Sprev,l

for l = 0,1. This is an extension of the heuristic approach

that we have developed in [6]. In [6] the local control is

determined based on local information only.

For a junction Ss, we define the following variables:

• Γl is the set of bags transported by DCVs that travel on

the incoming link l ∈ {0,1} of junction Ss at the time

instant tcrt.

• Ωl is the set of bags that will cross Sprev,l traveling

towards Ss in the next τprediction time units. For deter-

mining Ωl we use a prediction of the system where the

control of the switch-in and switch-out is determined

using the heuristic approach we have developed in [6].

• al is total static priority of link l, al = ∑i∈Γl
σi.

• bl is the total dynamic priority of link l, bl = ∑i∈Γl

δ̂i

δmax,i

with δ̂i the estimate of the actual time bag i requires to

get from its current position to its final destination in

case of no congestion and maximum speed, and δmax,i

the maximum time left for bag i to spend in the system

while still arriving at the plane on time. If bag i misses

the flight, then the bag has to wait for a new plane

with the same destination. Hence, a new departure time

is assigned to bag i, and consequently a new loading

time tnew end,i for bag i is considered. Then the variable

δmax,i is defined as δmax,i = tend,i − tcrt if tend,i − tcrt > 0

and δmax,i = tnew end,i − tcrt if tend,i − tcrt ≤ 0.

• cl is total static priority of the bags in Ωl .

• dl is the total dynamic priority of the bags in Ωl .

In order to determine the next position of the switch-in

at junction Ss we compute the performance measure psw in,l

for l = 0,1 every time a new bag enters the incoming link l.

This performance measure takes into account the static and

dynamic priorities of the bags transported by DCVs on the

link l, and the current5 position of the switch-in at junction

Ss:

psw in,0 = wst pr(a0 + c0)+wdyn pr(b0 +d0)−wsw inτxIcrt

psw in,1 = wst pr(a1 + c1)+wdyn pr(b1 +d1)−
wsw inτx(1− Icrt)

where Icrt denotes the current position of the switch-in at

junction Ss (i.e. Icrt = 0 if the switch-in is positioned on the

incoming link 0 and Icrt = 1 if the switch-in is positioned

on the incoming link 1). The weighting parameters wst pr,

wdyn pr, and wsw in are calibrated as explained in Section 4.3

of [6].

Let zl ∈ Γl indicate the bag closest to Ss on incoming

link l. The variable dzl
denotes the distance between the

current position of bag zl and Ss while vzl
denotes the current

speed of DCV transporting bag zl . Then we define the time

period τarrival,l that the DCV transporting bag zl needs to

travel the distance dzl
in case of no speed-update events as

τarrival,l =
dzl

vzl

if dzl
> 0, and τarrival,l = 0 if dzl

= 0.

The position of the switch-in at Ss is toggled only if

psw in,0 > psw in,1 and Icrt = 1 or if psw in,1 > psw in,0 and Icrt =
0. If this is the case, then the current position of the switch-

in is changed after τsw in = max(τx − τsw in prev,τarrival,1−Icrt
)

time units where τsw in prev is the time for which the switch-in

at junction Ss has been in its current position.

B. Local heuristic control of the switch-out

Every time when a bag is at junction Ss we compute the

control variable τsw out which represents the time period until

the position of the switch-out has to be changed.

5The current position of the switch-in is considered due to the operational
constraint according to which the position of a switch at a junction can only
change after minimum τx time units.
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Assume that bag i is at junction Ss. Let tcross,i denote the

time instant when this happens. First we estimate the time

that bag i needs to travel on the next maximum6 νmax links

when trying to reach the corresponding destination.

As sketched in Figure 4, for νmax = 2, let Snext,l,m for m =
0,1 denote the neighboring junction of Snext,l connected via

link m out of Snext,l and let Nnew DCV,i,l,m denote the number

of DCVs on link l out of Ss that will choose link m out of

Snext,l .

We assume that for a junction Snext,l , l ∈ {0,1} with 2

outgoing links, half of the DCVs traveling from Ss to Snext,l

take link m = 0 out of Snext,l , and the other half take link

m = 1. Then the time period that bag i needs to travel link m

out of Snext,l considering the release rate ζl,m of link m out

of Snext,l is defined as:

τ̂link l,m,i =















max

(

dl,m

vmax
,

NDCV

ζl,m

)

if Ql,m < αQmax,l,m

max

(

dl,m

vjam

,
NDCV

ζl,m

)

otherwise

where dl,m is the length of the link m out of Snext,l ,

NDCV = NDCV,i,l,m+Nnew DCV,i,l,m with NDCV,i,l,m the number

of DCVs on this link at the time instant when bag i crosses

junction Ss.

Let Rnext,i,l,m with l ∈ {0,1} and m ∈ {0,1} denote the

set of routes from junction Snext,l,m to Sdest,i. In this case,

for each route r ∈Rnext,i,l,m we estimate the time t̂unload,i,l,m,r

when bag i will reach Sdest,i if the bag takes link l out of Ss,

link m out of Snext,l , and route r. This time is given by:

t̂unload,i,l,m,r = tcross,i + τ̂link l,i + τ̂link l,m,i +
dr

vavg

where dr is the length of route r.

The estimated arrival time Ji(t̂
∗
unload,i,l,m,r) that optimizes

the objective function of bag i when choosing link m∈ {0,1}
out of Snext,l and route r ∈ Rnext,i,l,m is defined as follows:

t̂∗unload,i,l = argmin
{t̂unload,i,l,m,r |m∈{0,1}∧r∈Rnext,i,l,m}

Ji(t̂unload,i,l,m,r)

Then we compute the cost criterion csw out,i,l for l = 0,1

that takes into account t̂∗unload,i,l,m,r and the current position

Ocrt of the outgoing switch:

csw out,i,0 = wpenJi(t̂
∗
unload,i,0,r)+wsw outτxOcrt

csw out,i,1 = wpenJi(t̂
∗
unload,i,1,r)+wsw outτx(1−Ocrt)

6We look only at the next maximum νmax links in order to get some
extra information on the network congestion state, while keeping the
communication requirements low.
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Fig. 5. Case study for a DCV-based baggage handling system.

The weighting parameters wpen and wsw out can be calibrated

as explained in the [6].

The position of the switch-in at junction Ss is toggled only

if csw out,i,0 < csw out,i,1 and Ocrt = 1 or if csw out,i,1 < csw out,i,0

and Ocrt = 0. If this is the case, then the switch-out is toggled

after τsw out =max(0,τx−τsw out prev) where τsw out prev is the

time for which the switch-out at junction Ss has been in its

current position.

V. CASE STUDY

In this section we compare the proposed control methods

based on a simulation example.

A. Set-up

We consider the network of tracks depicted in Figure 5

with six loading stations, two unloading stations, and nine

junctions. This network is considered because on the one

hand it is simple, allowing an intuitive understanding of and

insight in the operation of the system and the results of the

applied control approaches, and because on the other hand,

it also contains all the relevant elements of a real set-up.

We assume that the velocity of each DCV varies between

0 m/s and 20 m/s, the lengths of the track segments being

indicated in Figure 5.

In order to faster assess the efficiency of our control

method we assume that we do not start with an empty

network but with a network already populated by DCVs

transporting bags.

B. Scenarios

We have considered typical scenarios7 with different

classes of demand profiles for each loading station, different

initial states of the system, congestion on different links,

and different time criticality measures. We first consider

six scenarios where transporting the bags via the shortest

routes involves the need of additional storage. Afterwards

we consider six more scenarios where the transportation of

the bags is very tight, i.e. the last bag that enters the system

can only arrive in time at the corresponding end point if the

7For comparing the control methods we have used the same scenarios,
but different samples of the demand profiles than those considered for
calibrating the weighting parameters.



TABLE I

COMPARISON OF RELATIVE IMPROVEMENT OF THE PERFORMANCE AND

COMPUTATION TIME FOR THE PROPOSED CONTROL METHODS.

Control relative CPU time
approach improvement (%) (s)

Decentralized MPC 14.3 2.67 ·103

(N = 3)

Distributed MPC 18.6 4.85 ·103

downstream (N = 3)

Distributed MPC 22.9 1.16 ·104

back & forth (N = 3)
Decentralized HR 0 0.08
Distributed HR 19.4 128
(τprediction = 5 s)

shortest path is used and its DCV is continuously running

with maximum speed.

C. Results

To solve the MPC optimization problems we have chosen a

genetic algorithm with multiple runs since simulations show

that this optimization technique gives good performance with

the shortest computation time.

Based on simulations we now compare, for the given

scenarios, the proposed control methods relative to their

decentralized variants. This goes as follows. For all control

methods we compute the average cost criterion over all

scenarios, Javg,control approach =
1

Nscenario

Nscenario

∑
j=1

J j,control approach.

Afterwards the control approach that results in maximum

average cost criterion is considered to have 0 % improve-

ment. The improvement of the rest of the control methods

that we consider in this paper are computed relative to this

cost criterion.

The preliminary results of the simulations are reported in

Table I. These preliminary results confirm that distributed

approaches improve the performance of the system relative

to the decentralized approaches, but at the cost of higher

computation time8. The improvement appears due to the

additional information regarding future congestion. However,

estimating future states requires additional computation time.

Note that the performance of the heuristics approaches could

be improved by performing more extensive tuning. The high

computational effort required by the predictive approaches

can also be lowered by e.g. parallelizing the computation

of the local control, using faster computers, implementing

the control methods in object coded programming language,

or reducing the time allowed for solving the local MPC

optimization at the cost of suboptimality.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have considered the baggage handling

process in large airports using destination coded vehicles

(DCVs) running at high speeds on a “mini” railway network.

In particular we consider the route choice control problem for

each DCV transporting bags on the track network. Using a

8The simulations were performed in Matlab, on a 3.0 GHz P4 with 1 GB
RAM.

fast event-driven model of the continuous-time baggage han-

dling process determined in previous work, in this paper we

develop several distributed model predictive control (MPC)

methods and a distributed heuristic approach to compute

effective routing. In contrast to the decentralized control

methods developed in previous work for the same purpose,

the distributed approaches use additional communication and

coordination between local controllers to compute a routing

solution. The preliminary results confirm that distributed

approaches improve the performance of the system relative

to the decentralized approaches, but at the cost of higher

computational effort. However, the computational time can

be lowered by e.g. parallelizing even more the computation

of the local control. In future work we will also consider re-

ducing the computational effort by approximating the model

with a linear one using mixed integer linear programming

(MILP) theory. The solution of the MILP optimization could

then be used as an initial starting point for the original

nonlinear optimization problem.
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