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Study on Fast Model Predictive Controllers for Large Urban Traffic

Networks

Shu Lin, Bart De Schutter, Yugeng Xi and Hans Hellendoorn

Abstract— Traffic control is both an efficient and effective
way to alleviate the traffic congestion in urban areas. Model
Predictive Control (MPC) has advantages in controlling and
coordinating urban traffic networks. But, the real-time compu-
tational complexity of MPC increases exponentially, when the
network scale and the predictive time horizon grow. To improve
the real-time feasibility of MPC, a simplified macroscopic urban
traffic model is developed. Two MPC controllers are built
based on the simplified model and a more detailed model.
Simulation results of the two controllers show that the on-
line optimization time is reduced dramatically by applying
the simplified model, only losing a limited amount of control
effectiveness. Additional techniques, like applying a control time
horizon and an aggregation scheme, are implemented to reduce
the computational complexity further. Simulation results show
positive effects of these techniques.

I. INTRODUCTION

Traffic jams occur frequently in urban areas, when people

need to use the common infrastructures with limited capacity

at the same time, especially in rush hours. Traffic congestion

can give rise to traffic delays, economic losses, traffic pol-

lution, and even non-safety. Constructing more new roads is

not only consuming but also impractical for some cities. In

this situation, traffic control strategies are the most efficient

and also effective method to solve the congestion problem.

There are already many control strategies [1] for urban

traffic. Among them, model-based optimization methods

have the same basic frameworks with three typical features:

prediction model, on-line optimization, and rolling time

horizon. Due to these features, model-based optimization

control methods can deal with the uncertainty of real traffic,

and avoid myopic control schemes. Model Predictive Control

(MPC) is a control strategy within this category.

In the 1980s and 1990s, a number of model-based op-

timization control strategies emerged: OPAC, PRODYN,

CRONOS, and RHODES. The prediction models for these

strategies are almost the same. They predict the future traffic

demands at the intersections through historical data measured

from the upstream detectors and the detectors in the upstream

links. These strategies showed advantages compared with

the traffic-responsive strategies which are without predictions

[2]. However, this kind of prediction models are limited in
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the length of the time horizon over which they can predict.

The longest prediction horizon corresponds to the time taken

by the vehicles running from the upstream detector to the

stop-line of the intersection. Therefore, the control strategies

cannot look ahead far enough due to this limitation. In recent

years, some macroscopic urban traffic models have been

developed. These models can describe the traffic dynamic

mechanics of the whole urban traffic network, and overcome

the drawbacks of the previous models. Model-based opti-

mization control strategies [3], [4] (including MPC) were

developed based on these prediction models, and obtained

good control effects. However, the challenge for these strate-

gies is the trade-off between the accuracy of the models

and the on-line computational complexity. In fact, all the

model-based optimization strategies inevitably encounter the

same problem, i.e. the real-time computational feasibility.

Almost all of them are not real-time feasible for controlling

traffic networks with more than 5-10 intersections. To avoid

this problem, other types of strategies are developed instead.

One is to divide the network into intersections and control

them under a distributed structure [5]–[8]. The other is

to solve the optimization problem off-line, such as with a

feedback regulator and optimal control [9]. These methods

succeeded in improving the real-time feasibility. But, to

keep the advantages of centralized MPC controllers, other

approaches need to be considered.

The main factors influencing the real-time feasibility are

the complexity of the model, the optimization algorithm,

the prediction horizon, and the scale of the network. To

improve the real-time feasibility, the following two methods

can be considered. First, to simplify the urban traffic model.

Even for macroscopic models, there exist different levels of

modeling details. A better trade-off between model accuracy

and computational complexity has to be found, i.e. the model

should be guaranteed as simple and fast as possible provided

that the model is accurate enough for controller. Second, to

adopt some tricks to speed up the optimization algorithms.

We developed a simplified model to reduce the computa-

tional complexity of the previous macroscopic urban traffic

network model [4], [10]. Two MPC controllers are built

based on two different models. The real-time feasibility of

the MPC controllers is investigated for different prediction

horizons and traffic network scales. We demonstrate that

the controller based on the simplified model is much faster

than the other one, with a limited amount of loss of control

effect. Moreover, different control horizons and aggregation

techniques are adopted to reduce the computational burden

of the optimization algorithm one step further.
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II. TWO MACROSCOPIC URBAN TRAFFIC MODELS

In this section we present the original model of [4] and

[10] (indicated as the BLX model) as well as a new simplified

model (called the S model). But first we introduce some

common notation for both models.

Define J the set of nodes (intersections), and L the set

of links (roads) in the urban traffic network. Link (u,d) is

marked by its upstream node u (u∈ J) and downstream node

d (d ∈ J). The sets of input and output links for link (u,d)
are Iu,d ⊂ L and Ou,d ⊂ L (e.g., for the situation of Fig. 1 we

have Iu,d = {i1, i2, i3} and Ou,d = {o1,o2,o3}).

In order to describe the evolution of the models, we first

define some variables (see also Fig. 1):

Iu,d : set of input links of link (u,d),
Ou,d : set of output links of link (u,d),
k : simulation step counter for the urban traffic

model,

nu,d(k) : number of vehicles in link (u,d) at step k,

qu,d(k) : queue length (expressed as the number of

vehicles) at step k in link (u,d), qu,d,om
is the

queue length of the sub-stream turning to link

om,

ml
u,d,om

(k) : number of cars leaving link (u,d) and turning

to om,

ma
u,d(k) : number of cars arriving at the (end of the)

queue in link (u,d) at step k, ma
u,d,om

(k) is the

number of arriving cars in the sub-stream going

towards om,

Su,d(k) : available storage space of link (u,d) at step k

expressed in number of vehicles,

α l
u,d(k) : average flow rate leaving link (u,d) at step k,

α l
u,d,om

(k) is the leaving average flow rate of

the sub-stream going towards om,

αa
u,d(k) : average flow rate arriving at the end of the

queue in link (u,d) at step k, αa
u,d,om

(k) is the

arriving average flow rate of the sub-stream

going towards om,

αe
u,d(k) : average flow rate entering link (u,d) at step k,

βu,d,om
(k) : relative fraction of the traffic in link (u,d)

turning to om at step k,

µu,d : saturated flow rate leaving link (u,d),
gu,d,om

(k) : green time length during step k for the traffic

stream in link (u,d) going towards om,

bu,d,om
(k) : boolean value indicating whether the traffic

signal at intersection d for the traffic stream

in link (u,d) turning to om is green (1) or red

(0) at step k,

vfree
u,d : free-flow vehicle speed in link (u,d),

Cu,d : capacity of link (u,d) expressed in number of

vehicles,

Nlane
u,d : number of lanes in link (u,d),

∆cu,d : offset between node u and node d,

lveh : average vehicle length.

A. BLX model

In the BLX model a queue is modeled as follows. For

the sake of simplicity, the assumption is made that at an

intersection the cars going to the same destination move into

the correct lane, so that they do not block the traffic flows

going to other destinations. For each lane (or destination), a

separate queue is constructed (with queue lengths denoted by

q). Further, the simulation time step Ts is typically set to 1 s

and cars arriving at the end of a queue in simulation period

[kTs,(k+ 1)Ts) are allowed to cross the intersection in that

same period (provided they have green, there is enough space

in the destination link, and there are no other restrictions).

Consider link (u,d) (see Fig. 1). For each om ∈ Ou,d the

number of cars leaving link (u,d) for destination om in the

period [kTs,(k+1)Ts) is given by

ml
u,d,om

(k) =




0 if bu,d,om
(k) = 0

max
(
0,min(qu,d,om

(k)+ma
u,d,om

(k),

Som(k), βu,d,om
(k) ·µu,d ·Ts)

)
if bu,d,om

(k) = 1 .

(1)

The traffic arriving at the end of the queue in link (u,d)
is given by the traffic entering the link via the upstream

intersection delayed by the time τ(k) · Ts + γ(k) needed to

drive from the upstream intersection to the end of the queue

in the link; to this extent ma
u,d is updated as follows:

ma
u,d(k) = (1− γ(k)) · ∑

im∈Iu,d

ml
im,u,d (k− τ(k))+

γ(k) · ∑
im∈Iu,d

ml
im,u,d (k− τ(k)−1) , (2)

where
τ(k) = floor

{(
Cu,d −qu,d(k)

)
· lveh

Nlane
u,d · vfree

u,d ·Ts

}
,

γ(k) = rem

{(
Cu,d −qu,d(k)

)
· lveh

Nlane
u,d · vfree

u,d ·Ts

}
, (3)

with floor(x) referring to the largest integer smaller than or

equal to x, and rem(x) is the remainder. The fraction of the

arriving traffic in link (u,d) turning to om ∈ Ou,d is

ma
u,d,om

(k) = βu,d,om
(k) ·ma

u,d(k) . (4)

The new queue lengths are given by the old queue lengths

plus the arriving traffic minus the leaving traffic

qu,d,om
(k+1) = qu,d,om

(k)+ma
u,d,om

(k)−ml
u,d,om

(k) (5)

for each om ∈ Ou,d , and

qu,d(k) = ∑
om∈Ou,d

qu,d,om
(k) . (6)

The new available storage stage depends on the number of

cars that enter and leave the link in the period [kTs,(k+1)Ts):

Su,d(k+1)=Su,d(k)− ∑
im∈Iu,d

ml
im,u,d(k)+ ∑

om∈Ou,d

ml
u,d,om

(k) , (7)

then the number of vehicles in link (u,d) in the period

[kTs,(k+1)Ts) is easily derived as

nu,d(k+1) =Cu,d −Su,d(k+1) . (8)
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Fig. 1. A link connecting two traffic-signal-controlled intersections

B. Simplified Model (S Model)

In the simplified model, every intersection takes the cycle

time as its simulation time interval. The cycle times for

intersection u and d, which are denoted by cu and cd

respectively, can be different from each other. Moreover, the

S model works with (average) flow rates rather than with

number of cars for describing flows leaving or entering links.

Taking the cycle time cd as the length of the simulation

time interval for link (u,d) and kd as the corresponding time

step counter, the number of the vehicles in link (u,d) is

updated according to the input and output average flow rate

over cd at every time step kd by

nu,d(kd +1) = nu,d(kd)+
(

αe
u,d(kd)−α l

u,d(kd)
)
· cd . (9)

The leaving average flow rate is the sum of the leaving

flow rates turning to each output link:

α l
u,d(kd) = ∑

om∈Ou,d

α l
u,d,om

(kd) . (10)

The leaving average flow rate over cd is determined by

the capacity of the intersection, the number of cars waiting

or arriving, and the available space in the downstream link:

α l
u,d,om

(kd) = min
(

βu,d,om
(kd) ·µu,d ·gu,d,om

(kd)/cd , (11)

qu,d,om
(kd)/cd +αa

u,d,om
(kd),

βu,d,om
(kd)(Com −nom(kd))/cd

)
.

The number of vehicles waiting in the queue turning to

link om is updated as

qu,d,om
(kd +1) = qu,d,om

(kd)+(
αa

u,d,om
(kd)−α l

u,d,om
(kd)

)
· cd .(12)

Then, the number of waiting vehicles in link (u,d) is

qu,d(kd) = ∑
om∈Ou,d

qu,d,om
(kd) . (13)

The flow rate entering link (u,d) will arrive at the end of

the queues after a time delay τ(kd) · cd + γ(kd), i.e.,

αa
u,d(kd) = (1− γ(kd)) ·α

e
u,d (kd − τ(kd))+

γ(kd) ·α
e
u,d (kd − τ(kd)−1) , (14)

with

τ(kd) = floor

{(
Cu,d −qu,d(kd)

)
· lveh

Nlane
u,d · vfree

u,d · cd

}
,

γ(kd) = rem

{(
Cu,d −qu,d(kd)

)
· lveh

Nlane
u,d · vfree

u,d · cd

}
. (15)

Before reaching the tail of the waiting queues in link

(u,d), the flow rate of arriving vehicles need be divided by

multiplying it with the turning rates:

αa
u,d,om

(kd) = βu,d,om
(kd) ·α

a
u,d(kd). (16)

The flow rate entering link (u,d) is made up from the flow

rates from all the input links:

αe
u,d(kd) = ∑

im∈Iu,d

α l
im,u,d(kd). (17)

So the flow rate entering link (u,d) is provided by the

combination of the flow rates leaving the upstream links.

Recall that we have different cycle times between upstream

and downstream intersections, so the simulation time steps

are not the same. Some operations have to be carried out to

synchronize the leaving and entering flow rates.

In order to control the urban traffic network, a common

control time interval needs to be defined for the network

model, so that intersections can communicate with each other

and be synchronous. So Tc is defined as the least common

multiple of all the intersection cycle times in the traffic

network, i.e.

Tc = Nu · cu = Nd · cd . (18)

Now we show how the flow rates expressed in the timing

of intersection u can be recast into the timing of intersection

d. First, we transform the discrete time leaving flow rates

from the upstream links into continues time using the zero-

order hold strategy, as

α l,C
im,u,d

(t) = α l
im,u,d(ku), ku · cu ≤ t < (ku +1) · cu, (19)
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Fig. 2. The framework of the MPC controller

and then sample them again to obtain the average flow rates

in time step kd so as to be able used by the downstream link

α l
im,u,d(kd) =

∫ (kd+1)·cd+∆cu,d

kd ·cd+∆cu,d

α l,C
im,u,d

(t)

cd

dt , (20)

where ∆cu,d represents the offset time between the cycle

times of the upstream and the downstream intersections at

the beginning of every control time step.

III. MPC CONTROLLER FOR URBAN TRAFFIC NETWORK

Model Predictive Control [11] is a methodology that im-

plements and repeatedly applies Optimal Control in a rolling

horizon way. In each control step, only the first control

sample of the optimal control sequence is implemented.

Next, the horizon is shifted one sample and the optimization

is restarted again with new information of the measurements.

The optimization is redone based on the prediction model of

the process and an estimate of the disturbances.

Similar to Optimal Control, MPC can predict and find

the optimal solution for the future. Different with Optimal

Control, MPC has the ability to deal with the uncertainty

of the process, which can be caused by the unpredictable

disturbances, the (slow) variation over time of the param-

eters, and model mismatches in the prediction model. But,

in practice, to maintain the on-line computational feasibility,

the optimization will be calculated over a finite time span

instead of up to infinity. MPC can also easily deal with multi-

input and multi-output problems with constraints. Another

advantage of MPC is that one can easily select and replace

the prediction model based on the control requirements.

Fig. 2 shows the structure of the MPC controller. The

control process can be described by the following steps:

1) Prediction model. The model can be selected as

prediction model for MPC controller, if it can pre-

dict the future traffic states used for evaluating the

objective function based on the information of cur-

rent states, predicted disturbances, and future control

inputs. Therefore, both the traffic models presented

in Section II above can be used as the prediction

models for the MPC controller. They can be generally

described as n(k + 1) = f
(
n(k),g(kc),d(k)

)
, where

n(k) is the traffic state (the number of vehicles in a link

at time step k, see (8) and (9) ) needed in evaluating

the objective function; d(k) is the predicted disturbance

(the traffic demand), which is the input traffic flow rate

for the network in the future; g(kc) is the future control

input, e.g. the green time splits.

2) Optimization problem. Suppose the control interval

Tc and simulation interval Ts satisfy Tc = MTs and the

prediction horizon is Np, then the future traffic states

are predicted at simulation time step k as

n̂(k) = [n̂T(k+1 | k) n̂T(k+2 | k) · · · n̂T(k+MNp | k)]T,

based on the predicted traffic demands at simulation

time step k

d̂(k) = [d̂T(k | k) d̂T(k+1 | k) · · · d̂T(k+MNp−1 | k)]T,

and the future traffic control inputs at control step kc

g(kc) = [gT(kc | kc) gT(kc +1 | kc) · · ·

gT(kc +Np −1 | kc)]
T .

The optimization problem with Total Time Spent

(TTS) as objective function can be expressed as

min
g(kc)

JTTS = J
(
n̂(k),g(kc)

)

=
M(kc+Np)

∑
k=Mkc+1

∑
l∈L

Ts · n̂l(k)

s.t. model constraints (21)

Φ(g(kc)) = 0 (cycle time constraints)

gmin ≤ g(kc)≤ gmax

where n̂l(k) is the estimated number of vehicles on link

l at time step k. However, because the optimization

problem is computed on-line, the time taken to solve

it is always a big issue for MPC. Two methods can be

chosen to reduce the on-line computational complex-

ity: (1) define control horizon Nc with Nc < Np; (2)

adopt aggregation techniques. Both of the two methods

decrease the computational complexity by reducing the

number of control variables optimized.

In method (1), the vector of the optimized variables is

g(kc) =[gT(kc | kc) gT(kc +1 | kc) · · ·

gT(kc +Nc −1 | kc)]
T,

and we set

g(kc + i | kc) = g(kc +Nc −1 | kc) i = Nc, · · · ,Np −1.

In the second method, the vector of the optimized

control variables g(kc) ∈R
N is substituted by a vector

v(kc) ∈ R
s with lower dimension by introducing an

aggregation (or blocking) matrix H: g(kc) = H ·v(kc) ,
where H ∈ R

N×s with s < N. The aggregation matrix

is the key factor of aggregation techniques. Differ-

ent aggregation matrices allow different aggregation

schemes. One of the most typical aggregation schemes
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is the blocking scheme, which groups the optimized

variables into several blocks, in each block the vari-

ables are set equal to each other. By defining the

blocking matrix, the number of the variables needed

to be optimized is reduced, and the real-time computa-

tional complexity of the MPC controller also decreases.

However, the control effect also deteriorates to some

extent, because the aggregation constraint reduces the

number of degrees of freedom of the optimization.

3) Rolling horizon. The optimal control input g∗(kc) is

derived from the optimization, then the first sample

of the optimal results, g∗(kc | kc), is transferred to the

process and implemented. When arriving to the next

control step kc+1, the prediction model is fed with real

measured traffic states, the whole prediction horizon is

shifted one step forward, and the optimization starts

over again. This rolling horizon scheme closes the

control loop, enables the system get feedback from

the real traffic network, and makes the MPC controller

adaptive to the uncertainty and disturbances.

IV. SIMULATION EXPERIMENTS

As a macroscopic urban traffic model, BLX model is still

accurate enough to follow the tendency of the traffic flow

from microscopic traffic model, which is demonstrated in

[10]. Therefore, we use the BLX model here to simulate

the real traffic process, and design two MPC controllers

taking the BLX model and the S model as prediction models

respectively. However, the BLX model is still not fast enough

when the size of the controlled network is getting larger.

To reduce the computation time, the S model is proposed.

Simulations are carried out to test whether the controller

based on the S model can reduce the on-line optimization

time compared with the controller based on the BLX model

for both different network scales and different prediction time

horizons. Moreover, the control effects are also investigated

by comparing the TTS of the two MPC controllers with the

TTS of a fixed-time (FT) control strategy.

The network considered is a grid-like network, where the

“Structure” of the network is expressed as the number of

rows and the number of columns, as “(line,column)”. The

number of the nodes in the network can be calculated as

“line×column”. For example, Fig. 3 shows the layout of a

(3,3) network containing 9 nodes.

During the experiment, the simulation time interval of the

BLX model is set to 1 s, while the simulation time intervals

of the S model are cycle times which are 120 s, the same

for all intersections in the network. For both controllers, the

control time interval Tc is 120 s, and the control simulations

run for the same time period of 1200s for all the experiments.

The results of the experiments are listed in Table I-IV. Here,

“tavrg” is the average optimization time over all the control

steps, and “tmax” is the maximum optimization time.

As Table I and II show, the S model-based controller

requires much less on-line optimization time than the BLX

model-based controller for both different network scales and

different prediction horizons. This shows that great improve-

ment is made to the real-time computational feasibility by

applying the S model as the prediction model of MPC

controller. Moreover, the larger the traffic network is, the

longer the controller predicts, and the more optimization time

will be saved. Both the BLX model-based controller and the

S model-based controller obtain a lower TTS, and have better

control effect than the fixed-time control strategy. The “TTS

ratio” in Table I and II shows the percentage of reduction

of the TTS for the MPC controller compared with the fixed-

time controller. From the ratio, we can see that the S model-

based controller only sacrifices a limited amount of control

effect, but obtains much faster on-line optimization speed. It

guarantees the feasibility of implementing in practice the S

model-based controller to larger urban traffic networks.

However, even for the S model-based controller, the on-

line time feasibility becomes an issue again, when the

network scale and the predictive horizon grow larger and

longer. In this situation, we can define control horizon Nc,

that is smaller than predictive horizon Np, to reduce the

number of optimized variables so as to reduce the on-line

optimization time. As Table III shows, the optimization times

are reduced further, but with little influence on the control

effects. Instead of Nc, we can also adopt blocking technique.

In Table IV, the blocking matrix is simply represented by a

vector, in which each element gives the number of variables

in the corresponding block. The results of Table IV show

that better control effects can be obtained, if the blocking

matrix is chosen properly.

V. CONCLUSIONS

We have applied Model Predictive Control (MPC) for

coordinated control of urban traffic networks. MPC has many

advantages, like robustness to disturbances, long-term sight,

easy dealing with constraints, and so on. But despite of these

advantages, it also inevitably gives rise to the problem of high

on-line computational complexity. We propose two ways to

address the scalability issue:

First, we simplify the urban traffic network model to

reduce the computation time as much as possible, while guar-

anteeing that it is still accurate enough. MPC controllers are

built based on both the simplified model and a macroscopic

urban traffic model (BLX) with a higher level of modeling

detail. Simulation experiment results show that the S model-

based controller is much faster than the BLX model-based

controller, both for different network scales and for different



TABLE I

SIMULATION RESULTS FOR DIFFERENT NETWORK SCALES WHEN Np = Nc = 10 (HERE FT MEANS FIX-TIME CONTROL, BLX REFERS TO THE MODEL

OF [4], [10], AND S REFERS TO THE SIMPLIFIED MODEL IN SECTION II)

Network
FT BLX S

TTS (veh· h) tmax (s) tavrg (s) TTS (veh· h) TTS ratio (%) tmax (s) tavrg (s) TTS (veh· h) TTS ratio (%)

(1,1) 100.1 138.8 17.4 66.58 33.47 0.8276 0.4916 67.56 32.50

(1,2) 192.1 462.5 60.7 134.3 30.12 3.495 1.257 135.9 29.28

(2,2) 365.5 646.7 162.3 267.5 26.82 12.79 6.726 273.1 25.27

(3,3) 770.8 8602.9 2137.4 600.3 22.12 255.0 96.51 617.3 19.91

TABLE II

SIMULATION RESULTS FOR DIFFERENT PREDICTIVE TIME HORIZONS WHEN NETWORK=(3,3) (HERE FT MEANS FIX-TIME CONTROL, BLX REFERS

TO THE MODEL OF [4], [10], AND S REFERS TO THE SIMPLIFIED MODEL IN SECTION II)

Np = Nc
FT BLX S

TTS (veh· h) tmax (s) tavrg (s) TTS (veh· h) TTS ratio (%) tmax (s) tavrg (s) TTS (veh· h) TTS ratio (%)

2 770.8 13.048 12.707 609.8 20.89 1.568 0.9229 619.7 19.60

4 770.8 123.81 51.218 610.5 20.80 29.12 12.52 622.8 19.20

6 770.8 1241.1 366.37 603.5 21.70 69.95 23.01 619.8 19.59

8 770.8 5280.4 865.56 604.1 21.63 110.9 40.15 618.9 19.72

10 770.8 8602.9 2137.4 600.3 22.12 255.0 96.51 617.3 19.91

prediction time horizons. Meanwhile, it only loses limited

amount of the control effectiveness.

Second, we try different techniques to reduce the number

of optimization variables, like defining a smaller control hori-

zon and using different aggregation schemes, to improve the

speed of solving the optimization problem. Better simulation

results are obtained, and it is shown that these techniques can

improve the real-time feasibility of the MPC controller.

In the future, we will do further analysis, simulations, and

practical experiments on MPC controllers for large urban

traffic network, taking also more realistic traffic conditions

into consideration. Moreover, research will continue on de-

veloping more efficient optimization algorithms, so as to

further improve the real-time feasibility.
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