
Delft University of Technology
Delft Center for Systems and Control

Technical report 09-048

Model-based control for route choice in
automated baggage handling systems∗

A.N. Tarău, B. De Schutter, and H. Hellendoorn

If you want to cite this report, please use the following reference instead:
A.N. Tarău, B. De Schutter, and H. Hellendoorn, “Model-based control for route
choice in automated baggage handling systems,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, vol. 40, no. 3, pp. 341–351,
May 2010. doi:10.1109/TSMCC.2009.2036735

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/09_048.html

https://doi.org/10.1109/TSMCC.2009.2036735
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/09_048.html


1

Model-based control for route choice in

automated baggage handling systems
Alina N. Tarău, Bart De Schutter, Hans Hellendoorn

Abstract—State-of-the-art baggage handling systems transport
luggage in an automated way using destination coded vehicles
(DCVs). These vehicles transport the bags at high speeds on a
network of tracks. Currently, the DCVs are routed through the
system using routing schemes based on preferred routes. These
routing schemes respond to the occurrence of predefined events.
We do not consider such predefined preferred routes. Instead
we develop advanced control methods to determine the optimal
routing in case of dynamic demand. In order to optimize the
performance of the system we first develop and compare efficient
centralized, decentralized, and distributed predictive methods.
Next, to reduce the computational requirements, we also propose
some heuristic methods. Finally, to assess the performance of
the proposed control approaches, the methods are compared for
several scenarios on a benchmark case study.

Index Terms—Baggage handling systems, route choice, model
predictive control.

I. INTRODUCTION

The increasing need for cost efficiency of the air transport

industry and the rise of low-cost carriers require a cost effec-

tive operation of the airports. The state-of-the-art technology

used by baggage handling systems at airports to transport the

bags in an automated way incorporates scanners that scan the

labels on each piece of luggage, baggage screening equipment

for security scanning, networks of conveyors equipped with

junctions that route the bags through the system, and destina-

tion coded vehicles (DCVs). A DCV is a metal cart with a

plastic tub on top that transports one bag at the time at high

speed on a network of tracks.

Higher-level control problems for a DCV-based baggage

handling system are route assignment for each DCV (and

implicitly the switch control of each junction), line balancing

(i.e. route assignment for each empty DCV such that all the

loading stations have enough empty DCVs at any time instant),

and prevention of buffer overflows. Low-level controllers

determine the velocity of each DCV so that a minimum safe

distance between DCVs is ensured and so that the DCVs

are stopped at switching points, if required. Finally, low-level

control problems are also coordination and synchronization

when loading a bag onto a DCV, and when unloading it to

its end point. Note that we assume the low-level controllers

already present in the system.

We focus on the higher-level control problem of optimally

routing DCVs on the network of tracks so that all the bags

to be handled arrive at their end points within given time

windows. The goal of our work is to develop and compare

All authors are with Delft University of Technology, Delft Center for
Systems and Control, Mekelweg 2, 2628 CD Delft, The Netherlands (e-mail:
a.n.tarau@tudelft.nl, b@deschutter.info, j.hellendoorn@tudelft.nl)

bags

on

conveyor

belts
planes

onto

loaded

to be

bags

conveyors end points

network

of tracks

L1

L2

LL

U1

U2

UU

Fig. 1. Baggage handling system using DCVs.

efficient control approaches (viz. predictive control methods

and heuristic approaches) for route choice control of each

DCV transporting a bag through the track network. These

control approached are developed in a centralized, a decentral-

ized, and a distributed manner. The control approach is said

to be decentralized if the local control actions are computed

without any communication or coordination between the local

controllers, while the control approach is said to be distributed

if additional communication and coordination between neigh-

boring controllers is involved, see e.g. [1], [2].

The paper is organized as follows. In Section II, the event-

based model of the system is presented. Afterwards, in Section

III we introduce the objective function to be used when com-

puting the control law. Section IV presents some preliminaries.

In Section V, VI, VII, VIII, and IX we propose advanced

control methods for computing the route of loaded DCVs. The

analysis of the simulation results and the comparison of the

proposed control methods are elaborated in Section X. Finally,

Section XI draws the concluding remarks.

II. ROUTE CHOICE MODEL AND OPERATIONAL

CONSTRAINTS

A. Operation of the system

Consider the general DCV-based baggage handling system

sketched in Figure 1. This baggage handling system operates

as follows: given a demand of bags (identified by their unique

code) together with their arrival times at the loading stations,

and the network of tracks, the route of each DCV has to be

computed subject to the operational constraints presented in

Section II-C, such that all the bags to be handled arrive at

their end points within given time windows. The bags unloaded

outside their end points’ time window are then penalized as

presented in Section III.

We consider a system with L loading stations and U
unloading stations as depicted in Figure 1. Let us index the

bags loaded onto DCVs at station Ll with ℓ ∈ {1, . . . , L} as

bℓ,1, ..., bℓ,Nl
with Nℓ the number of bags that will be loaded

at station Lℓ during the entire simulation period. Then let



2

replacements
link 0 link 1

(a) switch-in

link 0 link 1

(b) switch-out

Fig. 2. Incoming and outgoing links at a junction.

tarrivalℓ,i denote the time instant when bag bℓ,i actually arrives

at loading station Lℓ (tarrivalℓ,i < tarrivalℓ,i+1 for i = 1, . . . , Nℓ− 1).

Then we define the L-tuple T = (tarrival1 , tarrival2 , . . . , tarrivalL )
that comprises the vectors of bag arrival times t

arrival
ℓ =

[tarrivalℓ,1 . . . tarrivalℓ,Nℓ
]T. We also assume that the track network

has S junctions S1, S2,. . . , SS . Without loss of generality we

can assume that each junction Ss with s ∈ {1, 2, . . . , S} has

maximum 2 incoming links and maximum 2 outgoing links,

both indexed by l ∈ {0, 1} as sketched in Figure 2. If Ss has 2

incoming links then it also has a switch going into the junction

(called switch-in hereafter). If Ss has 2 outgoing links then it

has also a switch going out of the junction (called switch-out

hereafter). This corresponds to current practice in state-of-the-

art baggage handling systems.

B. Model

Later on the model of the DCV-based baggage handling

system will be used for on-line model-based control. So, in

order to obtain a fast simulation, we write the model as an

event-driven one consisting of a continuous part describing the

movement of the individual vehicles transporting bags through

the network, and of the following discrete events: loading

a new bag into the system, unloading a bag that arrives at

its end point, updating the position of the switch switch-in,

and updating the position of a switch-out at a junction, and

updating the velocity of a DCV.

We assume that there is a sufficient number of DCVs present

in the system so that when a bag is at the loading station there

is always a DCV ready to transport it. If this is not the case,

then one has to solve also the line balancing and empty cart

management problem (i.e. optimally assigning loading stations

to empty DCVs and optimally route them towards the loading

stations). We also assume piecewise constant1 velocity for each

DCV.

Let X be the number of bags that the baggage handling

system has to handle and let Xcrt be the total number of

bags that entered the track network up to the current time

instant tcrt ≤ t0+ τmax sim with t0 the initial simulation time

and τmax sim the maximum simulation period. Also, let DCVi

denote the DCV that transports the ith bag that entered the

track network up to the current time instant, i ≤ Xcrt.

The state of the DCV-based baggage handling system con-

sists of the just-crossed junction, and the next-to-be-crossed

junction for each DCV, their speed and their position on the

link that the DCVs travel, and the position of the switch-in and

switch-out at each junction. Then the model of the baggage

1One can always approximate an arbitrary speed profile arbitrarily well by
a piecewise constant speed profile.

handling system is given by the algorithm below.

Algorithm 1. Model of the baggage handling system

1: tcrt ← t0
2: while tcrt ≤ t0 + τmax sim do

3: for ℓ = 1 to L do

4: τ loadℓ ← time until next loading event at Lℓ

5: end for

6: for υ = 1 to U do

7: τunloadυ ← time until next event at Uυ

8: end for

9: for s = 1 to S do

10: τ crosss ← time until next DCV-crosses-Ss event

11: τ sw in
s ← time until next switch-in event at Ss

12: τ sw out
s ← time until next switch-out event at Ss

13: end for

14: for i = 1 to Xcrt do

15:
τv update
i ← time until next velocity-update

event of DCVi

16: end for

17: τmin ← min
(

min
ℓ=1,...,L

τ loadℓ , min
υ=1,...,U

τunloadυ ,

min
s=1,...,S

τ sw in
s , min

s=1,...,S
τ sw out
s , min

i=1,...,Xcrt
τv update
i

)

18: tcrt ← tcrt + τmin

19: take action (i.e. load, unload, cross junction, switch-in

update, switch-out update, velocity update)

20: update the state of the system

21: end while

If multiple events occur at the same time, we take all these

events into account when updating the state of the system.

Next we describe the variables involved in determining the

model of Algorithm 1.

τ loadι : If there is no bag coming towards loading station

Lι, then τ loadι = ∞. Otherwise, a conveyor transports bags

towards loading station Lι. Recall that we assume that there

are sufficient DCVs present in the system so that when a bag is

at the loading station there is a DCV ready for transporting it.

Then, for the current state of the system at time instant tcrt, the

time period τ loadι is equal to max
(

tarrivalι,j − tcrt, tsafeι,j,i

)

where

tarrivalι,j denote the time instant when bag bloadι,j actually arrives

at loading station Lι, j−1 is the number of bags that have been

already loaded from Lι (so, the next bag to be loaded at Lι

has local index j), and τ safeι,j,i expresses the time period that has

to pass until it is safe for bag bloadι,j to be loaded onto a DCV.

Then τ safeι,j,i = 0 if dtravelι,j−1 ≥ dmin and τ safeι,j,i =
dmin−dtravel

ι,j−1

max
(

vjam,vload
ι,j−1

)

otherwise, where dmin is the minimum safe distance between

DCVs, dtravelι,j−1 is the position of the DCV transporting bag

bloadι,j−1 on the outgoing link of loading station Lι, v
load
ι,j−1 is the

velocity of that DCV, and vjam ≪ 1m/s is the speed to be

used in case of jam. The speed vjam is determined based on

empirical data.

τunloadυ : The time period that will pass until the next

unloading event occurs at unloading station Uυ is τunloadυ =
dlink
υ −dtravel,closest

υ

vclosest
υ

where dlinkυ is the length of the incoming

link of unloading station Uυ , dtravel,closestυ is the position of

the DCV closest to Uυ on the incoming link of Uυ , and vclosestυ

is the current speed of this DCV. If there is no DCV on the



3

incoming link of Uυ , then τunloadυ =∞ by definition.

τ crosss : Consider the switch into junction Ss to be positioned

at the current time on the incoming link l ∈ {0, 1} of Ss.

Then the time that will pass until the next DCV crosses Ss

is τ crosss =
dlink
s,l −d

travel,closest

s,l

max
(

vjam,vclosest
s,l

) if there is a DCV on link l into

Ss and τ crosss =∞ otherwise, where dlinks,l is the length of the

incoming link l of junction Ss, dtravel,closests,l is the position

of the DCV closest to Ss on the incoming link l of Ss, and

vclosests,l is the velocity of that DCV.

τ sw in
s , τ sw out

s : Once the toggle command of switch-in and

switch-out is given, the position of the switch-in and switch-

out is toggled after τ sw in
s and τ sw out

s time units respectively.

Assume that the toggle commands are given at tsw in ≥ tcrt

and tsw out ≥ tcrt. Then τ sw in
s = max

(

tsw in, tsw in prev
s +

τ sw
)

− tcrt and τ sw out
s = max

(

tsw out, tsw out prev
s + τ sw

)

−
tcrt where τ sw is the minimum time period after which the

switch at a junction can be toggled, and where tsw in prev
s and

tsw out prev
s are respectively the time instants when the switch-

in and the switch-out at junction Ss have been toggled last.

τv update
i : We calculate τv update

i according to the cases

enumerated below — dmin is the minimum safe distance

between DCVs and dtravelDCVi
is the position of DCVi on the in-

coming link of Ss. First assume DCVi to be traveling towards

junction Ss on link l ∈ {0, 1}, with no other DCV traveling

in front of DCVi on the same link l. Then, if vDCVi
< vmax

and dlinks,l − dtravelDCVi
> dmin, the velocity of DCVi has to be

updated immediately to vmax (τv update
i = 0). If vDCVi

> 0,

dlinks,l −d
travel
DCVi

≤ dmin and the switch-in at Ss is not positioned

on the incoming link l that DCVi travels, then τv update
i = 0

and vDCVi
← 0. Next let DCVprev

i denote the DCV traveling

on the same incoming link as DCVi, in front of DCVi, with

no other DCV between them. Also, let dtravel
DCVprev

i

denote the

position of DCVprev
i on link l. Then, if vDCVi

< vmax and

dtravel
DCVprev

i

−dtravelDCVi
> dmin, τv update

i = 0 and vDCVi
← vmax.

If vDCVi
> vDCVprev

i
and dtravel

DCVprev
i

− dtravelDCVi
≤ dmin,

then τv update
i =

dtravel

DCV
prev
i

−dtravel
DCVi

−dmin

max
(

vjam,vmax−v
DCV

prev
i

) and vDCVi
←

vDCVprev
i

. For any other case, we set τv update
i =∞.

According to the model, for each bag that has to be handled,

we compute the time instants when the bag enters and exits

the track network. Let tloadi denote the time instant when the

ith bag that entered the track network is loaded onto a DCV

and let tunloadi denote the time instant when the same bag

is unloaded at its end point. We denote the model of the

baggage handling system as t = M(T , x(t0),u,v), where:

t = [tload1 . . . tloadX tunload1 . . . tunloadX ]T, u is the route

control sequence, and v is the velocity sequence for each DCV.

C. Operational constraints

The operational constraints derived from the mechanical

and design limitations of the system are the following: (1)

a switch at a junction has to wait at least τ sw time units

after a toggle has occurred, in order to avoid the quickly and

repeatedly movement back and forth of the switch which may

lead to mechanical damage, and (2) the speed of each DCV is

bounded between 0 and vmax. These constraints are denoted

as C(τ sw, vmax) ≤ 0.

III. PERFORMANCE CRITERION

Since the baggage handling system performs successfully

if all the bags are transported to their end point before a

given time instant, from a central point of view, the primary

objective is the minimization of the overdue time. A secondary

objective is the minimization of the additional storage time at

the end point. This objective is required due to the intense

utilization of the end points in a busy airport. Hence, one way

to construct the objective function Jpen
i corresponding to the

bag with index i, i ∈ {1, 2, . . . , X}, is to penalize the overdue

time and the additional storage time. Accordingly, we define

the following penalty for bag index i:

Jpen
i (tunloadi ) =σi max(0, tunloadi − tendi )+

λ1 max(0, tendi − τopeni − tunloadi ) (1)

where tendi is the time instant when the end point closes and

the bags are loaded onto the plane, σi is the static priority of

bag index i (the flight priority), 1 ≤ σi ≤ 10, and τopeni is

the maximum possible length of the time window for which

the end point corresponding to bag index i is open for that

specific flight. The weighting parameter λ1 > 0 expresses the

penalty for the delayed baggage.

However, the above performance function has some flat

parts, which yield difficulties for many optimization algo-

rithms. Therefore, in order to get some additional gradient

we also include the dwell time. This results in:

Ji(t
unload
i ) = Jpen

i (tunloadi ) + λ2(t
unload
i − tloadi ) (2)

where λ2 is a small weight factor (0 < λ2 ≪ 1).

The final objective function is given by:

J tot =
X
∑

i=1

Jpen
i (tunloadi ) (3)

Note that the objective function Ji(t
unload
i ) depends on the

unloading time of bag index i at its end point, and implicitly

it depends on the routes of all the bags to be handled.

Next, in order to determine the route of each DCV trans-

porting a bag, we propose several predictive control methods

— centralized, decentralized, and distributed model predictive

control—, and two heuristic approaches — decentralized and

distributed heuristics.

IV. MODEL-BASED PREDICTIVE CONTROL

Model predictive control (MPC) is an on-line model-based

predictive control design method [3], [4], [5]. Since its devel-

opment in 1980 [6], [7], MPC has become the preferred control

strategy for a large number of industrial processes, see, e.g.

[8] for chemical engineering. Currently, MPC is viewed as

one of the most promising control methods that can deal with

nonlinear systems that are subject to operational constraints.

In the basic MPC approach, given an horizon N , at step k ≥
0, the future control sequence u(k+1), u(k+2), . . . , u(k+N)



4

is computed by solving a discrete-time optimization problem

over a period [tk, tk + τsN ], where tk = t0 + kτs with τs the

sampling time, so that the cost criterion is optimized subject

to the operational constraints and the evolution of the system.

MPC uses a receding horizon approach. So, after computing

the optimal control sequence, only the first control sample is

implemented, and subsequently the horizon is shifted. Next,

the new state of the system is measured or estimated, and a

new optimization problem at time tk+1 is solved using this

new information. In this way, also a feedback mechanism is

introduced.

V. CENTRALIZED MODEL PREDICTIVE CONTROL

We define now a variant of MPC, where k is not a time

index, but a bag index. In this context bag step k corresponds

to the time instant tloadk when the kth bag has just entered the

track network — if k = 0 bag step k corresponds to the time

instant t0. For this variant of MPC, the horizon N corresponds

to the number of bags for which we look ahead, while

computing the control u(k+j) with j ∈ {1, 2, . . . , N} consists

in determining the route of DCVk+j . Next, we implement all

the computed control samples, and accordingly we shift the

horizon with N steps.

Assume that there is a fixed number R of possible routes

from a loading station to an unloading station and that the

R routes are numbered 1, 2, . . . , R. Let r(i) ∈ {1, 2, . . . , R}
denote the route of DCVi. We assume that at bag step k the

route is selected once for each DCV without being adjusted

after the decision has been made. Now let r(k) denote the

future route sequence for the next N bags entering the network

at bag step k, r(k) = [r(k + 1) r(k + 2) . . . r(k +N)]T.

The total objective function of the centralized MPC is:

JCMPC
k,N (r(k)) =

k+N
∑

i=1

Ji(t̂
unload
i )

where t̂unloadi is the predicted unloading time of DCVi de-

pending on the routes of the first k+N bags that entered the

network. Accordingly, the MPC optimization problem at bag

step k is defined as follows:

min
r(k)

JCMPC
k,N (r(k)) s.t.

t =M(T , x(tk), r(k),v(k))
C(τ sw, vmax) ≤ 0

When using centralized MPC, at each bag step k, the future

route sequence r(k) is computed over an horizon of N bags

so that the objective function is minimized subject to the

dynamics of the system and the operational constraints. To

solve this nonlinear, non-convex, integer-valued optimization

problem one could use e.g. genetic algorithms, simulated

annealing, or tabu search [9].

Centralized MPC can compute on-line the route of each

DCV in the network, but it requires large computational efforts

as will be illustrated in Section X. Therefore, we also propose

decentralized and distributed control approaches which offer

a trade-off between the optimality of the performance of

the controlled system and the time required to compute the

solution.

VI. DECENTRALIZED MODEL PREDICTIVE CONTROL

In decentralized model predictive route choice control we

consider each junction separately, as a local system. For all

junctions we will then define similar local MPC problems.

A. Local system

Each local system consists of a junction, its incoming and

its outgoing links. Let us now consider the most complex case,

where junction Ss with s ∈ {1, 2, . . . , S} has both a switch-

in and a switch-out. Moreover, Ss is not directly connected

to an unloading station. Then we first index the bags that

successively cross junction Ss during the entire simulation

period as bs,1, bs,2, . . . , bs,Nbags
s

, where Nbags
s is the number

of bags that cross Ss during the simulation period.

B. Local control measures

In decentralized route choice control we compute the posi-

tions of the switch-in and switch-out of junction Ss for each

bag that crosses Ss. For all the other junctions, the same

procedure is applied.

Recall from Section V that we use a variant of MPC with a

bag index. So, in this approach, the local control is updated at

every time instant when some bag has just entered an incoming

link of junction Ss. Let tcrt be such a time instant. Then for

junction Ss we determine bag index k such that tcrosss,k ≤ tcrts <
tcrosss,k+1, where tcrosss,k is defined as the time instant when bag

bs,k has just crossed the junction. If no bag has crossed the

junction yet, we set k = 0.

Let Nmax be the maximum prediction horizon for a lo-

cal MPC problem and nhorizon
s,l the number of DCVs trav-

eling at time instant tcrts on link l going into Ss. Then,

the local optimization is performed over the next Ns =
min

(

Nmax,
∑1

l=0 n
horizon
s,l

)

bags that will pass junction Ss
after bag index k. By solving this local optimization problem

we compute the control sequence us(k) = [usw in
s (k +

1) . . . usw in
s (k + Ns)u

sw out
s (k + 1) . . . usw out

s (k + Ns)]
T

corresponding to the next Ns bags bs,k+1, bs,k+2, . . . , bs,k+Ns

that will cross the junction. The control decisions usw in
s (k +

1), . . . , usw in
s (k + Ns) of the switch into Ss determine the

order in which the bags cross the junction and the time instants

at which the bags bs,k+1, . . . , bs,k+Ns
enter Ss. The control

decisions usw out
s (k + 1), . . . , usw out

s (k +Ns) determine the

next junction towards which the bag bs,k+1, . . . , bs,k+Ns
will

travel.

C. Local objective function

When solving the local MPC optimization problem for

junction Ss, we will use a local objective function JDMPC
s,k,Ns

. The

local objective function is computed via a simulation of the

local system for the next Ns bags that will cross the junction,

being defined as follows:

JDMPC
s,k,Ns

(us(k)) =

min(Ns,N
cross
s )

∑

j=1

Jk+j(t̂
unload,∗
s,k+j ) + λpen(Ns −N cross

s )

where N cross
s is the number of DCVs that actually crossed

junction Ss during the prediction period, t̂unload,∗s,k+j is the



5

predicted unloading time instant of bag bs,k+j , and λpen is

a nonnegative weighting parameter. N cross
s and t̂unload,∗s,k+j are

determined by simulating the prediction model presented next

for a given control sequence us(k).

D. Local prediction model

The local prediction model at bag index k is an event-driven

model for the local system over an horizon of Ns bags. So,

according to Algorithm 1, for the next Ns bags to cross Ss,

given the current state of the local system, we compute the

period τmin
s until the next event will occur in the local system

(loading if Ss is connected to loading stations, unloading if Ss
is connected to unloading stations, switching at Ss, updating

the speed of a DCV running through the local system), we

shift the current time with τmin
s , take the appropriate action,

and update the state of the local system.

Next we present how we predict the unloading time instant

for each of the next bags to cross Ss during the prediction

period. To this aim, we first consider a fixed release rate during

the prediction period for each outgoing link l ∈ {0, 1} of

Ss. Let ζs,l be the fixed release rate at time instant tcrt. We

now present how we calculate ζs,l given the state of the local

system at tcrt. Let τ rate be the length of the time window over

which we compute the link release rate. The variable τ rate can

be derived using empirical data. If tcrts < τ rate we consider

ζs,l = ζmax with ζmax the maximum number of DCVs per

time unit that can cross a junction using maximum speed. If

tcrts ≥ τ rate, let nrate
s,l denote the number of DCVs that left the

outgoing link l within the time window [tcrts −τ
rate, tcrts ]. Then,

if nrate
s,l > 0 the fixed release rate of link l out of Ss to be used

during the entire prediction period is given by ζs,l =
nrate
s,l

τ rate
,

while if nrate
s,l = 0 we set ζs,l = ε with 0 < ε≪ 1.

Recall that we want to determine the arrival time of bag

bs,k+j with j ∈ {1, . . . , Ns} at its end point. Let Snexts,l

denote the junction that bag bs,k+j will cross next, where

l = usw out
s (k + j) and let Sdests,k+j be the end point of bag

bs,k+j . Then, for each possible route r ∈ Rnext
s,l,k+j , where

Rnext
s,l,k+j is the set of routes from Snexts,l to Sdests,k+j , we predict

the time when bag bs,k+j will arrive at Sdests,k+j via route r as

follows:

t̂unloads,l,r,k+j = tcrosss,k+j + τ̂ links,l,k+j + τ̂ router (4)

where

• tcrosss,k+j is the time instant (computed by the local predic-

tion model) at which bag bs,k+j crosses Ss.

• τ̂ links,l,k+j is the time we predict that bag bs,k+j spends on

link l out of Ss. For this prediction we take:

τ̂ links,l,k+j =























max

(

dlinks,l

vmax
,
ns,l,k+j

ζs,l

)

if link l is not

jammed

max

(

dlinks,l

vjam
,
ns,l,k+j

ζs,l

)

if link l is

jammed

where dlinks,l is the length of link l out of Ss, ns,l,k+j is

the number of DCVs on link l at time instant tcrosss,k+j , and

vjam is the speed to be used in case of jam, vjam ≪ 1. We

consider link l to be jammed only if Qs,l ≥ αQmax
s,l where

Qs,l is the capacity of link l at time instant tcrosss,k+j , Qmax
s,l

is its maximum capacity, and α is a weighting parameter

determined based on empirical data, 0 < α < 1.

• τ̂ router is the predicted travel time on route r ∈ Rnext
s,l,k+j

for an average speed determined based on empirical data.

Then the optimal predicted unloading time instant is:

t̂unload,∗s,k+j = argmin
{t̂unload

s,l,r,k+j
|r∈Rnext

s,l,k+j
}

Jk+j(t̂
unload
s,l,r,k+j)

E. Local optimization problem

So, the MPC optimization problem at junction Ss and bag

step k is defined as follows:

min
us(k)

JDMPC
s,k,Ns

(us(k)) s.t.

t =Mlocal(T , xs(tk),us(k),vs(k))
C(τ sw, vmax) ≤ 0

whereMlocal(T , xs(tk),us(k),vs(k)) describes the local dy-

namics of junction Ss with its incoming and outgoing links,

with xs the state of the local system and vs(k) the velocity

sequence for each DCV in the local system.

After computing the optimal control, only usw in
s (k + 1)

and usw out
s (k + 1) are applied. Next the state of the system

is updated. At bag step k+1, a new optimization will be then

solved over the next Ns bags.

The main advantage of decentralized MPC consists in a

smaller computation time than the one needed when using

centralized control due to the fact that we now compute for

each junction, independently, the solution of a smaller and

simplified optimization problem.

VII. DISTRIBUTED MODEL PREDICTIVE CONTROL

One can increase the performance of the decentralized

control approach proposed above by implementing a dis-

tributed approach that uses additional communication between

neighboring junctions.

A. Levels of influence

In distributed model predictive route choice control we

consider local subsystems, each consisting of a junction Ss
with s ∈ {1, 2, . . . , S}, its incoming and its outgoing links.

But, in contrast to decentralized MPC, data will be now

communicated between neighboring junctions which are char-

acterized by the concept of level of influence. The levels of

influence are defined as follows.

Let us first assign levels of downstream influence to each

junction in the network. We assign downstream influence level

1 to each junction in the network connected via a link to

a loading station. Next, we consider all junctions connected

to some junction with influence level 1 via an outgoing link

of the junction with level 1, and we assign influence level

2 to them. In this way we recursively assign an influence

level to each junction with the constraint that at most κmax
d

downstream influence levels are assigned to a given junction2.

2The constraint that at most κ
d,max downstream influence levels are

assigned to a junction limits the computational complexity and keeps all levels
of influence finite.



6

a

level κd − 1

level κdlevel κd

level κd + 1 level κd + 1

level κd + 1 level κd + 1

level κd + 2level κd + 2

S1 S2

S3 S4

S5 S6

Fig. 3. Levels of downstream influence for parallel computation.

For example see Figure 3 where we define maximum 2 levels

of downstream influence for each junction in the network. For

this example we have considered the junctions S1 and S2 to

have assigned downstream influence level κd−1. Then S3 and

S4 have assigned level κd (since these junctions are connected

to S1 and S2 via outgoing links). Next, we assign influence

level κd+1 to S4, S5, S3, and S6 (since they are connected to

S3 and S4). Note that now S3 and S4 have assigned 2 levels

of downstream influence κd and κd + 1. Therefore, S5 and

S6 have also assigned influence level κd + 2 (since they are

connected to S3 and S4 with influence level κd + 1).

Similarly we can also assign levels of upstream influence

to each junction in the network. We assign upstream influence

level 1 to each junction in the network connected via a link to

an unloading station. Next, we assign upstream influence level

2 to all the junctions connected by a link to some junction on

upstream influence level 1. Recursively, we then assign levels

of upstream influence to each junction with the constraint that

at most κmax
u levels of upstream influence are assigned to a

given junction.

B. Distributed MPC with a single round of downstream com-

munication

Let us now consider distributed MPC with a single round

of downstream communication. This means that the local

controller of each junction with influence level κd = 1 solves

the local optimal control problem of Section VI.

After computing the optimal switch control sequence, each

junction with influence level κd communicates to its neigh-

boring junctions at level κd + 1 which bags (out of all the

bags over which we make the prediction for the corresponding

junction with influence level κd) will enter the incoming link

of the junction at level κd+1 and at which time instant. Next,

we iteratively consider the junctions at levels κd = 2, 3, etc.

until level of influence Kdownstream, were Kdownstream is the

largest level of downstream influence assigned in the network.

Then, for each junction on influence level κd > 1, we compute

a local solution to the local MPC problem as presented next.

Assume Ss with s ∈ {1, . . . , S} to have assigned influence

level κd > 1. Let Sprevs,l denote the neighboring junction of Ss
connected via the incoming link l of Ss (accordingly, Sprevs,l has

assigned influence level κd − 1). Then, we compute a local

solution for Ss to the local MPC problem over an horizon of

Ns = min
(

Nmax,
1
∑

l=0

(

nhorizon
s,l + npred cross

s,l,0 + npred cross
s,l,1

)

)

bags where Nmax is the maximum prediction horizon for the

local MPC problem, nhorizon
s,l is the number of DCVs traveling

at time instant tcrt on link l ∈ {0, 1} going into Ss, and

npred cross
s,l,m with m ∈ {0, 1} is the number of DCVs traveling

towards Sprevs,l on its incoming link m that we predict (while

solving the local optimization problem at Sprevs,l ) to cross Sprevs,l

and continue their journey towards Ss.

Note that in this approach Mlocal(T , xs(tk),us(k),vs(k))
describes the local dynamics of junction Ss with its incoming

and outgoing links and additional data from neighboring

junctions (if any).

Every time some bag has crossed some junction we update

the local control of junctions in the network as follows.

Assume that some bag has just crossed junction Ss at level κd.

Then, we update the control of Snexts,l at level κd+1, Snexts,l,m at

level κd +2, and so on until level Kdownstream, where Snexts,l,m

is the junction connected to Snexts,l via the outgoing link m of

Snexts,l .

Note that the controllers of the junctions on level κd have

to wait for the completion of the computation of the switching

sequences of the controllers on the previous level before

starting to compute their future control action. Therefore, when

comparing with decentralized MPC, such distributed MPC

may improve the performance of the system, but at the cost of

higher computation time due to the required synchronization

in computing the control actions.

C. Distributed MPC with a single round of downstream and

upstream communication

Now we add an extra round of communication and consider

distributed MPC with a round of downstream and upstream

communication. This method involves the following steps.

Every time a bag has crossed a junction we first compute the

local control sequences according to the downstream levels of

influence as explained above. Next, for the junctions on level

1 of upstream influence we update the release rate of their in-

coming links as follows. We take as example junction Ss with

κu = 1. For all other junctions we apply the same procedure.

We virtually apply at Ss the optimal control sequence u
∗
s that

we have computed when optimizing downstream. Let tlast,∗s

be the time instant at which the last bag crossed Ss (out of

all the bags over which we make the prediction for Ss). If

tlast,∗s < τ rate we set ζs,l = ζmax for l = 0, 1. Otherwise, if

nrate
s,l > 0, we set ζs,l =

nrate
s,l

τ rate
with nrate

s,l the number of DCVs

that left the outgoing link l of Ss within the time window

[tlast,∗s − τ rate, tlast,∗s ]. Finally, if nrate
s,l = 0 we set ζs,l = ε.

Next we solve the local MPC problem presented in Section

VII-B using the updated release rates and we compute the local

control of all junctions at upstream level κu + 1. Recursively,

we compute the local control until level Kupstream where

Kupstream is the largest level of upstream influence assigned

in the network.

By also performing the upstream round of communication,

more information about the future congestion is provided via

the updated release rate. This information might change the

initial intended control actions of each junction. Therefore, this



7

new variant of distributed MPC may increase the performance

of the system, but also the computational effort increases.

VIII. DECENTRALIZED HEURISTIC APPROACH

Decentralized MPC solves the switch control problem

with the smallest computational effort among all the MPC

approaches considered in this paper. However, in order to

lower the computation time even more, we propose heuristic

approaches to control the route of each DCV in this section and

the next one. In contrast to decentralized MPC, the heuristic

approaches use a prediction horizon of one step only. Each

switch is now locally controlled based on heuristic rules as

presented next. The local switch control of the decentralized

heuristic approach is determined based only on local informa-

tion regarding the flow of DCVs on the incoming and outgoing

links of a junction. Consider junction Ss with s ∈ {1, 2, ..., S}.

A. Control of the switch-in

If Ss has a switch-in, every time when a bag enters one

of the incoming links of Ss we update the local control of

the switch-in at Ss. Let tcrt be such a time instant. Then we

compute (as presented next) the control variable τ sw in
s which

represents the time period until the position of the switch-in

has to be changed.

For a junction Ss, we define the following variables:

• Γs,l is the set of bags transported by DCVs that travel on

the incoming link l ∈ {0, 1} of junction Ss at the time

instant tcrt,
• ρstatics,l is the total static priority of link l, ρstatics,l =
∑

i∈Γs,l
σi,

• ρdyns,l is the total dynamic priority of link l, ρdyns,l =
∑

i∈Γs,l

δ̂i
δmax
i

with δ̂i the estimate of the actual time bag

i requires to get from its current position to its final

destination in case of no congestion and maximum speed,

and δmax
i the maximum time left to bag i to spend in

the system while still arriving at the plane on time. If

bag i misses the flight, then the bag has to wait for

a new plane with the same destination. Hence, a new

departure time is assigned to bag i, and consequently

tnew end
i for bag i is considered. Then the variable δmax

i

is defined as δmax
i = tendi − tcrt if tendi − tcrt > 0 and

δmax
i = tnew end

i − tcrt if tendi − tcrt ≤ 0.

In order to determine the next position of the switch-in at Ss
we compute the performance measure psw in

s,l for l = 0, 1 every

time a new bag enters the incoming link l. This performance

measure takes into account the static and dynamic priorities

of the bags transported by DCVs on the link l, and the current

position of the switch-in at junction Ss (due to the operational

constraint according to which the position of a switch at a

junction can only change after minimum τ sw time units):

psw in
s,0 = wst prρstatics,0 + wdyn prρdyns,0 − wsw inτ swIcrts

psw in
s,1 = wst prρstatics,1 + wdyn prρdyns,1 − wsw inτ sw(1− Icrts )

where Icrts is the current position of the switch-in at junction

Ss (i.e. Icrts = 0 if the switch-in is positioned on the incoming

link 0, and Icrts = 1 if the switch-in is positioned on the

incoming link 1). The weighting parameters wst pr, wdyn pr,

and wsw in are calibrated by solving an off-line optimization

problem (for more details see [10]).

Let zs,l ∈ Γs,l denote the bag traveling on the incoming

link l of Ss and which is closest to Ss and let τarrival at Ss

l be

the time period that the DCV transporting bag zs,l needs to

travel (at maximum speed) the distance between the current

position of bag zs,l and Ss.

The position of the switch-in at Ss is toggled only if

psw in
s,0 > psw in

s,1 and Icrts = 1, or if psw in
s,1 > psw in

s,0 and Icrts =
0. If this is the case, then the current position of the switch-in

is changed after τ sw in
s = max(τ sw−τ sw in prev

s , τarrival at Ss

1−Icrt
s

)

time units where τ sw in prev
s is the time for which the switch-

in at junction Ss with s ∈ {1, 2, . . . , S} has been in its current

position.

B. Control of the switch-out

If Ss has a switch-out, every time when a bag is at junction

Ss we compute the control variable τ sw out
s which represents

the time period until the position of the switch-out has to be

changed. This goes as follows.

Assume that bag i is at junction Ss. Then, using (4), we

can predict the unloading time t̂unloads,l,r,i of bag i at Sdests,i , the

end point of bag i, when traveling on link l ∈ {0, 1} out of

Ss and route r ∈ Rnext
s,l,i where Rnext

s,l,i is the set of routes from

Snexts,l to Sdests,i .

Next we compute the cost criterion csw out
s,l,i for l = 0, 1 that

takes into account Ji(t̂
unload,∗
s,l,i ), where

t̂unload,∗s,l,i = argmin
{t̂unload

s,l,r,i
|r∈Rnext

s,l,i
}

Ji(t̂
unload
s,l,r,i ),

and the current position Ocrt
s of the outgoing switch:

csw out
s,0,i = wpenJi(t̂

unload,∗
s,0,i ) + wsw outτ swOcrt

s

csw out
s,1,i = wpenJi(t̂

unload,∗
s,1,i ) + wsw outτ sw(1−Ocrt

s )

The weighting parameters wpen and wsw out are previously

calibrated.

The position of the switch-in at junction Ss is toggled only

if csw out
s,0,i < csw out

s,1,i and Ocrt
s = 1, or if csw out

s,1,i < csw out
s,0,i and

Ocrt
s = 0. If this is the case, then the switch-out is toggled

after τ sw out
s = max(0, τ sw−τ sw out prev

s ) where τ sw out prev
s

is the time for which the switch-out at junction Ss with s ∈
{1, 2, . . . , S} has been in its current position.

IX. DISTRIBUTED HEURISTIC APPROACH

In this section we develop an approach where the switch

control is performed based on both local information and

additional data regarding the flow of DCV on the incoming

and outgoing links of the neighboring junctions. This is an

extension of the previous decentralized heuristic approach.

A. Control of the switch-in

As in Section VIII-A, we consider the local system corre-

sponding to a junction Ss with 2 incoming and 2 outgoing

links, the control of the switch-in being updated every time



8

Ss

Snexts,0 Snexts,1

Snexts,0,0
Snexts,0,1

Snexts,1,0

Snexts,1,1

Fig. 4. Neighboring junctions.

(tcrt) some bag enters the incoming links of Ss. When apply-

ing the distributed heuristic approach we compute again the

objective functions psw in
s,0 and psw in

s,1 defined in the previous

section. However, in this section we also take into account the

bags that will come towards Ss from its neighboring junctions

in the next τpred time units. The period τpred is determined

based on empirical data. Let Sprevs,l be the junction connected

to Ss via the incoming link l ∈ {0, 1} of Ss.

We predict which bags will cross Sprevs,l and continue trav-

eling towards Ss as follows. At time instant tcrt we compute

the control sequence of the switch-in and switch-out using the

decentralized heuristic rules for switch-in presented above, and

the heuristic rules for switch-out presented in Section IX-B

respectively. As prediction model we use the simulation model

of Algorithm 1 for the time period [tcrt, tcrt+τpred). As result

of this simulation we determine which bags will cross Sprevs,l

and continue traveling towards Ss and at which time they will

cross Sprevs,l . Let Ωl be the set of bags that will cross Sprevs,l

when traveling towards Ss in the next τpred time units.

The time when junction Ss toggles its position is computed

as in Control of the switch-in of Section VIII. The difference

is that here we use the following performance measures:

psw in
s,0 =wst pr(ρstatics,0 + ϕstatic

s,0 ) + wdyn pr(ρdyns,0 + ϕdyn
s,0 )

− wsw inτ swIcrts

psw in
s,1 =wst pr(ρstatics,1 + ϕstatic

s,1 ) + wdyn pr(ρdyns,1 + ϕdyn
s,1 )

− wsw inτ sw(1− Icrts )

where ϕstatic
s,l is total static priority of the bags in Ωs,l,

ϕstatic
s,l =

∑

i∈Ωs,l
σi and ϕdyn

s,l is the total dynamic priority of

the bags in Ωs,l, ϕ
dyn
s,l =

∑

i∈Ωs,l

δ̂i
δmax
i

.

B. Control of the switch-out

The position of the switch-out of junction Ss is computed

similarly to Section VIII-B. However, in this case, when

computing the predicted objective function for link l = 0, 1
and bag i, we do not look only at the congestion on the

outgoing links of junction Ss, but also at the congestion farther

in the network. So, we will predict the time that bag i needs

to travel on the next3 νmax links when trying to reach its

destination where νmax denotes the maximum number of links

we look ahead.

3We look only at the next ν
max links in order to get some extra infor-

mation on the network congestion state, while keeping the communication
requirements low.

Let us consider next the case where νmax = 2. As sketched

in Figure 4, Snexts,l,m for m = 0, 1 denotes the neighboring

junction of Snexts,l connected via link m out of Snexts,l . Then

the time period that bag i needs to travel link m out of Snexts,l

considering the release rate ζs,l,m of link m out of Snexts,l is

defined as:

τ̂ links,l,m,i =























max

(

dlinks,l,m

vmax
,
NDCV

s,l,m,i

ζl,m

)

if link l is not

jammed

max

(

dlinks,l,m

vjam
,
NDCV

s,l,m,i

ζl,m

)

if link l is

jammed

where

• dlinks,l,m is the length of the link m out of Snexts,l ,

• NDCV
s,l,m,i = ns,l,m,i + ñs,l,m,i with ns,l,m,i the number of

DCVs on link m out of Snexts,l at the time instant when bag

i crosses junction Ss and ñs,l,m,i the predicted number

of DCVs on link l out of Ss that choose link m out of

Snexts,l . We assume that for a junction Snexts,l , a fraction ηs,l
of the DCVs crossing Snexts,l take link m = 0 out of Snexts,l .

The fraction ηs,l is determined based on empirical data.

Let Rnext
s,l,m,i with l ∈ {0, 1} and m ∈ {0, 1} denote the set

of routes from junction Snexts,l,m to Sdests,i . In this case, for each

route r ∈ Rnext
s,l,m,i we predict the time t̂unloads,i,l,m,r when bag i

will reach Sdests,i if the bag takes link l out of Ss, link m out

of Snexts,l , and route r. This time is given by:

t̂unloads,l,m,r,i = tcrosss,i + τ̂ links,l,i + τ links,l,m,i + τ router

where tcrosss,i is the time instant at which bag i crosses Ss
defined as tcrosss,i = tcrt +max(0, tx− τ sw out prev

s ), τ̂ links,l,m,i is

the time we predict that bag i will spend on link m out of Snexts,l

and τ router is the average travel time on route r ∈ Rnext
s,l,m,i.

Finally, in computing the cost criterion csw out
s,l,i for l = 0, 1

defined in Section VIII we use Ji(t̂
unload,∗
s,l,i ) where t̂unload,∗s,l,i

is the predicted unloading time that optimizes the objective

function of bag i when choosing link m ∈ {0, 1} out of Snexts,l ,

and route r ∈ Rnext
s,l,m,i:

t̂unload,∗s,l,i = argmin
{t̂unload

s,l,m,r,i
|r∈Rnext

s,l,m,i
∧m∈{0,1}}

Ji(t̂
unload
s,l,m,r,i)

X. CASE STUDY

In this section we compare the proposed control methods

based on a simulation example.

A. Set-up

We consider the network of tracks depicted in Figure 5

with 4 loading stations, 2 unloading station, and 9 junctions.

We consider this network because on the one hand it is

simple, allowing an intuitive understanding of and insight in

the operation of the system and the results of the control, and

because on the other hand, it also contains all the relevant

elements of a real set-up.

We assume that the velocity of each DCV varies between

0m/s and vmax = 20m/s. The lengths of the track segments

are indicated in Figure 5.



9

50m 50m

150m

60m 60m

300m

150m

100m 100m

300m

400m 400m

100m100m

50m 50m

50m

50m

100m 100m

L1 L2 L3 L4

S1

S2
S3

S4
S5 S6 S7

S8 S9

U1 U2

Fig. 5. Case study for a DCV-based baggage handling system.

In order to faster assess the efficiency of our control method

we assume that we do not start with an empty network but

with a network already populated by DCVs transporting bags.

B. Scenarios

For the calibration we have defined 18 scenarios where 120
bags will be loaded into the baggage handling system (30
bags at each loading station). We have considered 3 classes of

demand profiles. According to these classes, the bags arrive

at each loading station in the time interval [t0, t0 +100 s], the

arrival times at a loading station being allocated randomly,

using a uniform distribution according to the following cases

(the tight arrival time instants that we use in these scenarios

have the purpose to faster assess the efficiency of the proposed

control methods): (1) the bags arrive at the loading station with

a constant rate; (2) 5 bags arrive at a loading station during

each of the time intervals [t0, t0 + 40 s) and [t0 + 60 s, t0 +
100 s], and the rest of 110 the bags arrive during [t0+40 s, t0+
60 s); (3) 10 bags arrive during the time interval [t0, t0+80 s)
and the rest of the bags arrive after t = t0 + 80 s.

We have also considered 2 different initial states of the

system where 60, and respectively 120 DCVs are already

transporting bags in the network, running from loading stations

L1 . . . ,L4 to junctions S1 and S2, from S1 to S2, and from S3
to S2. Their position at t0 and their static priorities ∈ {1, 2}
are assigned randomly.

The bags to be handled can be organized in 2 groups

of bags. The first group consists of the bags that populate

the DCV network before t0 and the second one consists of

the bags that enter the network after t0. For a maximum

storage period of 100 s at unloading stations, we examine both

situations where the transportation of the bags is very tight (the

last bag that enters the system can only arrive in time at the its

endpoint if the DCV travels the shortest route with maximum

speed), and respectively more relaxed.

C. Results

To solve the MPC optimization problems we have chosen

a genetic algorithm with multiple runs of the Matlab opti-

mization toolbox Genetic Algorithm and Direct Search since

0 5 10 15

10
0

10
5

centralized MPC

decentralized MPC

distributed MPC 1

distributed MPC 2

decentralized HR

distributed HR

0 5 10 15
10

−2

10
0

10
2

10
4

10
6

centralized MPC

decentralized MPC

distributed MPC 1

distributed MPC 2

decentralized HR

distributed HR

J
to

t
(s

)
to

ta
l

C
P

U
ti

m
e

(s
)

scenario index

scenario index

Fig. 6. Comparison of the results obtained using the proposed centralized,
decentralized, and distributed control approaches (MPC and heuristics) for
the total closed-loop simulation. In order to visualize on the logarithmic scale
results such as J

tot = 0 for some scenario, we set Jtot = 10−4 for that
scenario.

simulations show that this optimization technique gives good

performance, with the shortest computation time.

Based on simulations we now compare, for the given

scenarios, the proposed control methods. For all the proposed

predictive control methods we have set the horizon to 3
bags. In Figure 6 we plot the total performance index J tot

and the total computation time4 obtained when using the

proposed control approaches. We plot the performance index

corresponding to centralized MPC only for scenarios where the

initial population of the network of tracks is small (60 DCVs)

since the computation time for the case where the network is

populated with 120 DCVs is larger than 106 s.

One expects that the best performance of the system is

obtained when using centralized route choice control. This

would have happened if we had allowed more runs5 and a

larger computation time6 to calculate the solution of an MPC

optimization problem. However, centralized control becomes

intractable in practice when the number of junctions is large

due to the high computation time required.

Simulation results indicate that using decentralized MPC

lowers the computation time. Furthermore, the results confirm

that distributed MPC gives better performance than decentral-

ized MPC, but at the cost of higher computational effort. Note

that the computation time of both decentralized and distributed

MPC is obtained while, for solving one optimization problem,

we run the genetic algorithm 4 times on a single computer,

with a limited number of function evaluations6.

4The simulations were performed on a 3.0 GHz P4 with 1 GB RAM.
5In these simulations we ran the genetic algorithm 4 times for each

optimization problem.
6In order to reduce the computational effort we have optimized the number

of function evaluations for each run with respect to the length of the prediction
horizon. In future work we will also optimize other parameters of the search
algorithm such as mutation and crossover fractions since this may improve
the efficiency of the control approach.



10

Finally, the decentralized and distributed heuristic ap-

proaches give typically worse results than distributed MPC,

but with very low computation time.

One can easily gain several orders of magnitude in the total

computation time of the proposed control approaches by using

parallel computation when solving an optimization problem,

better implementation, object coded programming languages

instead of Matlab, or dedicated optimization algorithms.

XI. CONCLUSIONS AND DISCUSSION

We have considered the baggage handling process in large

airports using destination coded vehicles (DCVs) running at

high speeds on a network of tracks. A fast event-driven model

of the continuous-time baggage handling process has been

determined. Next we have considered the route choice control

problem for each DCV transporting bags on the track network.

In order to optimize the performance of the system, we have

proposed predictive control methods that can be used to route

the DCVs through the network (centralized, decentralized, and

distributed predictive control) and two heuristic approaches.

The results show that the best performance of the system

is obtained using centralized control. However, the centralized

approach is not tractable in practice due to the large com-

putational effort that this method requires. Decentralized ap-

proaches lower the computational effort, but using them would

result in decrease of efficiency. The distributed approaches

offer a balanced trade-off between the optimality of the system

and the time required to compute the route choice.

In future work we will analyze an alternative approach for

reducing the complexity of the computations by approximating

the nonlinear route choice problem with linear ones by using

mixed integer linear programming theory. First steps towards

this direction are presented in [11] and [12]. Furthermore, in

future work, we will also consider the line balancing problem

(i.e. optimally assigning loading stations to the DCVs that

unloaded their bag) and empty cart management (optimally

route the empty DCVs towards the assigned loading stations).

Finally, in future work we will also test these approaches on

a full scale system.

ACKNOWLEDGMENTS

This research is supported by the STW-VIDI project “Multi-

Agent Control of Large-Scale Hybrid Systems”, by the BSIK

project “Next Generation Infrastructures”, by the Transport

Research Centre Delft, by the Delft Research Centre Next

Generation Infrastructures, and by the European STREP

project “Hierarchical and Distributed Model Predictive Control

of Large Scale Systems”.

REFERENCES

[1] D. Šiljak, Decentralized Control of Complex Systems. San Diego,
California, USA: Academic Press, 1991.

[2] G. Weiss, Multiagent Systems: A Modern Approach to Distributed

Artificial Intelligence. Cambridge, Massachusetts, USA: The MIT
Press, 2000.

[3] E. Camacho and C. Bordons, Model Predictive Control in the Process

Industry. Berlin, Germany: Springer-Verlag, 1995.
[4] J. Rawlings and D. Mayne, Model Predictive Control: Theory and

Design. Madison, Wisconsin, USA: Nob Hill Publishing, 2009.

[5] R. Findeisen, F. Allgöwer, and L. Biegler, Eds., Assessment and Future

Directions of Nonlinear Model Predictive Control, ser. Lecture Notes in
Control and Information Sciences. Berlin, Germany: Springer-Verlag,
2007, vol. 358.

[6] J. Richalet, A. Rault, J. Testud, and J. Papon, “Model predictive heuristic
control: Applications to industrial processes,” Automatica, vol. 14, no. 1,
pp. 413–428, Dec. 1978.

[7] C. Cutler and B. Ramaker, “Dynamic matrix control - a computer control
algorithm,” in Proceedings of Joint American Control Conference, San
Francisco, California, USA, Aug. 1980, paper WP5-B.

[8] Z. Nagya, B. Mahnb, R. Franke, and F. Allgöwer, “Evaluation study of
an efficient output feedback nonlinear model predictive control for tem-
perature tracking in an industrial batch reactorstar,” IEEE Transactions

on Control Systems Technology, vol. 15, no. 7, pp. 839–850, Jul. 2007.
[9] P. Pardalos and M. Resende, Eds., Handbook of Applied Optimization.

Oxford, UK: Oxford University Press, 2002.
[10] A. Tarău, “Model-based control for postal automation and baggage

handling,” Ph.D. dissertation, Delft University of Technology, 2010.
[11] A. Tarău, B. De Schutter, and J. Hellendoorn, “Predictive route choice

control of destination coded vehicles with mixed integer linear program-
ming optimization,” in Proceedings of the 12th IFAC Symposium on

Control in Transportation Systems, Redondo Beach, California, USA,
Sep. 2009, pp. 64–69.

[12] A. Tarău, B. De Schutter, and H. Hellendoorn, “Hierarchical route
choice control for baggage handling systems,” in Proceedings of the 12th

International IEEE Conference on Intelligent Transportation Systems,
St. Louis, Missouri, USA, Oct. 2009, pp. 679–684.


