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Abstract: In this paper, a model predictive framework is used to optimize the operation and maintenance

actions of power system equipment based on the predicted health sate of this equipment. In particular, this

framework is used to predict the health state of transformers based on their usage. The health state of a

transformer is hereby given by the hot-spot temperature of the paper insulation of the transformer and is

predicted using the planned loading of the transformer. The actual loading of the transformer is subsequently

optimized using these predictions.

1 Introduction

With a significant portion of the electrical infrastruc-

ture reaching the end of its operational age within

the coming few decades, reliability of the electricity

grid is becoming a more and more important issue.

The reliability of the grid can be improved by moni-

toring its condition and by taking preventive actions

based on this condition [1]. Currently, condition-

based asset management is based mainly on historic

data and on heuristics. In order to optimize the

operation and maintenance of power system equip-

ment, while assuring a predefined level of reliability,

a model describing the evolution of its health state,

has to be incorporated into the asset management

[2].

In [2], a framework is proposed for modeling the

health state of power system equipment and used

for modeling degradation of the paper insulation of

transformers. The framework can be used to pre-

dict the effects of different maintenance actions and

usage patterns. The predictions can then be used

for the optimization of maintenance actions and the

equipment usage. In this paper, we use this frame-

work to optimize the loading of the transformer us-

ing temperature predictions.

The loading limits of a transformer depend on the

temperature within that transformer. The so-called

hot-spot temperature can therefore be used to deter-

mine the loading limits [3,4]. This hot-spot temper-

ature can be predicted using the load of the trans-

former [3-7].

2 Framework for model-based

optimization

A framework for model-based optimization using a

predictive health model has been proposed in [2].

Using this predictive health model, the future health

state of equipment that is used in the electricity grid

can be predicted given a range of possible actions

and usage patterns of its equipment. The framework

also defines the cost function for the optimization.

Below the components of this framework are out-

lined briefly.

2.1 Predictive health model

The predictive health model in the framework con-

sists of a dynamic stress model, a failure model and

an estimation of cumulative stresses, as illustrated
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Figure 1: Predictive health model which predicts cu-

mulative stresses and failure rate for the given usage

and actions.

in Figure 1. As equipment ages, various stresses,

such as electrical, thermal, mechanical and environ-

mental stresses, weaken the strength of the equip-

ment. The cumulative stresses of the equipment are

affected by the usage pattern (e.g., the loading) and

the maintenance actions (e.g., the replacement of

parts) performed on the equipment. The health state

of the equipment is represented by the cumulative

stresses. Their dynamics can be described using a

dynamic stress model such as the following discrete-

time state-space model:

x̂(k+1) = f(x̂(k),u(k)) , (1)

where u(k) =
[

ua(k) ud(k)
]T

. At discrete time

step k, the future cumulative stresses x̂(k + 1) are

predicted based on the usage of the equipment

ud(k), the maintenance actions ua(k) and the current

cumulative stresses x̂(k).
As the cumulative stresses increase over time,

the probability of failure of the equipment also in-

creases. The relationship between the cumulative

stresses and the failure rate of the equipment is de-

scribed in a failure model. The failure model uses

the predicted cumulative stresses to predict the fail-

ure rate of the equipment. The failure model directly

maps the cumulative stresses to the failure rate ŷ(k)
as follows:

ŷ(k) = g(x̂(k)) . (2)

The cumulative stresses are indicated by condition

parameters of the equipment, such as the partial

discharge, temperature measurements, etc. Differ-

ent online and offline monitoring systems can de-

tect these condition parameters. In practice, only

a few condition parameters (such as the electrical

and thermal stresses) are measured by monitoring

systems. Estimates of the monitored cumulative

stresses x̂e(k) can be made based on measurements

c(k) of the monitoring systems as follows:

x̂e(k) = hx (c(k)) . (3)

The obtained cumulative stress estimates x̂e can be

used in the dynamic stress model to update the cor-

responding cumulative stresses. The remaining un-

monitored cumulative stresses are predicted by the

dynamic stress model.

The framework of the predictive health model can

be used to predict the health state and the failure rate

of equipment by considering its usage and the per-

formed maintenance actions. The measurements of

the monitoring systems can be used to update the

cumulative stresses of the equipment.

2.2 Optimization of maintenance and

usage

Typically, maintenance improves the health state of

the equipment, which, in turn, reduces its failure

rate. An optimal maintenance action balances the

economical cost of the maintenance, the improve-

ment of the health state and the reduction in the fail-

ure rate of the equipment. The usage indicates its

utilization.

The process of model-based optimization is il-

lustrated in Figure 2. The total cost of the usage

and the maintenance actions is defined to consist

of three sub-cost functions. The sub-cost function

of the planned usage and the maintenance actions

Ja incorporates the economical cost of the mainte-

nance. The sub-cost function of the failure rate Jf

takes into account the cost associated with the fail-

ure of the equipment. The sub-cost function of the

cumulative stresses Jcs incorporates the cost of the

deterioration of the equipment. The summation of

these three sub-cost functions gives the total cost of

a particular maintenance action in a particular state.

The optimization of the usage and the mainte-

nance actions is considered over a given predicted

time frame of N steps in the future, such that fu-

ture usage and future maintenance actions can be

optimized. The total cost over the predicted time

frame is considered in the optimization. Hence, the

model-based optimization problem is formulated as

2
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Figure 2: Optimization of maintenance. Cost func-

tions are associated with cumulative stresses, failure

rate and usage and maintenance actions.

follows:

min
u(k),··· ,u(k+N−1)

[

N−1

∑
l=0

Ja (u(k+ l))

]

+

[

N−1

∑
l=0

Jf (ŷ(k+ l))

]

+Jcs (x̂(k+N)− x̂(k)) (4)

subject to

x̂(k+ l +1) = f(x̂(k+ l),u(k+ l))

ŷ(k+ l) = g(x̂(k+ l)) for l = 0, · · · ,N −1 .

The predictive health model is thus used to predict

the cumulative stresses and the failure rates for the

planned usage pattern and different future mainte-

nance actions. The total cost is evaluated for differ-

ent future usage and maintenance actions over the

predicted time frame. In this way, the optimal usage

and maintenance actions minimizing the total cost

over the time horizon is searched for.

3 Thermal effects in a power

transformer

Temperatures within a transformer are important

factors for its operation. Below we discuss the dif-

ferent types of temperatures that play a role and their

consequences for transformer loading requirements.

3.1 Temperatures in a transformer

The main sources of the heat generated within a

transformer are losses in its magnetic core and in

Table 1: Suggested maximum temperature of load-

ing types based on the hot-spot temperature [4].

Maximum hot-

Loading types spot temperature

(◦C)

Normal life expectancy loading 120

Planned loading beyond nameplate 130

Long-time emergency loading 140

Short-time emergency loading 180

its windings. The core losses depend on the ap-

plied voltage of the transformer; the winding losses

depend on the loading (current) of the transformer.

Other stray losses (constituting losses due to the

leakage flux, the winding connection, and the termi-

nal connections) also contribute to the heating of the

transformer. In the case of an oil-immersed trans-

former, the heat dissipated in the core, the windings,

and the other parts is transferred to the oil. Subse-

quently, the heat is transferred from the oil to the

cooling medium via the radiators.

The winding material in a transformer can with-

stand temperatures of several hundred degrees Cel-

sius and the oil does not degrade significantly be-

low 140 ◦C [7]. However, insulation paper that sur-

rounds the windings in a transformer degrades in-

creasingly rapid as the temperature exceeds 90 ◦C.

This degradation process reduces the dielectric and

mechanical strength of the insulation paper and

hence reduces its life time [2-4,8].

Different temperatures inside the transformer are

defined, as illustrated in Figure 3. The hot-spot tem-

perature is defined as the temperature of the hottest

part of the windings. It is this temperature that is

used for determining the level of the paper degrada-

tion.

3.2 Loading of transformers

The maximum allowable loading of a transformer

mainly depends on the thermal performance of the

transformer. IEEE C57.91 [4] defines four types of

loading, for which the suggested maximum hot-spot

temperature is given in Table 1.

Under normal life expectancy loading, the max-

imum hot-spot temperature allowed is 120 ◦C. The

planned loading beyond nameplate is suggested for

a planned, repetitive load, provided that the trans-

former is not loaded continuously at the rated load.

The long-time emergency loading is suggested only

for rare emergency conditions. The short-time emer-

gency loading is only suggested for a short time in

3
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Figure 3: Different temperatures and their location

within the transformer [3,7].

a few abnormal emergency conditions. Normal life

expectancy loading is considered risk free [4]. In the

other three cases, the calculation of the loss of life

due to the loading and the risk of failure associated

with this should be considered.

4 Thermal model of a power

transformer

The thermal models of a power transformer are

based on the ambient temperature, the top-oil or

bottom-oil temperatures, and the hot-spot tempera-

ture. The oil temperatures are calculated based on

the ambient temperature and on the dynamics of the

heat transfer from the oil to the environment through

the radiators. Similarly, the hot-spot temperature is

calculated based on the oil temperatures and on the

dynamics of the heat transfer between the windings

and the oil.

IEEE C57.91 [4] suggests a top-oil time con-

stant based on the mass of different parts and on

the cooling type of the transformer. The winding

time constant, which describes the dynamics of the

heat transfer between the windings and the oil, is

estimated based on the cooling experiments. Swift

et al. [5] propose a thermal model based on heat

transfer theory, which includes thermal capacitances

and non-linear thermal resistances. Their approach

is extended by Susa et al. [6,7] by considering the

oil viscosity changes and the loss variation with the

temperature. Their thermal model consists of the

top-oil model and the hot-spot model, as presented

below.

4.1 Top-oil thermal model

The top-oil temperature depends on the load factor

and the ambient temperature. The dynamics of the

top-oil temperature θoil are described by:

1+R ·K2

1+R
·
(

µpu(θoil)
)n

·∆θoil,rated

=
(

µpu(θoil)
)n

· τoil,rated ·
dθoil

dt
+

(θoil −θamb)
n+1

(∆θoil,rated)n
,

(5)

where θamb is the ambient temperature, K is the

load factor (the per unit (pu) load), R is the ratio of

load losses at the rated current and no-load losses,

∆θoil,rated is the rated top-oil temperature rise over

the ambient temperature, µpu(θoil) is the variable oil

viscosity in pu, τoil,rated is the rated top-oil time con-

stant and n is a constant which depends on the type

of cooling.

The rated top-oil time constant τoil,rated (in min-

utes) can be calculated as:

τoil,rated =
0.48 ·MFLUID ·∆θoil,rated

P
·60 , (6)

where MFLUID is the mass of the oil in kg and P rep-

resents the total losses at the rated load in watts.

The change in viscosity of oil at the top-oil tem-

perature µpu(θoil) is given by:

µpu(θoil) =
exp(2797.3/(θoil +273))

exp(2797.3/(θoil,rated +273))
, (7)

where θoil,rated is the rated top-oil temperature.

4.2 Hot-spot thermal model

The hot-spot temperature θhs is based on the top-oil

temperature and the load factor. Its dynamics are

described as follows:

K2 ·Pcu,pu(θhs) ·
(

µpu(θoil)
)n

·∆θhs,rated

=
(

µpu(θoil)
)n

· τwdg,rated ·
dθhs

dt
+

(θhs −θoil)
n+1

(∆θhs,rated)n
,

(8)

where ∆θhs,rated is the rated hot-spot temperature

rise over the top-oil temperature, Pcu,pu(θhs) are the

variable load losses in pu and τwdg,rated is the rated

hot-spot time constant. The variable load losses

Pcu,pu(θhs) is given by:

Pcu,pu(θhs) = Pcu,dc,pu

235+θhs

235+θhs,rated

+Pcu,eddy,pu

235+θhs,rated

235+θhs

, (9)

where Pcu,dc,pu are the DC losses in pu, Pcu,eddy,pu are

the eddy current losses in pu and θhs,rated is the rated

hot-spot temperature.
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5 Thermal model in the model-

based optimization frame-

work

The thermal models (5), (8) are converted to the dy-

namic stress model (1) of the model-based optimiza-

tion framework. The top-oil temperature θoil and

the hot-spot temperature θhs are taken as cumulative

stresses xθ ,oil and xθ ,hs, respectively. The load factor

K is taken as the usage uI. The ambient temperature

θamb is taken as the exogenous input uθ ,amb. The

differential equations (5) and (8) are discretized by

using the forward Euler approximation. The top-oil

model discretized from (5) is then given by:

1+R · (uI(k))
2

1+R
·
(

µpu(k)
)n

·∆θoil,rated

=
(

µpu(k)
)n

· τoil,rated ·
xθ ,oil(k+1)− xθ ,oil(k)

h

+

(

xθ ,oil(k)−uθ ,amb(k)
)n+1

(∆θoil,rated)n
, (10)

where h is the time step and

µpu(k) =
exp

(

2797.3/(xθ ,oil(k)+273)
)

exp(2797.3/(θoil,rated +273))
. (11)

The discretized hot-spot model is then given by:

(uI(k))
2 ·Pcu,pu(k) ·

(

µpu(k)
)n

·∆θhs,rated

=
(

µpu(k)
)n

· τwdg,rated ·
xθ ,hs(k+1)− xθ ,hs(k)

h

+

(

xθ ,hs(k)− xθ ,oil(k)
)n+1

(∆θhs,rated)n
, (12)

where

Pcu,pu(k) = Pcu,dc,pu

235+ xθ ,hs(k)

235+θhs,rated

+Pcu,eddy,pu
235+θhs,rated

235+ xθ ,hs(k)
. (13)

5.1 Simulation of the thermal model

The models (10) and (12) are simulated for the 250

MVA ONAF (Oil Natural Air Forced)-cooled trans-

former presented in [3] and [6]. The parameters of

the model are given in Table 2.

The model is simulated for a constant ambient

temperature of 25.6 ◦C. The load profile of the trans-

former for the simulation is 1.0 pu for 190 minutes,

0.6 pu for 175 minutes, 1.5 pu for 145 minutes, 2.1

pu for 25 minutes and 0.0 pu for 15 minutes.

Table 2: Parameters of the 250 MVA transformer

used in the case study [3,6].

Parameter Value

θoil,rated /
◦C 75

Pcu,dc / W 411780

Pcu,eddy / W 29469

Ps / W 43391

∆θhs,rated / K 20.3

∆θoil,rated / K 38.3

τwdg,rated / min 6

MFLUID / kg 73887

R 1000

n 0.25

θoil,i / ◦C 38.3

θhs,i / ◦C 38.3

The top-oil and the hot-spot temperatures from

the simulation are shown in Figure 4, which is simi-

lar to the results reported in [3] and [6].

6 Loading of the transformer

based on the hot-spot temper-

ature

The loading based on the hot-spot temperature is de-

picted in Table 1. The type of loading and the al-

lowed limits depend on the preference of the utili-

ties, the criticality of the transformer and the situa-

tion (e.g., under emergency conditions limits may be

relaxed). The normal life expectancy loading based

on the hot-spot temperature prediction (in which the

maximum hot-spot temperature is maintained below

120 ◦C) is considered in this section.

The load of the transformer depends on the en-

ergy demand and production. A prediction of the

load can be made based on the predicted generation,

the predicted loading and the network configura-

tion. For the predicted loading, the hot-spot temper-

ature should be below the maximum value of 120 ◦C

for the normal life expectancy loading. In the case

of thermal overloading of the transformer, the load

should be reduced. The load can be varied using dif-

ferent methods, such as network re-configurations,

changing the generation and the load, using an en-

ergy storage, etc.

In our framework, the required loading is consid-

ered as reference loading uI,ref. The actual loading of

the transformer uI should follow the reference load-

ing within the given thermal limit of the transformer.

Assuming the loading uI to be controllable, the op-

5
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Figure 4: Hot-spot and top-oil temperatures for the

given load profile.

timization problem is specified as:

min
uI(k),··· ,uI(k+N−1)

N−1

∑
l=0

|uI(k)−uI,ref(k)| (14)

subject to

xθ ,oil(k+ l +1)

= foil

(

xθ ,oil(k+ l),uI(k+ l),uθ ,amb(k+ l)
)

xθ ,hs(k+ l +1)

= fhs

(

xθ ,hs(k+ l),xθ ,oil(k+ l),uI(k+ l)
)

xθ ,hs(k+ l)≤ 120◦C for l = 0, · · · ,N −1 .

where foil and fhs are given by (10) and (12), respec-

tively.

The optimization problem (14) consists of non-

linear constraints. The optimization therefore is

solved by a non-linear solver, SNOPT [9]. This

solver is used through the Tomlab v6.1 [10] inter-

face in Matlab v7.5.

6.1 Simulation of loading based on the

hot-spot temperature

The 250 MVA transformer mentioned in the previ-

ous section is considered for the case study. A load-

ing of 1.5 pu for a duration of 180 minutes is consid-

ered. The loading is considered to decrease to 0.3 pu

after 180 minutes. An initial hot-spot temperature of

59.4 ◦C and an initial top-oil temperature of 49.8 ◦C

are assumed for the case study. The assumptions

are based on the temperatures at 365 minutes for the

simulation presented in Section 5.1 (see Figure 4).

The hot-spot and top-oil temperature for the given

conditions is shown in Figure 5. As seen in the fig-

ure, the hot-spot temperature exceeds the limit of

120 ◦C after 120 minutes.
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Figure 5: Hot-spot and top-oil temperatures without

load control. The hot-spot temperature exceeds the

limit of 120 ◦C.
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Figure 6: Hot-spot and top-oil temperatures with

load control. The hot-spot temperature is main-

tained below the limit of 120 ◦C.
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Figure 7: Load profile for the proposed load control.

Optimization of the load given in (14) is applied

for the transformer. The length of the time frame

over which predictions are made is 15 minutes. At

each time step, the hot-spot temperature is predicted

for the given prediction horizon. The optimal load

profile is recommended based on the prediction.

The load of the transformer is adjusted based on

the recommended profile. The temperatures and the

load are shown in Figure 6 and Figure 7, respec-

tively. As seen in these figures, the hot-spot tem-

6



perature is kept below the limit by lowering the load

of the transformer. The deviation of the load from

the reference load starts at 105 minutes as the model

predicts that the hot-spot temperature will exceed

the limit in the predicted time frame (15 minutes).

7 Conclusions and future work

A model-based predictive optimization framework

has been applied for the optimization of the load-

ing of a transformer. By using the optimized load-

ing profile, the hot-spot temperature was maintained

below the allowed limit. The proposed method op-

timizes the utilization of the transformer by recom-

mending load changes when required and by keep-

ing the temperature within the safe limits. The ef-

fectiveness of the proposed solution depends on the

accuracy of the temperature estimation and the abil-

ity to control the load of the transformer as recom-

mended.

The framework is implemented for the normal

life expectancy loading of the transformer. The

planned loading beyond nameplate, long-time emer-

gency loading and short-time emergency loading

will be considered in future work. In these cases,

the risk due to loading will be accounted for by con-

sidering the degree of polymerization of the paper

insulation.
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