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Chapter 1

Distributed Predictive Control for Energy Hub

Coordination in Coupled Electricity and Gas

Networks

M. Arnold, R.R. Negenborn, G. Andersson, and B. De Schutter

Abstract In this chapter, the operation and optimization of integrated electricity and

natural gas systems is investigated. The couplings between these different infrastruc-

tures are modeled by the use of energy hubs. These serve as interface between the

energy consumers on the one hand and the energy sources and transmission lines

on the other hand. In previous work, we have applied a distributed control scheme

to a static three-hub benchmark system, which did not involve any dynamics. In

this chapter, we propose a scheme for distributed control of energy hubs that do

include dynamics. The considered dynamics are caused by storage devices present

in the multi-carrier system. For optimally incorporating these storage devices in the

operation of the infrastructure, their capacity constraints and dynamics have to be

taken into account explicitly. Therefore, we propose a distributed Model Predictive

Control (MPC) scheme for improving the operation of the multi-carrier system by

taking into account predicted behavior and operational constraints. Simulations in

which the proposed scheme is applied to the three-hub benchmark system illustrate

the potential of the approach.
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1.1 Introduction

1.1.1 Multi-carrier systems

Most of today’s energy infrastructures evolved during the second part of the last

century and it is questionable whether these infrastructures will meet tomorrow’s

requirements on flexibility and reliability if their operation is not made more intel-

ligent. The on-going liberalization of the energy markets involves extended cross-

border electricity trading and exchange activities, which implicate that electricity

networks have to operate closer and closer to their capacity limits. In addition, is-

sues such as the continuously growing energy demand, the dependency on limited

fossil energy resources, the restructuring of power industries, and the increasing so-

cietal desire to utilize more sustainable and environmentally friendly energy sources

represent future challenges for both energy system planning and operation.

Nowadays, different types of infrastructures, such as electricity, natural gas, and

local district heating infrastructures, are mostly planned and operated independently

of each another. However, the integration of distributed generation plants, such as

so-called co-generation and tri-generation plants [7, 13] links these different types

of infrastructures. E.g., small-scale combined heat and power plants (µCHP) con-

sume natural gas to produce electricity and heat simultaneously. In this way, such

systems affect infrastructures for electricity and gas networks, as well as infras-

tructures for district heating. As the number of such generation units increases, the

different infrastructures become more and more coupled.

Several conceptual approaches have been examined for describing systems in-

cluding various forms of energy. Besides “energy-services supply systems” [11],

“basic units” [5], and “micro grids” [18], so-called “hybrid energy hubs” [10] are

proposed to address these kind of systems. The latter formulation has been estab-

lished within the project “Vision of Future Energy Networks”, which has been initi-

ated at ETH Zürich. In this project, a general modeling and optimization framework

is developed for multi-carrier energy systems, so-called “hybrid energy systems”,

where the term “hybrid” indicates the usage of multiple energy carriers. The cou-

plings between the different energy carriers are taken into account by the energy

hub concept, with which storage of different forms of energy and conversion be-

tween them is described. Principally, energy hubs serve as interface between the

consumers and the transmission infrastructures of the different types of energy sys-

tems.

Because of the increasing number of distributed generation facilities with mostly

intermittent energy infeed (generation profiles), the issue of storing energy becomes

more important. Electric energy storage devices are expensive and their operation

causes energy losses. A more effective option is the operation of a µCHP device

in combination with a heat storage device. By means of the heat storage device,

the µCHP device can be operated with a focus on following the electric load while

storing the simultaneously produced heat. In general, the trend does not go towards

large storages but rather in direction of small local storages, such as local hot water
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Fig. 1.1: Sketch of a system of three interconnected energy hubs.

storages within households. Beyond that, it could be expected that within the next

20 years, a huge amount of small and cheap energy storage units will be available,

provided by PHEVs (plug-in hybrid electric vehicles).

Recently, research has addressed the integrated control of combined electricity

and natural gas systems, e.g., in [2, 3, 21, 26]. While [21, 26] analyze the impact of

natural gas infrastructures on the operation of electric power systems, [2, 3] directly

address the integrated natural gas and electricity optimal power flow.

Figure 1.1 illustrates an exemplary hub based energy system supplied and inter-

connected by natural gas and electricity networks. The electricity network comprises

four network nodes (Ne
1–Ne

4), whereas the natural gas network only features one net-

work node N
g
1. Three hubs are present in the system, where each hub interfaces the

natural gas and electricity distribution networks with the corresponding supply area.

This illustration represents the supply of a town that is divided into industrial (hub

H1), commercial (hub H2), and private/residential load (hub H3) supply areas. The

internal structure of each hub depends on the specific loads present at that hub.

For example, hubs may contain electrical transformers, gas turbines, furnaces, heat

exchangers, etc., but also storage devices such as heat storages or batteries. In the

depicted system, both natural gas and electricity is exchanged with adjacent systems

via network nodes N
g
1 and Ne

1. Furthermore, a solar power plant is connected to the

electric network node Ne
1 as a power generation source outside the hub. Besides that,

Ne
4 connects the system with hydro and wind power plants.
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Fig. 1.2: Sketch of a centralized and distributed control architecture for a system of three

interconnected control areas. The solid arrows refer to measurements/actions between the

physical system and the control unit(s). Information exchange between control units is indi-

cated by dashed arrows.

1.1.2 Control of energy hubs

To determine the optimal operation of a multi-carrier energy system, an optimal

power flow problem has to be solved. An optimal power flow problem is a general

optimization problem, which is formulated as an objective to be minimized, subject

to system constraints to be satisfied. In particular, the power flow equations of the

different energy carriers are part of these system constraints. By solving this optimal

power flow problem, the optimal operational set-points of the system, i.e., of the

energy generation units, converters and storage devices, can be determined.

In the considered model storage devices with dynamic behavior are present.

Since these storage devices cause a dependency between consecutive time steps,

optimization over multiple time steps is required. Therefore, for the optimal opera-

tion of the system, actions have to be determined taking the expected future behavior

of the system into account. For optimizing the operation over multiple time steps,

we propose to use model predictive control (MPC) [6, 19]. MPC is widely used in

different application areas, since system dynamics, data forecasts, and operational

constraints (system constraints) can be taken into account explicitly. In our case,

we use MPC to determine the actions for the individual energy hubs that give the

best predicted behavior, e.g., minimal energy costs, based on characteristics of the

transmission infrastructures, the dynamics of the storage devices, and the load and

price profiles. By using this predictive approach, the energy usage can be adapted

to expected fluctuations in the energy prices, as well as to expected changes in the

load profiles.

In an ideal situation, a centralized, supervisory controller can measure all vari-

ables in the network and determines actions for all actuators. This centralized con-

troller solves at each decision step one optimization problem to determine actions
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for the entire system. The centralized control architecture is shown on the left-hand

side in Figure 1.2, where a central coordinator supervises three interconnected con-

trol areas, e.g., hubs. Although for small-scale systems, centralized control may

work well, for large-scale systems, a high amount of data needs to be transferred

along the whole system and large optimization problems will have to be solved,

resulting in high computational requirements. In addition, for large-scale systems,

it may simply not be possible to have a single controller controlling all areas, in

the case that these areas are owned by different parties. These difficulties could be

overcome by implementing a distributed approach as explained in the following.

When solving the optimization problem in a distributed manner, each control area

is controlled by its own respective control authority. Applying distributed control,

the overall optimization problem is divided into subproblems which are solved in an

iterative procedure. In order to guarantee the energy supply of the entire system, the

control authorities have to coordinate their actions among one another (Figure 1.2,

right-hand side).

The differences between centralized and distributed control in terms of supervi-

sion, synchronization, and type of optimization problem are summarized in Table

1.1. Distributed control has several advantages over centralized control. Distributed

control is better suited for a distributed power generation infrastructure like the one

considered in this chapter, since in distributed control the sometimes conflicting ob-

jectives of the individual hubs can explicitly be taken into account. Furthermore,

distributed control has the potential to achieve higher robustness, since if the agent

of one area fails, only this specific area is not controlled anymore, while other ar-

eas are still controlled. Furthermore, shorter computation times arise in distributed

control, particularly for larger-scale systems. The control problems of the individ-

ual controllers are smaller in size and these local control problems can often be

solved in parallel. The challenge is to design efficient coordination and communi-

cation among the individual controllers that provides overall system performance

comparable to a centralized control authority.

Several approaches have been proposed for distributed control over the last

decades, enabling coordination within a multi-area system. In [25] a variety of dis-

tributed MPC approaches applied to different application areas is summarized. The

Table 1.1: Centralized versus distributed control.

Centralized Distributed

Supervision Central coordinator super-

vises all areas

Each area is supervised by its

agent only

Synchronization Areas send data to a central

coordinator

Agents exchange data among

each other

Optimization problem Central coordinator performs

overall optimization problem

Overall optimization prob-

lem is decomposed into sub-

problems
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main approaches adopted are reviewed and a classification of a number of decen-

tralized, distributed, and hierarchical control architectures for large-scale systems is

proposed. Particular attention is paid to design approaches based on MPC. In [1]

a decentralized MPC approach for linear, time-invariant discrete systems where the

subproblems are solved in a noniterative way is proposed. In [22] a distributed MPC

scheme based on decompositions of augmented Lagrangians is proposed for control

of interconnected linear systems. In [28] a distributed MPC algorithm is presented

where each local controller tends to move towards a Nash equilibrium by means of

game theory considerations. This algorithm is based on discrete linear time invariant

systems, too.

Work on distributed control that is not specifically addressed at MPC, that uses

static models, but with nonlinear equations, is, e.g., [8, 14, 15, 23]. In [14, 15] coor-

dination is achieved by adjustment of common variables at an existing of fictitious

border bus between the areas. In [8, 23] coordination is carried out by specified

constraints, referred to as coupling constraints, that contain variables from multi-

ple control areas. For both decomposition procedures, the controllers do not need

to know the information of the whole system. Only peripheral data of each control

area need to be exchanged between the controllers. The approach of [14, 15] has as

drawback that it requires appropriate tuning of weighting factors in order to obtain

adequate convergence speed. The approach of [8, 23] has as drawback that the cou-

pling constraints for enforcing the coordination are not arrangeable for every type

of system. It depends on the physical constraints of the network nodes at the border

of each area, i.e., if they depend on neighboring network nodes or not.

Since the systems that we consider are governed by nonlinear equations, and

since is it possible to set up coupling constraints for these systems, we propose here

a distributed MPC approach, based on the work for static systems described in [8],

that does explicitly take into account dynamics.

1.1.3 Outline

This chapter is outlined as follows. In Section 1.2 the concept of energy hubs is

discussed in detail. A model representing producers, transmission infrastructures,

energy hubs, and consumers is presented in Section 1.3. Section 1.4 introduces a

centralized, MPC formulation for controlling energy hub systems, and in Section

1.5 we propose our distributed MPC approach. Simulation results applying the cen-

tralized as well as the distributed scheme to a three-hub system are presented in

Section 1.6. Section 1.7 provides conclusions and directions for future research.
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Fig. 1.3: Example of an energy hub containing a transformer, µCHP, heat exchanger, furnace,

absorption chiller, hot water storage, and battery.

1.2 Energy hub concept

Combining infrastructures means coupling them at certain nodes or branches,

thereby enabling exchange of power between previously separated systems. As al-

ready mentioned, these couplings can be described by means of the energy hub con-

cept. From a system point of view, an energy hub provides the functions of input,

output, conversion, and storage of multiple energy carriers. An energy hub can thus

be seen as a generalization or extension of a network node in an electrical network.

An example of an energy hub is presented in Figure 1.3. Electricity, natural gas, dis-

trict heat, and wood chips are consumed at the hub input and electricity, heating, and

cooling is provided at the output port. For internal conversion and storage, the hub

contains an electric transformer, a µCHP device, a furnace, an absorption chiller, a

battery, and a hot water storage.

Energy hubs contain three basic elements: direct connections, converters, and

storage devices. Direct connections deliver an input carrier to the hub output with-

out converting it into another form or without significantly changing its quality (e.g.,

voltage, pressure). Examples of this type of elements are electric cables and over-

head lines as well as gas pipelines. Besides that, converter elements are used to

transform an input energy carrier into another output carrier. Examples are steam

and gas turbines, combustion engines, electric machines, fuel cells, etc. Compres-

sors, pumps, transformers, power electronic inverters, heat exchangers, and other

devices may be used for conditioning, i.e., for converting power into desirable qual-

ities and quantities to be consumed by loads. Storage devices are incorporated within

the hubs in order to store energy and to use it at a later instant or in order to pre-

serve excessive heat produced by a µCHP device. Examples are batteries for storing

electric energy and hot water storages for conserving heat power.

The energy hub concept enables the integration of an arbitrary number of en-

ergy carriers and products (such as conversion and storage units) and thus provides

high flexibility in system modeling. Co- or tri-generation power plants, industrial
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plants (paper mills, refineries), big building complexes (airports, hospitals, shopping

malls), as well as supply areas like urban districts or whole cities can all be modeled

as energy hubs. In [12] the energy hub approach has been applied to a hydrogen

network that includes converters (electrolyzer and fuel cell), storage, and demand.

This hydrogen network is part of an integrated energy system with electricity, gas

and heat production and demand.

Combining and coupling different energy carriers in energy hubs provides a num-

ber of potential benefits:

• Flexibility of supply: Load flexibility is increased, since redundant paths within

the hub offer a certain degree of freedom in satisfying the output demand. This

offers the potential for optimization.

• Increased reliability: Since the loads do not depend on one single infrastructure,

the reliability of energy supply is increased [16].

• Synergy effects: Synergy effects among various energy carriers can be exploited

by taking advantage of their complementary characteristics. E.g., electricity can

be transmitted over long distances with relatively low losses. Chemical energy

carriers such as natural gas can be stored using relatively simple and cheap tech-

nologies.

1.3 Modeling multi-carrier systems

Multi-carrier energy systems are modeled as an interconnection of several inter-

connected hubs. Accordingly, two cases are distinguished concerning the modeling.

First, the equations for power flow within the hubs are presented. These equations

incorporate the power conversion and the energy storage of the various energy carri-

ers. Then, the equations concerning energy transmission between the hubs are given.

Finally, the equations for the hub and the transmission network model are combined

resulting in a complete model description.

1.3.1 System setup

In the system under study (Figure 1.4), each energy hub represents a general con-

sumer, e.g., a household, that uses both electricity and gas. Each of the hubs has

its own local electrical energy production (Gi, with electric power production PG
e,i,

for i ∈ {1,2,3}). Hub H1 is connected to a large gas network N1, with gas infeed

PG
g,1. In addition, hub H2 can obtain gas from a smaller gas network N2 with limited

capacity, modeled as gas infeed PG
g,2. Each hub consumes electric power PH

e,i and gas

PH
g,i, and supplies energy to its electric load Le,i and its heat load Lh,i. The hubs con-

tain converter and storage devices in order to fulfill their energy load requirements.

For energy conversion, the hubs contain a µCHP device and a furnace. The µCHP
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Fig. 1.4: System setup of three interconnected energy hubs. Active power is provided by

generators G1, G2, G3. Hubs H1 and H2 have access to adjacent natural gas networks N1,

N2.

device couples the two energy systems as it simultaneously produces electricity and

heat from natural gas. All hubs additionally comprise a hot water storage device.

Compressors (Ci j, for (i, j) ∈ {(1,2),(1,3)}) are present in the gas network within

the pipelines originating from hub H1. The compressors provide a pressure decay

and enable the gas flow from the large gas network to the surrounding gas sinks. As

indicated in Figure 1.4, the entire network is divided into three control areas (grey

circles), where each area (including hub and corresponding network nodes) is con-

trolled by its respective control agent. A more detailed description of the control

areas follows in Section 1.5.

Depending on the prices and load profiles, the µCHP device is utilized differ-

ently. At high electricity prices, the µCHP device is mainly operated according to

the electric load. The heat produced simultaneously is then either used to supply

the thermal load or stored in the heat storage device. At low electricity prices, the

electric load is preferably supplied directly by the electricity network and the gas is

used for supplying the thermal load via the furnace. Hence, there are several ways in

which electric and thermal load demands can be fulfilled. This redundancy increases

the reliability of supply and at the same time provides the possibility for optimiz-

ing the input energies, e.g., using criteria such as cost, availability, emissions, etc.

[10, 16].
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converter

Lβ ,i

Lγ,i

Pα,i

(a) Converter with a single input and two out-

puts.

converter

assembly

Lα,i

Lβ ,i

Lω ,i

Pα,i

Pβ ,i

Pω ,i

(b) Converter arrangement with multiple

inputs and multiple outputs.

Fig. 1.5: Model of power converters with inputs Pα,i,Pβ ,i, . . . ,Pω ,i and outputs (loads)

Lα,i,Lβ ,i, . . . ,Lω ,i.

Since the operation of the system is examined over a longer time duration, the

model is based on discrete time steps k = 0,1, . . ., where a discrete time step k

corresponds to the continuous time kT , where T corresponds to one hour.

1.3.2 Energy hub model

Here, the model of an energy hub is formalized, divided into a first part, describing

the energy conversion, and into a second part, defining the energy storage models.

The presented model is generic and can be applied to any configuration of converter

and storage elements. The model is based on the assumption or simplification that

within energy hubs, losses occur only in converter and storage elements. Further-

more, unidirectional power flows from the converter input to the converter output

are implied. As an example, the hub equations for the energy hub depicted in Figure

1.4 are given.

1.3.2.1 Energy conversion

Within an energy hub i, power can be converted from one energy carrier α into an-

other energy carrier β . We consider a single-input multiple-output converter device,

as it is commonly the case in practical applications. Figure 5(a) illustrates a con-

verter with two outputs, such as a micro turbine or gas turbine, producing electricity

and heat by means of gas. The input power Pα ,i(k) and output powers Lβ ,i(k), Lγ ,i(k)
are at every time step k coupled as
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Pα,i

P1
α,i

P2
α,i

PN
α,i

1

2

N

Fig. 1.6: Dispatch of total input power Pα,i to converters c = 1,2, . . . ,N.

Lβ ,i(k) = cαβ ,i(k)Pα ,i(k) (1.1)

Lγ ,i(k) = cαγ ,i(k)Pα ,i(k), (1.2)

where cαβ ,i(k) and cαγ ,i(k) characterize the coupling factors between the input

and output powers. In this case, the coupling factors correspond to the converter’s

steady-state energy efficiencies, denoted by ηαβ ,i and ηαγ ,i, respectively. More ac-

curate converter models show non-constant efficiencies including the efficiency’s

dependency of the converted power level. This dependency can be incorporated by

expressing the according coupling factor as a function of the converted power, i.e.,

cαβ ,i = fαβ ,i(Pα ,i(k)). As mentioned above, unidirectional power flows within the

converters are assumed, i.e., Pα ,i(k) ≥ 0, Pβ ,i(k) ≥ 0, Pγ ,i(k) ≥ 0. Considering the

entire hub (Figure 5(b)), various energy carriers and converter elements can be in-

cluded, leading to the following relation:




Lα ,i(k)

Lβ ,i(k)
...

Lω,i(k)




︸ ︷︷ ︸
Li(k)

=




cαα ,i(k) cβα ,i(k) · · · cωα ,i(k)

cαβ ,i(k) cββ ,i(k) · · · cωβ ,i(k)
...

...
. . .

...

cαω ,i(k) cβω,i(k) · · · cωω,i(k)




︸ ︷︷ ︸
Ci(k)




Pα ,i(k)

Pβ ,i(k)
...

Pω,i(k)




︸ ︷︷ ︸
Pi(k)

, (1.3)

which expresses how the input powers Pi(k) = [Pα ,i(k),Pβ ,i(k), . . . ,Pω,i(k)]
T are

converted into the output powers Li(k) = [Lα ,i(k),Lβ ,i(k), . . . ,Lω,i(k)]
T. Matrix

Ci(k) is referred to as the coupling matrix and is directly derived from the hub’s

converter structure and the converter’s efficiency characteristics. Equation (1.3) il-

lustrates a general formulation of a multi-input multi-output converter device. In

reality, not every energy carrier is occurring at the input as well as at the output port.

Moreover, the number of inputs and outputs do not have to coincide.

As the input powers Pi(k) can be distributed among various converter devices,

so-called dispatch factors specify how much power goes into the corresponding



12 M. Arnold, R.R. Negenborn, et al.

converter device. Figure 1.6 outlines the concept, where the input carrier Pα ,i(k) is

divided over N converter devices as input carriers Pc
α ,i (c = 1, . . . ,N),

Pc
α ,i(k) = νc

α ,i(k)Pα ,i(k). (1.4)

The conservation of power introduces the constraints

0 ≤ νc
α ,i(k)≤ 1 ∀α,∀c (1.5)

N

∑
c=1

νc
α ,i(k) = 1 ∀α. (1.6)

Hence, the coupling factors cαβ ,i(k) for converters without explicitly preassigned

inputs are defined as the product of dispatch factor and converter efficiency, i.e.,

cαβ ,i(k) = νc
α ,i(k)ηαβ ,i.

As long as the converter efficiencies are assumed to be constant, (1.3) represents

a linear transformation. Including the power dependency as cαβ ,i(k)= fαβ ,i(Pα ,i(k))
results in a nonlinear relation. In either case, different inputs powers Pi(k) can can

be found that fulfill the load requirements Li(k) at the output, since the dispatch

factor ν(k) is variable. This reflects the degrees of freedom in supply which are

used for optimization.

Application example

The hub equations for power conversion are now derived for the exemplary hubs in

Figure 1.4. The electrical load Le,i(k) and the heat load Lh,i(k) at a time step k are

related to the electricity PH
e,i(k) and gas hub input PH

g,i(k) as follows:

[
Le,i(k)

Lh,i(k)

]

︸ ︷︷ ︸
Li(k)

=

[
1 νg,i(k)η

CHP
ge,i

0 νg,i(k)η
CHP
gh,i +(1−νg,i(k))η

F
gh,i

]

︸ ︷︷ ︸
Ci(k)

[
PH

e,i(k)

PH
g,i(k)

]

︸ ︷︷ ︸
Pi(k)

, (1.7)

for i = 1,2,3, where ηCHP
ge,i and ηCHP

gh,i denote the gas-electric and gas-heat efficien-

cies of the µCHP device and where ηF
gh,i denotes the efficiency of the furnace.

The variable νg,i(k) (0 ≤ νg,i(k)≤ 1) represents the dispatch factor that determines

how the gas is divided between the µCHP and the furnace. The term νg,i(k)P
H
g,i(k)

defines the gas input power fed into the µCHP, and according to (1.6) the part

(1− νg,i(k))P
H
g,i(k) defines the gas input power going into the furnace. (Since the

gas dispatch involves only two converter devices, the superscript c indicating the

correspondent converter, is omitted.)
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Interface

Storage

Qα,i

Q̃α,i

Eα,i

Fig. 1.7: Storage element exchanging the power Qα,i; internal power Q̃α,i, stored energy

Eα,i.

1.3.2.2 Energy storage

The storage device is modeled as an ideal storage in combination with a storage

interface [9](Figure 1.7). The relation between the power exchange Qα ,i(k) and the

effectively stored energy Eα ,i(k) at time step k is defined by the following equation:

Qα ,i(k) =
Ėα ,i

eα ,i
=

1

eα ,i

dEα ,i

dt
≈

1

eα ,i

∆Eα ,i

∆ t

=
1

eα ,i

(
Eα ,i(k)−Eα ,i(k−1)

∆ t
+ Ėstb

α ,i

)
, (1.8)

with

eα ,i =

{
e+α ,i if Qα ,i(k)≥ 0 (charging/standby)

1/e−α ,i else (discharging),
(1.9)

where e+α ,i, e−α ,i are the charging and discharging efficiencies of the heat storage

device, respectively, including the efficiency of the storage interface, converting the

energy carrier exchanged with the system Qα ,i(k) into the carrier stored internally

Q̃α ,i(k), according to Q̃α ,i(k) = eα ,iQα ,i(k). The storage energy at time step k is

denoted by Eα ,i(k), and Ėstb
α ,i represents the standby energy losses of the heat storage

device per period (Ėstb
α ,i ≥ 0).

Depending on which side of the converter the storage device is located, the fol-

lowing power flow equations result. Figure 1.8 illustrates the situation. If the storage

is located at the input side of the converter devices the power flow equations are de-

scribed by

P̃α ,i(k) = Pα ,i(k)−Qα ,i(k), (1.10)

and if the storage is placed at the output side of to the converter device, the equations

are given by
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L̃β ,i(k) = Lβ ,i(k)+Mβ ,i(k), (1.11)

where Mβ ,i(k) denotes the storage flow of a storage device at the output side of a

converter, analogously to Qα ,i(k). Examples of storages before the converter devices

are gas storages before a µCHP device or hydrogen storages before fuel cells. The

hydrogen storage is filled by an electrolyzer, converting electricity into hydrogen.

Storage examples after converters are heat storages after heat exchangers or µCHP

devices or the above mentioned hydrogen storages after electrolyzers.

When merging all power flows, the inputs and outputs of the entire hub are then

described by

[
Li(k)+Mi(k)

]
= Ci(k)

[
Pi(k)−Qi(k)

]
, (1.12)

where Qα ,i(k) and Mα ,i(k) state all input-side and output-side storage power flows.

Here, we assume the converter efficiencies to be constant, i.e., to be independent

of the converted power level, which results in a constant coupling matrix Ci(k) for

each time step k. We can then apply superposition and summarize all storage flows

in an equivalent output storage flow vector

M
eq
i (k) = Ci(k)Qi(k)+Mi(k). (1.13)

With (1.8) and (1.13), the storage flows and the storage energy derivatives are related

by




M
eq
α ,i(k)

...

M
eq
ω,i(k)




︸ ︷︷ ︸
M

eq
i (k)

=




sαα ,i(k) · · · sωα ,i(k)
...

. . .
...

sαω ,i(k) · · · sωω,i(k)




︸ ︷︷ ︸
Si(k)




Ėα ,i(k)
...

Ėω,i(k)




︸ ︷︷ ︸
Ėi(k)

, (1.14)

where the storage coupling matrix Si(k) describes how changes within the storage

energies affect the output flows, i.e., how the storage energy derivatives are mapped

into equivalent output-side flows. According to (1.8), the storage energy derivatives

correspond to

Ėi(k) = Ei(k)−Ei(k−1)+ Ėstb
i . (1.15)

Adding the storage equation 1.14 to the general hub equation yields the following

flows through an energy hub:

Li(k)+Si(k)Ėi(k) = Ci(k)Pi(k). (1.16)
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Converter

Storage Storage

Pα,i
Qα,i

P̃α,i L̃β ,i

Mβ ,i Lβ ,i

Fig. 1.8: αβ -converter with α-storage at the input and β -storage at the output.

Application example

For each hub depicted in Figure 1.4, hot water storage devices are implemented.

Equation (1.7) is therefore completed with additional storage power flows, which

are collected in a vector Mi(k):

[
Le,i(k)

Lh,i(k)+Mh,i(k)

]

︸ ︷︷ ︸
Li(k)+Mi(k)

=

[
1 νg,i(k)η

CHP
ge,i

0 νg,i(k)η
CHP
gh,i +(1−νg,i(k))η

F
gh,i

]

︸ ︷︷ ︸
Ci(k)

[
PH

e,i(k)

PH
g,i(k)

]

︸ ︷︷ ︸
Pi(k)

. (1.17)

1.3.3 Transmission model

As introduced above, we consider here a system where the hubs are interconnected

by two types of transmission systems, an electricity and a natural gas network. How-

ever, district heating systems or hydrogen systems are also possible transmission

systems for interconnecting hubs. For the transmission networks of both the elec-

tricity network and the gas pipeline network, power flow models based on nodal

power balances are implemented.

1.3.3.1 AC electricity network

Electric power flows are formulated as nodal power balances of the complex power,

according to the normal power flow equations [17]. At node m, the complex power

balance at time step k is stated as

Sm(k)− ∑
n∈Nm

Smn(k) = 0, (1.18)

where Sm(k) is the complex power injected at node m, and Smn(k) denotes the power

flow to all adjacent nodes n of node m, summarized in the set Nm. The line flows are

expressed by the voltage magnitudes V (k) and angles θ(k) and the line parameters:

Smn(k) = y∗mnVm(k)e
jθm(k)(Vm(k)e

− jθm(k)−Vn(k)e
− jθn(k))− jbsh

mnV 2
m(k), (1.19)



16 M. Arnold, R.R. Negenborn, et al.
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Fmn −FnmFln

Fcom

C P

m nl

Fig. 1.9: Model of a gas pipeline with compressor (C) and pipeline (P). Compressor demand

is modeled as additional gas flow Fcom.

where the superscript ∗ denotes the conjugate complex of the value. The line is

modeled as a π-equivalent with the series admittance ymn and the shunt susceptance

bsh
mn [17].

1.3.3.2 Pipeline network

Figure 1.9 shows the model of a gas pipeline composed of a compressor and a

pipeline element. The volume flow balance at node m at time step k is defined as

Fm(k)− ∑
n∈Nm

Fmn(k) = 0, (1.20)

where Fm(k) is the volume flow injected at node m, Fmn(k) denotes the line flow

between nodes m and n, and Nm denotes the set of neighboring nodes of node m,

i.e., the nodes connected to node m through a pipeline. The line flow Fmn(k) can be

calculated as

Fmn(k) = kmnsmn

√
smn(p2

m(k)− p2
n(k)), (1.21)

where pm(k) and pn(k) denote the upstream and downstream pressures, respectively,

and kmn identifies the line constant. The variable smn indicates the direction of the

gas flow as

smn =

{
+1 if pm(k)≥ pn(k)

−1 otherwise.
(1.22)

The pipeline flow equation (1.21) is for most purposes a good approximation for all

types of isothermal pipeline flows (liquid and gaseous). For obtaining more precise

results for specific fluids and flow conditions a number of modified equations are

available in [20].

To maintain a certain pressure level a compressor is needed. Here, the compressor

is driven by a gas turbine which is modeled as additional gas flow

Fcom(k) = kcomFmn(k)(pm(k)− pl(k)), (1.23)
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where pl(k) and pm(k) denote the pressures at the compressor input and output side,

respectively, and kcom is a compressor constant. Basically, the amount of power

consumed by the compressor depends on the pressure added to the fluid and on

the volume flow rate through it. The resulting gas flow into the pipeline Fmn(k) is

therefore determined by

Fmn(k) = Fln(k)−Fcom(k). (1.24)

The pressure at the compressor output pm(k) is determined by

pm(k) = pinc(k)pl(k), (1.25)

where pinc(k) defines the pressure amplification of the compressor. Depending on

the required line flow Fmn(k), pinc(k) is adjusted accordingly. For the purpose of

this study, these simplified compressor models provide sufficient accuracy. More

advanced compressor equations taking into account changing fluid properties are

given in [20].

The volume flow rate Fmn(k) corresponds to a power flow Pg,mn(k). The relation

between volume and power flow is described by

Pg,mn(k) = cGHVFmn(k), (1.26)

where cGHV is the gross heating value of the fluid. The gross heating value depends

on the fluid and is given in MWh/m3. Values of different fluids can be found in [20].

1.3.4 Complete model description

The combined hub and transmission network model is obtained by combining the

power flow models stated above. The system setup in Figure 1.4 serves again as

example. For each time step k, the following three vectors are defined:

• algebraic state vector z(k): The algebraic state vector includes the variables for

which no explicit dynamics are defined:

z(k) = [VT(k),θ T(k),pT(k),pT
inc(k),(P

H
e )

T(k),(PH
g )

T(k)]T, (1.27)

where

– V(k) = [V1(k),V2(k),V3(k)]
T and θ(k) = [θ1(k),θ2(k),θ3(k)]

T denote the

voltage magnitudes and angles of the electric buses, respectively,

– p(k) = [p1(k), p2(k), p3(k)]
T denotes the nodal pressures of all gas buses,

– pinc(k) = [pinc,1(k), pinc,2(k)]
T denotes the pressure amplification of the com-

pressors,

– PH
e (k) = [PH

e,1(k),P
H
e,2(k),P

H
e,3(k)]

T denotes the electric inputs of the hubs, and

– PH
g (k) = [PH

g,1(k),P
H
g,2(k),P

H
g,3(k)]

T denotes the gas inputs of the hubs.
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• dynamic state vector x(k): The dynamic state vector includes variables for which

dynamics are included:

x(k) = Eh(k), (1.28)

where

– Eh(k) = [Eh,1(k),Eh,2(k),Eh,3(k)]
T denotes the energy contents of the heat

storage devices.

• control vector u(k): The control variables include the operational set-points of

the system:

u(k) =
[
(PG

e )
T(k), (PG

g )
T(k), νT

g (k)
]T

, (1.29)

where

– PG
e (k) = [PG

e,1(k),P
G
e,2(k),P

G
e,3(k)]

T denotes the active power generation of all

generators,

– PG
g (k) = [PG

g,1(k),P
G
g,2(k)]

T defines the natural gas imports and

– νg(k) = [νg,1(k),νg,2(k),νg,3(k)]
T describes the dispatch factors of the gas

input junctions.

Now, the model that we use to represent the multi-carrier network, including the

hub equations with the dynamics, can be written in compact form as

x(k+1) = f(x(k),z(k),u(k)) (1.30)

0 = g(x(k),z(k),u(k)). (1.31)

Equation (1.30) represent the difference equations describing the dynamics in the

system, i.e., the dynamics in the storage devices. The equality constraints (1.31)

represent the static, instantaneous relations in the system, i.e., the transmission and

energy conversion components of the system.

1.4 Centralized model predictive control

One way to determine the actions that yield the optimal operation of the system is by

using centralized control. In centralized control, a centralized controller measures

all variables in the network and determines actions or set-points for all actuators,

i.e., the energy generation units, converters, and storage devices. We propose to use

a model-based predictive control (MPC) scheme to determine the control variables

u(k) in such a way that the total operational costs of the system are minimized

while satisfying the system constraints. Below, we explain the basic idea of MPC.

Then, the MPC problem for the considered hub system is formulated for centralized

control.
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Fig. 1.10: Illustration of model predictive control.

1.4.1 Principle of operation

MPC [6, 19] is an optimization-based control strategy where an optimization prob-

lem is solved at each discrete decision step. This optimization problem uses an in-

ternal prediction model to find those actions that give the best predicted system

behavior over a certain prediction horizon with length N. In this optimization oper-

ational constraints are also taken into account. MPC operates in a receding horizon

fashion, meaning that at each time step new measurements of the system and new

predictions into the future are made and new control actions are computed. By us-

ing MPC, actions can be determined that anticipate future events, such as increasing

or decreasing energy prices or changes within the load profiles. MPC is suited for

control of multi-carrier systems, since it can adequately take into account the dy-

namics of the energy storage devices and the characteristics of the electricity and

gas networks.

In Figure 1.10 the operation of an MPC scheme is illustrated schematically. At

each discrete control step k, an MPC controller first measures the current state of

the system, x(k). Then, it computes which control input u(k) to be provided to the

system, by using (numerical) optimization to determine the actions that give the

best predicted performance over a prediction horizon of N time steps as defined by

an objective function. The control variables computed for the first prediction step

are then applied to the physical system. The system then transitions to a new state,

x(k+1), after which the above procedure is repeated.

1.4.2 Problem formulation

In the MPC formulation the central controller determines the inputs u(k) for the

network by solving the following optimization problem:
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min
ũ(k)

J(x̃(k+1), z̃(k), ũ(k)) (1.32)

subject to

x̃(k+1) = f̃(x̃(k), z̃(k), ũ(k)) (1.33)

g̃(x̃(k), z̃(k), ũ(k)) = 0 (1.34)

h̃(x̃(k), z̃(k), ũ(k))≤ 0, (1.35)

where the tilde over a variable represents a vector with the values of this variable

over a prediction horizon of N steps, e.g., ũ(k) = [ uT(k), . . . ,uT(k+N −1) ]T.

For the system setup under consideration, i.e., the system in Figure 1.4, the con-

trol objective is to minimize the energy costs, i.e., the costs for electricity energy

and natural gas. The following objective function will be used in this minimization,

in which costs of the individual energy carriers are modeled as quadratic functions

of the corresponding powers:

J =
N−1

∑
l=0

∑
i∈G

qG
i (k+ l)(PG

e,i(k+ l))2 +qN
i (k+ l)(PG

g,i(k+ l))2, (1.36)

where G is a set of generation unit indices, i.e., the three generators and the two

natural gas providers. The prices for active power generation qG
i (k) and for natural

gas consumption qN
i (k) can vary throughout the day.

The equality constraints (1.33) and (1.34) represent the dynamic and static re-

lations of the prediction model of the system. They correspond to equations (1.30)

and (1.31), formulated over the prediction horizon N. The inequality constraints

(1.35) comprise limits on the voltage magnitudes, active and reactive power flows,

pressures, changes in compressor settings, and dispatch factors. Furthermore, power

limitations on hub inputs and on gas and electricity generation are also incorporated

into (1.35). Regarding the storage devices, limits on storage contents and storage

flows are imposed.

The optimization problem (1.32)–(1.35) is a nonlinear programming problem [4],

which can be solved using solvers for nonlinear programming, such as sequential

quadratic programming [4]. In general, the solution space is nonconvex and there-

fore finding a global optimum cannot be guaranteed. Unless a multi-start approach

with a sufficient number of starts is used, a local optimum is returned by the numer-

ical optimization.

1.5 Distributed model predictive control

Although a centralized controller could in theory give the best performance, practi-

cal and computational limitations prevent such a centralized controller from being

useful in practice. The overall network may be owned by different entities, and

these different entities may not want to give access to their sensors and actuators to
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Fig. 1.11: Three-hub system controlled by three communicating agents.

a centralized authority. Even if they would allow a centralized authority to take over

control of their part of the network, this centralized authority would have compu-

tational problems solving the resulting centralized control problem due to its large

size. In that case, it has to be accepted that several different MPC controllers are

present, each controlling their own parts of the network, e.g., their own households.

Figure 1.11 shows the introduced three-hub system controlled by three agents.

Each agent, or controller, solves its own local MPC problem using the local model

of its part of the system. However, the solution of a local MPC problem depends

on the solution of the MPC problems of the surrounding MPC controllers, since the

electricity and gas networks interconnect the hubs. Therefore, the MPC problems of

the controllers have to be solved in a cooperative way by allowing communication

between the agents (dashed lines in Figure 1.11). This is not only to ensure that

the controllers choose feasible actions, but also to allow the controllers to choose

actions that are optimal from a system-wide point of view.

In our application, the MPC subproblems are based on nonlinear dynamic mod-

els. We therefore propose an extension of the static distributed control scheme in [8]

that does take into account dynamics. Hence, the method is extended for optimiza-
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Fig. 1.12: Coordination procedure between multiple interconnected areas by exchanging sys-

tem variables y and Lagrangian multipliers λ .

tion over multiple time steps in an MPC way. We then obtain an approach based on

a combination of MPC and Lagrangian relaxation.

1.5.1 Principle of operation

Here, we explain the mathematical concept to decompose a general MPC optimiza-

tion problem into several subproblems for individual distributed controllers. The

procedure is presented on an interconnected multi-area system depicted in Figure

1.12. The areas a = 1,2, . . . ,A are interconnected in an arbitrary way. The system

variables of each area a comprise the algebraic state vector z̃a(k) and dynamic state

vector x̃a(k) as well as the control variables ũa(k), i.e.,

ỹa(k) = [x̃a(k), z̃a(k), ũa(k)]
T for a = 1, . . . ,A. (1.37)

The overall, centralized MPC optimization problem can then be defined as

min
ũa(k)

A

∑
a=1

Ja(ỹa(k)) (1.38)

subject to g̃(ỹa(k)) = 0 for a = 1, . . . ,A (1.39)

˜̂ga(ỹ1(k), . . . , ỹa(k), . . . , ỹA(k)) = 0 for a = 1, . . . ,A, (1.40)

where only equality constraints are included for the sake of demonstration. In-

equality constraints are handled analogously. The constraints are classified into two

types of constraints. Constraints that involve only the local system variables are

collected in (1.39). Besides these purely local constraints, so-called coupling con-

straints (1.40) (marked by a hat) are present, containing variables form multiple

control areas. These coupling constraints are related to multiple areas and thus pre-
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vent the controllers of each subsystem from operating independently of each other.

These constraints are the reason why coordination between the controllers is neces-

sary.

1.5.1.1 Decomposition methodology

For decomposing this centralized MPC optimization problem into optimization

problems for the controllers of the individual control areas, both the objective and

the equality constraints are separated and assigned to a responsible control agent.

The constraints (1.39) with only local variables are assigned to the corresponding

controller of each area. The coupling constraints (1.40) can in principle be assigned

arbitrarily to the controllers. However, they are assigned to the area that contains

the majority of the coupling variables. Coupling variables are the variables of the

peripheral buses, also referred to as border buses, which are buses that are directly

connected to buses of another area.

The subproblems for the individual controllers are now obtained by relaxing

some of the coupling constraints and adding them to the objectives of the different

controllers. Conventional Lagrangian relaxation is based on relaxing the own cou-

pling constraints of each controller by incorporating them into their objective func-

tions [15], weighted by Lagrangian multipliers. The obtained subproblems are then

solved in a series of iterations, where each local optimization problem is solved with

fixed values for the variables of the other controllers. After each iteration the La-

grangian multipliers are updated with a sub-gradient method. To avoid this update,

which requires appropriate tuning of the update parameters, an advanced method

establishes the subproblems by relaxing the coupling constraints assigned to the

foreign areas (modified Lagrangian relaxation procedure [8]).

The resulting subproblem for each area a = 1, . . . ,A is then formally written as

min
ũa(k)

Ja(ỹa(k))+
A

∑
b=1,b 6=a

(λ̃
s

b)
T ˜̂gb(ỹ

a(k)) (1.41)

subject to g̃a(ỹa(k)) = 0, (1.42)

˜̂ga(ỹ
a(k)) = 0, (1.43)

where ỹa(k) = [ỹs
1(k), . . . , ỹa(k), . . . , ỹ

s
A(k)] represents the system variables of all

neighboring areas of area a. λ are the Lagrangian multipliers which will be ex-

plained below. The superscript s indicates the iteration step. As mentioned above,

the optimization problems of the individual control agents are solved in an iterative

procedure, keeping the variables of the neighboring areas constant. Both, the objec-

tive and the coupling constraints depend on variables of the foreign areas, referred

to foreign variables, indicated by the superscript s.

The objective function of each controller consists of two parts. The first term

expresses the main objective originating from the overall objective function (1.38).

The second term is responsible for the coordination between the agents and consists
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of the coupling constraints introduced above. As indicated in (1.41) - (1.43), the

coupling constraints of the own area are kept explicitly as hard constraints of the

constraint set of the own controller (1.43) and are then added as soft constraints to

the main objective of the other controllers. This follows the principle of the modified

Lagrangian relaxation procedure [24]. The weighting factors of the soft constraints

are the Lagrangian multipliers obtained from the optimization problem of the neigh-

boring controllers.

1.5.1.2 Solution scheme

Both the objectives and the coupling constraints depend on variables of multiple

controllers. To handle this dependency, the optimization problems of the controllers

are solved in an iterative procedure:

• At each iteration step s, the MPC optimization problems of all control agents

are solved independently of each other, while keeping the variables of the other

controllers constant.

• After each iteration, the controllers exchange the updated values of their vari-

ables, i.e., the variables ỹs+1
i (k) and the Lagrange multipliers λ̃

s+1

i (k), where i

refers to the corresponding control area. Figure 1.12 indicates the dependencies

between area 2 and its surrounding areas. Only the variables between two di-

rectly connected areas need to be exchanged. Thus, area 5 does not need to send

its variables to area 2.

• Convergence is achieved when the exchanged variables do not change more than

a small tolerance γtol in two consecutive iterations.

Note that not the whole set of the updated system variables needs to be exchanged

between the areas. Only the updated coupling variables have to be exchanged. For

the sake of clarity of notation, the system variables and the effectively exchanged

variables are not distinguished in the notation. In contrary to conventional La-

grangian relaxation procedures, a faster convergence is achieved as the weighting

factors are represented by the Lagrangian multipliers of the neighboring optimiza-

tion problem [24].

1.5.2 Application

We next apply the decomposition procedure to our three-hub system, as depicted

in Figure 1.4. It is noted that although here we only consider three hubs, the pre-

sented decomposition procedure is also suited for large-scale systems. The consid-

ered three-hub network is divided into three control areas, according to the hubs.

Each of the control areas has a controller for determining the local control actions.
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1.5.2.1 Local variables

The controller of a particular hub considers as its variables the hub variables and the

system variables of the nodes connected to it. For example, for the first controller,

the state and control vectors for each time step k are defined as

x1(k) = Eh,1(k) (1.44)

z1(k) = [V1(k),θ1(k), p1(k), pinc,1(k), pinc,2(k),P
H
e,1(k),P

H
g,1(k)]

T (1.45)

u1(k) = [PG
e,1(k),P

G
g,1(k),νg,1(k)]

T. (1.46)

The state and control vectors for the second and third controller are defined similarly

according to Figure 1.4.

1.5.2.2 Objective functions

Each individual controller has its own control objective. In particular, the objective

functions of the three controllers are:

J1 =
N−1

∑
l=0

qG
1 (k+ l)(PG

e,1(k+ l))2 +qN
1 (k+ l)(PG

g,1(k+ l))2 (1.47)

J2 =
N−1

∑
l=0

qG
2 (k+ l)(PG

e,2(k+ l))2 +qN
2 (k+ l)(PG

g,2(k+ l))2 (1.48)

J3 =
N−1

∑
l=0

qG
3 (k+ l)(PG

e,3(k+ l))2. (1.49)

1.5.2.3 Coupling constraints

The three optimization problems have to be coordinated by adding the respective

coupling constraints to the individual objectives given above. Below, the coupling

constraints for the electric power and for the gas transmission systems are presented.

Then, the resulting objectives are formulated.

Electric power systems

For applying the procedure to electric power systems, the constraints are arranged in

the following way. The power flow equations of all inner buses of a particular area

are incorporated into the equality constraints g̃A(ỹA(k)) = 0, g̃B(ỹB(k)) = 0. Inner

buses are those buses of an area that have at least one bus in between themselves

and the buses of another area. Buses that are directly connected to buses of another

area are referred to as peripheral buses or border buses.
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Regarding the couplings, the electric power flow equations at the border buses

serve as coupling constraints. A coupling between the areas is only enabled when

these power flow equations comprehend variables of both areas. This implies that

the constraints for the active and reactive power balance serve as coupling con-

straints, but not the equations regarding voltage magnitude and angle reference set-

tings. Hence, having PQ buses (active and reactive power are specified [17]) at the

common tie-lines results in two coupling constraints per peripheral bus. A less tight

coupling is achieved with PV buses (active power and voltage magnitude are speci-

fied [17]), yielding only one coupling constraint. If the slack bus (voltage magnitude

and voltage angle are specified [17]) is situated at one of the border buses, the pro-

cedure is not implementable, because only voltage magnitude and angle reference

settings have to hold for these kind of buses. For the case of active power control,

the slack bus is modeled as a PV bus with an additional angle reference in order to

obtain enough coupling constraints. The inequality constraints are occurring with

transmission limits on tie-lines belonging to both areas. To classify the inequality

constraints into own and foreign constraints the tie-lines need to be allocated to one

area, arbitrarily.

For the studied three-hub system, the active power balances of all nodes of the

electricity system require coordination as they depend on the neighboring voltage

magnitudes and angles. For each coupling constraint, the dependencies of the own

and foreign system variables (marked by superscript s, which specifies the current

iteration step) are indicated. Since each node serves as border bus of the respective

control area, a coupling constraint is set up for each node. The following active

power balances need to be fulfilled:

△P1(k) = PG
e,1(k)−P12(k)−P13(k)−PH

e,1(k) (1.50)

= fP1
(V1(k),θ1(k),V

s
2 (k),θ

s
2(k),V

s
3 (k),θ

s
3(k)) = 0

△P2(k) = PG
e,2(k)+P12(k)−P13(k)−PH

e,2(k) (1.51)

= fP2
(V s

1 (k),θ
s
1(k),V2(k),θ2(k),V

s
3 (k),θ

s
3(k)) = 0

△P3(k) = PG
e,3(k)+P12(k)+P13(k)−PH

e,3(k) (1.52)

= fP3
(V s

1 (k),θ
s
1(k),V

s
2 (k),θ

s
2(k),V3(k),θ3(k)) = 0.

Pipeline networks

Implementing the decomposition procedure for natural gas systems, the constraints

are arranged in the same way. The constraints g̃A(ỹA(k)) = 0, g̃B(ỹB(k)) = 0 com-

prise the volume flow equations of all inner buses as well as the pressure reference

settings (slack bus). Coordination is required due to the nodal flow balances at the

border buses, since the injected volume flows are dependent on the nodal pressures

of the neighboring buses. Inequality constraints consist of pressure limits and com-

pressor limits. No coupling inequality constraints are incorporated. Here, each node

serves as border bus as well, thus, a coupling constraint is set up for each node. The
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following volume flow balances need to be fulfilled:

△F1(k) = PG
g,1(k)−F12(k)−F13(k)−Fcom,12(k)−Fcom,13(k)−PH

g,1(k) (1.53)

= fF1
(p1(k), ps

2(k), ps
3(k)) = 0

△F2(k) = PG
g,2(k)+F12(k)−F13(k)−PH

g,2(k) (1.54)

= fF2
(ps

1(k), p2(k), ps
3(k)) = 0

△F3(k) = F12(k)+F13(k)−PH
g,3(k) (1.55)

= fF3
(ps

1(k), ps
2(k), p3(k)) = 0,

where Fcom,12(k) and Fcom,13(k) describe the gas flows into the compressors C12 and

C13, respectively. For combined electricity and natural gas networks, the constraints

are merged. Summarizing, for each controller, there exists one coupling constraint

for the electricity and one for the natural gas system.

Resulting objective functions

The resulting objective functions for the controllers are obtained by adding in

each case the coupling constraints of the neighboring areas. These constraints are

weighted with the corresponding Lagrangian multipliers, obtained by the correspon-

dent neighboring area. For example, the objective of the first controller takes into

account the constraints of the second and third controller which are weighted by

the Lagrangian multipliers obtained at the previous iteration step. The Lagrangian

multipliers related to the electricity system and gas system are referred to as λ el and

λ gas, respectively. We then obtain the following objective functions:

J1(·) =
N−1

∑
l=0

qG
1 (k+ l)(PG

e,1(k+ l))2 +qN
1 (k+ l)(PG

g,1(k+ l))2

+λ s
el,23(k)

[
△P2(k)

△P3(k)

]
+λ s

gas,23(k)

[
△F2(k)

△F3(k)

]
(1.56)

J2(·) =
N−1

∑
l=0

qG
2 (k+ l)(PG

e,2(k+ l))2 +qN
2 (k+ l)(PG

g,2(k+ l))2

+λ s
el,13(k)

[
△P1(k)

△P3(k)

]
+λ s

gas,13(k)

[
△F1(k)

△F3(k)

]
(1.57)

J3(·) =
N−1

∑
l=0

qG
3 (k+ l)(PG

e,3(k+ l))2

+λ s
el,12(k)

[
△P1(k)

△P2(k)

]
+λ s

gas,12(k)

[
△F1(k)

△F2(k)

]
. (1.58)
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1.6 Simulation results

Simulations are presented, applying the MPC scheme proposed above to the three-

hub system shown in Figure 1.4. Note that the scheme is general according to the

discussion above and not only valid or applicable for our illustrative three-hub sys-

tem. Next the setup of the simulation is given. Then, simulation results in which the

centralized and distributed MPC approach are applied are presented. As the consid-

ered optimization problems are nonconvex, finding the global optimum cannot be

guaranteed when applying numerical methods. However, the values of the central-

ized problem serve as a reference of optimality and the simulation results obtained

by distributed optimization are compared with these values in order to judge the

performance of the distributed approach. The solver fmincon provided be the Op-

timization Toolbox of Matlab is used [27].

1.6.1 Simulation setup

Each hub has a daily profile of its load demand and the energy prices. Here, we

assume that the price and load forecasts are known. However, in reality, there are al-

ways forecast errors. As a first study, we assume perfect forecasts and it is believed

that the following results are representative also for small forecast errors since the

storage devices are able to balance deviations within load forecasts. The given pro-

files are typical profiles for a household. The electricity and heat loads are assumed

to be the same for all hubs and are depicted in Figure 13(a) in per unit (p.u.) values.

Regarding the prices, electricity generation at hubs H2 and H3 is twice as ex-

pensive as at hub H1, as illustrated in Figure 13(b) in m.u./p.u.2 values, where m.u.

refers to monetary units. The reason for choosing different electricity prices is to

obtain three hubs with different setups. (Hub H1 has a cheap access to electricity

and gas, hub H2 has an expensive electricity and a limited gas access, and hub H3

has an expensive electricity access and no gas access.) Gas prices remain constant

throughout the day.

Regarding the electricity network, bus 1 is modeled as slack bus, i.e., having the

voltage angle and voltage magnitude fixed (V1(k) has a magnitude of 1 p.u. and an

angle of 0◦). The other two buses are modeled as PV buses, for which the net active

power and the voltage magnitude are specified. Also within the gas network bus

1 serves as slack bus, having a fixed pressure value of 1 p.u. The coefficients and

simulation parameters used are listed in Table 1.2. Since hub H2 is assumed to have

only access to a network with limited capacity, a flow rate constraint of 2 p.u. is

imposed on PG
g,2(k). The gas network is mainly supplied via the large gas network at

bus 1, i.e., via PG
g,1(k), which delivers gas to the neighboring buses by means of the

two compressors.

Based on the profiles, the total generation costs are minimized for a simulation

period of Nsim = 24 steps, where one time step corresponds to 1 hour. To analyze the
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Fig. 1.13: Daily profiles used for simulation.

Table 1.2: Bounds and parameter values for the three-hub system in p.u.

variable bounds

Vi 0.9 ≤ |Vi| ≤ 1.1

PG
e,i 0 ≤ PG

e,i ≤ 10

pi 0.8 ≤ pi ≤ 1.2

pinc,i 1.2 ≤ pinc,i ≤ 1.8

νi 0 ≤ νi ≤ 1

PG
g,i 0 ≤ PG

g,1 ≤ 20, 0 ≤ PG
g,2 ≤ 2

Ei 0.5 ≤ Ei ≤ 3

Mh,i -3 ≤ Mh,i ≤ 3

category coefficients

µCHP ηCHP
ge,i = 0.3, ηCHP

gh,i = 0.4

F ηF
gh,i = 0.75

Estb
h,i Estb

h,i = 0.2

eh,i e+h,i = e−h,i = 0.9
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performance of the proposed control scheme, we vary the length of the prediction

horizon N used between N = 1, i.e., no prediction, and N = 24, i.e., predicting for

all 24 time steps at once.

1.6.2 Centralized control

First, the results for a specific prediction horizon are analyzed in more detail. Sec-

ond, the performance of the control scheme operating with different prediction hori-

zon lengths is compared. Finally, the operation costs are presented when comparing

the operation of the µCHP device with and without heat storage support. Further-

more, the costs are compared with the decoupled operation mode, i.e., when the

electricity and natural gas system are operated independently of each other, i.e.,

when no µCHP devices are in use.

1.6.2.1 Prediction horizon with length N = 5

The behavior of the system is illustrated for a prediction horizon with length N = 5.

This length of prediction horizon is adequate for practical applications as it repre-

sents a proper trade-off between control performance on the one side and obtainable

forecasts and computational effort on the other side, as is illustrated below in Section

1.6.2.2.

An optimization for 24 time steps is run, at each time step k implementing only

the control variables for the current time step k and then starting the procedure again

at time step k+1 using updated system measurements. The operational costs for the

entire simulation period [0, 24] are 2.73 ·104 m.u. Figure 1.14 shows the evolution

of the active power generation and natural gas import at the first hub. The electricity

generation mainly corresponds to the electricity load pattern and the natural gas

import evolves similar to the heat loads. However, natural gas is also used during

time periods, in which no heat is required. During these periods gas is converted by

the µCHP for supporting the electricity generation. The heat produced thereby is

stored and used later for the heat supply.

In Figure 1.17, the content of all three storage devices over time is shown for N =
1,3,5,24. The dotted line represents the storage behavior for a prediction horizon

with length N = 5. In general, the storage devices are mainly discharged during the

heat load peaks and charged when no heat is required. However, the heat storage

devices are not only important for the heat supply but indirectly also for electricity

generation, since the µCHP devices can be operated according to the electricity

load requirements by means of the heat storage devices. At high electricity prices,

electricity generation via µCHP is cheaper than via the generators, thus, the µCHP

devices are preferably used for supplying the electricity demand while storing all

excessive produced heat. This is also the reason why the storage contents of storages

E1 and E2 rise again at the end of the simulation. Nevertheless, during the heat
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Fig. 1.14: Active power generation PG
e,1(k) and natural gas import PG

g,1(k) of hub H1 over the

simulation horizon.

peak loads all gas is diverted into the furnaces because the thermal efficiencies of

the µCHPs are not sufficient in order to supply the heat loads. During these time

periods, the operational costs increase correspondingly.

1.6.2.2 Comparison of different prediction horizon lengths

For showing the effect of prediction, prediction horizons with different lengths N

are compared. In order to obtain a fair comparison, the prediction horizon is re-

duced towards the end of the simulation. Hence, in each case, the controller knows

the same data, i.e., the measurements of the same 24 time steps. Figure 1.15 shows

the total operation costs defined in (1.36) for different lengths of the prediction hori-

zon N. Generally, the operation costs decrease with increasing prediction horizon.

But this is not always the case. Depending on the input profiles, some prediction

horizon lengths yield poorer results since the planned actions are suboptimal with

respect to the whole simulation horizon. It should be noted that this conclusion is

valid for this specific load profiles and that other load profiles might yield other re-

sults. As can be seen, a fast decay of the operation costs occurs within prediction

horizon lengths N = 1, . . . ,5. For longer prediction horizons, not much reduction of

the cost is gained, except for optimizing for all 24 time steps at once (N = 24). Be-

sides that, computational effort increases with increasing prediction horizon length.

Figure 1.16 shows the computation time for different prediction horizon lengths.

As can be seen, computational effort increases considerably for prediction horizon

lengths larger than N = 5.

In Figure 1.17, the storage contents for different lengths of prediction horizons

are presented. The horizontal lines indicate the storage limits (0.5 ≤ Ei(k)≤ 3). At

a prediction horizon with a length of N = 1 (dotted line) and N = 3 (solid line), the
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storage devices are filled up too late or are even emptied (time steps 1–3) because the

controller sees the heat load peaks too late. With increasing N, the storage devices

are filled up earlier. In fact, the optimization of the system would continuously pro-

ceed. For demonstration purposes, the optimization is stopped after 24 time steps.

Therefore, no terminal constraint for the storage is imposed, such as requiring the

storages to be half full at the end of the simulation period.

When optimizing for all 24 time steps at once the most optimal behavior over

the simulation horizon is obtained. The control variables for all next 24 time steps

are determined and applied at time step k. But optimizing for all time steps at once

is not applicable in practice since the data for the whole next day is normally not

known in advance. Moreover, possibly occurring disturbances cannot be handled

and computational effort becomes too high. Hence in practice, applying MPC with

a properly chosen length of prediction horizon is the best choice. For the application

example presented in this paper, a prediction horizon length of N = 5 yields the

best results. In general, depending on the specifications, a trade-off between control

performance and computational effort has to be made. Issues such as obtainable

forecasts and size of possible disturbances also influence the choice of an adequate

length of prediction horizon.

1.6.2.3 Comparison with decoupled mode

In the following the operation costs are compared for different system setups regard-

ing the µCHP and the storage devices. The configuration with µCHP and storage

devices serves as base case. In Table 1.3 the increase in costs for the different

cases are presented, in each case the optimization is made with a prediction horizon

length of N = 5. In the first two cases, the µCHP is utilized and the performance

with and without heat storages is compared. Using the µCHP devices without the

heat storages, total operation costs of 2.98 ·104 m.u. are obtained, corresponding to

an increase of 9.2%. This is due to the fact that the µCHP devices cannot be uti-

lized during periods without heat loads because the thereby produced heat cannot be

dispensed. The second two cases present the costs obtained in decoupled operation

mode, namely when the electricity and natural gas networks are optimized inde-

pendently of each other. No power is converted by the µCHP devices in this mode.

Running the optimization without µCHP usage but including the heat storages, to-

Table 1.3: Comparison of operation costs, N = 5.

µCHP storage costs [m.u.] increase

yes yes 2.73 ·104 base

yes no 2.98 ·104 9.2%

no yes 2.94 ·104 7.7%

no no 3.07 ·104 12.5%
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tal costs of 2.94 · 104 m.u. are obtained. Thus, by decoupling both infrastructures

instead of operating them at once, generation costs are increased by 7.7%. Running

the simulation with either the µCHP nor the storage devices yields total costs of

3.07 ·104 m.u., corresponding to an increase of 12.5%. Note that the combination of

both devices, µCHP and storage device, have a higher effect on the total operation

costs than each device itself. There exists an interplay between both devices which

make both of them necessary.

1.6.3 Distributed control

For the distributed case, again, as a preliminary case study, we assume a perfect

forecast, in which no disturbances within the known profiles are occurring. The

total generation costs are here minimized for a simulation horizon Nsim = 10. The

length of the prediction horizon N is chosen as N = 3. Hence, an optimization over

N time steps is run Nsim times, at each time step k implementing only the control

variable for the current time step k and then starting a new optimization at time step

k+1 with updated system measurements.

The price and load profiles of all hubs used in this study are shown in Figure

1.18. The electricity load Le,i and the gas import prices qN
i remain constant over

time. Variations are assumed only in the prices of the electric energy generation

units qG
i (k) and in the heat load of hub H2, Lh,2, in order to exactly retrace the

storage behavior. In this study, only two storage devices E1, E2 are available for

demonstrating the cooperative behavior. Control areas 1 and 2 are supposed to sup-

port control area 3 to fulfill its load requirements. Control area 3 has neither a gas

access, nor a local heat storage, nor a cheap electricity generation possibility. The

other system parameters are as given in Table 1.2.

1.6.3.1 Single simulation step

Feasibility of distributed algorithm

In order to evaluate whether the solution determined by the distributed algorithm

is feasible for the real system, the following simulation is run. The quality of the

intermediate solutions in case that these would be applied to the system is shown

in Figure 1.19. The distributed MPC optimization problem is solved at time step

k = 1, for N = 3. At each iteration counter s, the overall system costs are shown,

when applying the control variables determined by the distributed algorithm to the

system. The dotted values refer to the infeasible solutions. As the number of itera-

tions increases, the distributed MPC algorithm converges, and, in fact, the solution

obtained at the end of the iterations approaches the solution obtained by the cen-

tralized MPC approach (200.98 m.u.). After iteration 16, the values of all control

variables are feasible. After 39 iterations, the algorithm converges.
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electricity qG
i (k) and natural gas consumption qN

i (k) (lower plot).

Basically, the amount of backup energy provided by the storage devices deter-

mine whether the solution of the distributed MPC algorithm is feasible. Applying

the solution to the system, the control variables are kept fixed, while the values of

the storages are varied within their range attempting to fulfill the load requirements,

i.e., to find an overall feasible solution. Hence, if the storage devices have not been

operated close to their limits at the previous time step, a solution of the distributed

algorithm may yield a feasible system solution, although the controller solution is

considerably far away from a coordination between the individual control areas.

Convergence between control areas

Running the algorithm for the first simulation step with a prediction horizon length

of N = 3 yields overall production costs of 200.77 m.u. Figure 20(a) shows the

evolution of the objective values of all control areas as well as the total objective

value. The costs of area 1 are higher since it contributes the highest amount of

energy for overall system. The control variables are plotted in Figure 20(b). Their
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Fig. 1.20: (a) Objective values of areas 1,2,3 and total objective value; (b) control variables:

active power generation and natural gas import.

steady state values adjust according to the prices for electricity generation and for

the natural gas consumption, respectively.

For analyzing convergence between the control areas the evolution of the cou-

pling constraints is plotted. In Figure 1.21, the coupling constraints obtained by the

optimization of area 2 are presented. Figure 21(a) shows the active power balances

obtained at all node of the electricity system and Figure 21(b) presents the volume

flow balances at all nodes of the natural gas system. The active power balance and

the volume flow balance as considered by node 2, denoted by △P2,2 and △F2,2,

respectively, remain zero, i.e., the balances are always fulfilled, as they are imple-

mented as hard constraints in the optimization problem of area 2. With increasing

iterations, the coupling constraints decrease to zero, i.e., they are fulfilled, indicating

that a successful coordination between the control agents has been achieved.
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Fig. 1.21: Convergence of coupling constraints at nodes 2: (a) active power balances and (b)

volume flow balances.

1.6.3.2 Simulation of multiple time steps

When minimizing the energy costs over the full simulation of Nsim time steps, a

total cost of 850.62 m.u. is obtained for the load and price profiles given above.

Applying centralized MPC, the overall costs are lower, 849.78 m.u., since, due to

the imposed convergence tolerance γtol of the distributed algorithm, the centralized

approach finds a slightly different solution at some iteration steps. In Figure 1.22 the

active power generation and the natural gas import of hub H2 are shown. As can be

seen, active power generation is reduced at time steps with higher generation costs,

i.e., time steps 4–7 and time step 10. During these time steps more gas is consumed.

The electrical loads are now predominantly supplied by the µCHP devices in order

to save costs. Most of the gas is diverted into the µCHP device and less into the

furnace. For still supplying the heat load, the heat storage devices come into opera-

tion. Figure 1.23 shows the content of both storage devices evolving over the time

steps. Both storage devices start at an initial level of 1.5 p.u. Since the heat load at

hub H2 is increased by 20% at time steps 3-5 (Figure 1.18), storage E2 attempts to

remain full before this increase and then operates at its lower limit during the heat

load peaks. At the subsequent electricity price peaks (time steps 6, 7) both storages

are recharged. The electrical loads are mainly supplied by the µCHP devices and all

excessive heat produced during these time steps is then stored in the storage devices.

Storage device E1 is refilled more than E2, as hub H2 has a limited gas access.

If the controllers have a shorter prediction horizon than N = 3, the storage de-

vices are filled up less and also later. With a prediction horizon length of N = Nsim,

the storage devices are filled up earlier and the lowest costs are obtained, although

calculation time becomes considerably longer and the system is insensitive to un-

known changes in the load and price profiles.
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1.7 Conclusions and future research

In this chapter we have proposed the application of model predictive control to en-

ergy hub systems. The dynamics of storage devices, forecasts on energy prices and

demand profiles, and operational constraints are taken into account adequately by

the predictive control scheme, which is an effective control approach for this type

of systems. The performance of different prediction horizons of varying length have

been compared. With an increasing length of the prediction horizon the total opera-

tion costs decrease, but the computational effort increases accordingly. The analyses

show that due to storage capability, even more flexibility on energy conversion in-
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side the hubs is provided, which brings about more freedom in system planning and

operation.

A distributed model predictive control (MPC) approach has been proposed for

solving the overall optimization problem in a distributed way. In a case study, we

have analyzed the quality of intermediate solutions obtained throughout the itera-

tions of the proposed approach to ensure that applying the control to the real system

yields feasible solutions. A cooperative behavior is shown, where the neighboring

areas help to support the system wide objective.

Future research will address the incorporation of forecast errors into the scheme

instead of assuming perfect forecasts. The goal is to implement different load fore-

cast models and to analyze what size in forecast error the procedure can handle. Ba-

sically, the storage devices are the units that are able to balance a deviation within

the load forecasts. Hence, the quality of the forecasts defines the size of the storage.

The more appropriate forecasts are available, the smaller storage devices are needed

to compensate the load prediction errors.

Furthermore, conditions and measures for guaranteeing convergence have to be

investigated more precisely. As the solution spaces of the individual optimization

problems are nonconvex, each control agent may have multiple choices for a local

minimum. If neighboring agents each go for a local minimum that does not yield a

system-wide feasible solution, the agents end up in a situation fighting against each

other which results in a hunting or zig-zag behavior. If this zig-zag behavior is not

too large in size, the distributed solution still yields a feasible system solution, as

the storages can balance out a certain amount of disagreement. In these situations,

it has to be decided which one is the dominant area, i.e., which one is decisive in

the conflict. This decision is possibly based on economics or other relevant criteria.

One aspect of future work will focus on determining which additional information

has to be exchanged in order to make the algorithm more robust.

In addition, network operators, which could influence the energy exchanges be-

tween the hubs, are to be incorporated to the interconnected hub system. The final

goal is to apply the developed procedures to larger systems with more than three

hubs. Thereby, multiple hubs probably are taken into the same control area for en-

abling coordination within reasonable time. Then, firstly coordination between the

different control areas and then coordination within the individual control areas is

carried out.
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