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DCV route control in baggage handling systems using a

hierarchical control architecture and mixed integer linear

programming

A.N. Tarău*, B. De Schutter, J. Hellendoorn

Delft University of Technology – The Netherlands ({a.n.tarau,b.deschutter, j.hellendoorn}@tudelft.nl)

Abstract : Modern baggage handling systems transport the baggage at high speeds, on a network of tracks, using

destination coded vehicles (DCV). In order to ensure the optimal routing of DCVs, in this paper we propose a hierarchical

control framework. In this framework switch controllers provide position instructions for each switch in the network.

The switch controllers are then supervised by a so-called network controller that mainly takes care of flows of DCVs.

The routing control problem for the network controller is a nonlinear, mixed integer optimization problem, with high

computational requirements, which makes it intractable in practice. Therefore, we present an alternative approach for

reducing the complexity of the computations by approximating the nonlinear optimization problem and rewriting it as a

mixed integer linear programming (MILP) problem. The advantage is that for MILP problems solvers are available that

allow us to efficiently compute the global optimal solution. The solution of the MILP problem is then used for computing

optimal switch control actions. For a benchmark case study we compare the hierarchical route control with switch

control approaches that have been developed previously. Results indicate that the proposed hierarchical control offers a

balanced trade-off between optimality and computational efficiency.

Keywords : Baggage handling systems, DCV route control, hierarchical control.

1 Introduction

State-of-the-art baggage handling systems handle the

baggage in an automated way using fast destination

coded vehicles (DCV). A DCV is a metal cart with a plas-

tic tub on top that transports one bag at the time at high

speed on a network of tracks.

In this paper we consider a DCV-based baggage handling

system. Higher-level control problems for such a sys-

tem are route assignment for each DCV (and implicitly

the switch control of each junction), line balancing (i.e.

route assignment for each empty DCV such that all the

loading stations have enough empty DCVs at any time

instant), and prevention of buffer overflows. The velocity

control of each DCV is a medium-level control problem.

Medium-level controllers determine the velocity of each

DCV so that a minimum safe distance between DCVs

is ensured and so that the DCVs are held at switching

points, if required. So, a DCV runs at maximum speed,

vmax, unless overruled by the local on-board collision

avoidance controller (for more details see Section 3). Fi-

nally, the low-level control problems are coordination and

synchronization when loading a bag onto a DCV (in order

to avoid damaging the bags or blocking the system), and

when unloading it to its end point1. Note that we assume

*Corresponding Author. Address: Mekelweg 2, 2628 CD Delft. E-

mail address: a.n.tarau@tudelft.nl
1An end point of the baggage handling system is the final part of the

the low-level controllers already present in the system.

In the remainder of this paper we focus on higher-level

control problems of a DCV-based baggage handling sys-

tem. Currently, the track networks on which the DCVs

transport the baggage have a simple structure, with the

loaded DCVs being routed through the system using rout-

ing schemes based on preferred routes. These routing

schemes adapt to respond on the occurrence of prede-

fined events. However, the load patterns of the system

are highly variable, depending on, e.g., the season, time

of the day, type of aircraft at each gate, or the number

of passengers for each flight (de Neufville, 1994). Also

note that the first objective of a baggage handling sys-

tem is to transport all the checked-in or transfer bags to

the corresponding end points before the planes have to be

loaded. However, due to the airport’s logistics, an end

point is allocated to a plane only with a given amount

of time before the plane’s departure. Hence, the baggage

handling system performs optimally if each of the bags to

be handled arrives at its given end point within a specific

time window. So, predefined routes are far from optimal.

Therefore, in this paper we will not consider predefined

preferred routes, but instead we will develop and com-

pare efficient control methods to determine the optimal

routing in case of dynamic demands.

In the literature, the route assignment problem has been

system where the bags are lined up, waiting to be loaded into containers

and from there to the plane.
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addressed to a large extent for automated guided vehi-

cles (AGVs), see e.g., Taghaboni and Tanchoco (1995);

Langevin et al. (1996). Typically the AGV routing

problem is written as an integer programming problem.

Hence, the computational complexity increases exponen-

tially with the number of vehicles to be routed. But in

baggage handling systems the number of DCVs used for

transportation is large (typically airports with DCV-based

baggage handling systems have more than 700 DCVs).

Also, we do not deal with a shortest-path or shortest-time

problem, since, due to the airport’s logistics, we need

the bags at their end points within given time windows.

The routing problem for a DCV-based baggage handling

system has been presented by, e.g., Fay (2005) where

an analogy to data transmission via internet is proposed,

and in, e.g., Hallenborg and Demazeau (2006) where a

multi-agent hierarchy has been developed. However, the

analogy between routing DCVs through a track network

and transmitting data over internet has limitations, see

Fay (2005), while (Hallenborg and Demazeau, 2006), do

not focus on control approaches for computing the opti-

mal route of DCVs, but on designing a multi-agent hi-

erarchy for baggage handling systems and analyzing the

communication requirements. But the multi-agent sys-

tem of Hallenborg and Demazeau (2006) is faced with

major challenges due to the extensive communication re-

quired. The goal of our work is to develop and compare

efficient control approaches for controlling the route of

each DCV on the track network.

Theoretically, the maximum performance of such a DCV-

based baggage handling system would be obtained if one

computes the optimal routes using optimal control Lewis

(1986). However, as shown by Tarău et al. (2008), this

control method becomes intractable in practice due to the

heavy computation burden. Therefore, in order to make a

trade-off between computational effort and optimality, in

(Tarău et al., 2009b) and in (Tarău et al., 2009a), we have

developed and compared centralized, decentralized2, and

distributed3 predictive control approaches (MPC), and

decentralized and distributed heuristic approaches to de-

termine the routes of loaded DCVs. As the results con-

firmed, centralized MPC requires high computation time

to determine a solution. The use of decentralized control

approaches lowers the computation time, but at the cost of

suboptimality. Distributed approaches typically improve

the performance compared to decentralized methods, but

at the cost of larger total computation time due to the re-

quired synchronization when computing the control ac-

tions.

In this paper we propose a hierarchical control framework

where the higher level controllers use MPC. Note that the

large computation time obtained in previous work comes

from solving the nonlinear, nonconvex, mixed integer op-

timization problems. Typically, such problems have mul-

2If the local control actions are computed without any communica-

tion or coordination between the local controllers, the control approach

is said to be decentralized.
3If the local control actions are computed considering also commu-

nication and coordination between the local controllers, the control ap-

proach is said to be distributed.

tiple local minima; are NP hard, and therefore, difficult

to solve. So, in this paper we investigate whether the

computational effort required by the optimal routing ap-

proaches developed so far can be lowered by using mixed

integer linear programming (MILP) since for MILP prob-

lems efficient solvers are available. Moreover, we expect

that using a hierarchical route control framework can im-

prove the efficiency of the routing approaches previously

developed.

The paper is organized as follows. In Section 2 we

briefly introduce the DCV-based baggage handling sys-

tems. Next, in Section 3 we propose the hierarchical con-

trol framework that we will use to determine the opti-

mal routing of loaded DCVs. Furthermore, in Section 4,

we focus on the routing tasks of the network controller

and we present a simplified nonlinear flow model for

the DCV-based baggage handling system, that can be re-

cast as an MILP model, and the corresponding predictive

routing problems for both nonlinear and MILP models.

The MILP model is then used to compute optimal flows.

These optimal flows become targets to be achieved by

optimal switch control. In Section 5 we briefly present

how the switch controller computes its control signals.

Then, for a benchmark case study we compare the results

obtained when using the proposed hierarchical control

framework and the switch control approaches that have

proved to give good performance in (Tarău et al., 2009a)

and (Tarău et al., 2009b): centralized MPC, distributed

MPC with a single round of downstream and upstream

communication, and distributed heuristics. The analysis

of the simulation results is reported in Section 6. Section

7 concludes the paper.

2 DCV-based baggage handling

systems

The track network of a DCV-based baggage handling sys-

tems consists of a set of loading stations as origin nodes,

a set of unloading stations as destination nodes, and a

set of junctions as internal nodes. Note that without loss

of generality we can assume each junction to have max-

imum 2 incoming links and maximum 2 outgoing links

(as illustrated in Figure 1). This assumption of a net-

work corresponds to current practice in state-of-the-art

baggage handling systems. Let us call the switch that

makes the connection between a junction and its incom-

ing links switch-in, and the switch that makes the connec-

tion between a junction and its outgoing links switch-out.

incomingincoming
link 0 link 1

(a) switch-in

outgoingoutgoing
link 0 link 1

(b) switch-out

Figure 1: Incoming and outgoing links at a junction.
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Network controller

Switch controllerSwitch controller

DCV controller DCV controller DCV controller DCV controller

Figure 2: Hierarchical control for DCV-based baggage handling systems. Recall that we assume the low-level controllers already

present in the system.

The DCV-based baggage handling system operates as fol-

lows: given a demand of bags and the network of tracks

as a directed graph, the route of each DCV in the network

has to be determined subject to the operational and safety

constraints detailed in (Tarău et al., 2008) such that all

the bags to be handled arrive at their end points within

the corresponding time window. Note that in this paper

we focus on optimally routing the loaded DCVs — from

a loading station (origin) to an unloading station (desti-

nation). As a consequence, we assume that a sufficient

number of DCVs are present in the system so that when

a bag is at the loading station there is a DCV ready for

transporting it.

3 Proposed control framework

In order to efficiently compute the route of each DCV we

propose a hierarchical control framework that consists of

a multi-level control structure as shown in Figure 2. The

layers of the framework can be characterized as follows:

– The network controller considers flows of DCVs in-

stead of individual DCVs. Moreover, the network

controller determines reference DCV flow trajecto-

ries over time for each link in the network. These

flow trajectories are computed so that the perfor-

mance of the DCV-based baggage handling system

is optimized. Then the optimal reference flow tra-

jectories are communicated to switch controllers.

– The switch controller present in each junction re-

ceives the information sent by the network controller

and determines the sequence of optimal positions for

its ingoing and outgoing switches at each time step

so that the tracking error between the reference flow

trajectory and the actual flow trajectory is minimal.

– The DCV controller present in each vehicle detects

the speed and position of the vehicle in front of it, if

any, and the position of the switch into the junction

the DCV travels towards to. This information is then

used to determine the speed to be used next such

that no collision will occur and such that the DCV

stops in front of a junction the switch of which is

not positioned on the link that the DCV travels on.

The lower levels in this hierarchy deal with faster time

scales (typically in the milliseconds range for the DCV

controllers up to the seconds range for the switch con-

trollers), whereas for the higher-level layer (network con-

troller) the frequency of updating is up to the minutes

range.

In (Tarău et al., 2009a) and (Tarău et al., 2009b) we have

developed heuristic and predictive control methods for a

2-level control framework that consists of switch con-

trollers and DCV controllers only. These switch con-

trollers determine optimal switch positions and conse-

quently “optimal” routes by solving local optimization

problems or by using heuristic rules. In the remainder

of the paper we will focus on the network control level of

the hierarchy illustrated in Figure 2 and in particular on

how the optimal routes can be determined for the DCVs

transporting bags through the network.

4 Route control

In this section we focus on the network controller.

4.1 Preliminaries

Since later on we will use the model predictive control

(MPC) approach for determining the routes of the DCVs

in the network, in this section we briefly introduce the

basic MPC concept.

MPC is an on-line model-based predictive control de-

sign method for discrete time models, see, e.g., (Cama-

cho and Bordons, 1995), (Maciejowski, 2002), (Rawl-

ings and Mayne, 2009), that uses the receding hori-

zon principle. In the basic MPC approach, given an

horizon N, at step time k, the future control sequence

u(k + 1),u(k + 2), . . . ,u(k +N) is computed by solving

a discrete-time optimization problem over a prediction

period [kτs,(k +N)τs) with τs the sampling time. The

optimization problem is defined so that a cost criterion is

optimized over the prediction period subject to the oper-

ational constraints. After computing the optimal control

sequence, only the first control sample is implemented,
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and subsequently the horizon is shifted. Next, the new

state of the system is measured or estimated, and a new

optimization problem at step k + 1 is solved using this

new information. In this way, a feedback mechanism is

introduced.

4.2 Approach

If we would consider each DCV individually, the pre-

dictive switch control problem in DCV-based baggage

handling systems results in a huge nonlinear integer op-

timization problem with high computational complexity

and requirements, making the problem in fact intractable

in practice Tarău et al. (2009b). So, since considering

each individual switch is too computationally intensive

we will consider streams of DCVs instead (characterized

by real-valued demands and flows expressed in vehicles

per second). The routing problem will then be recast as

the problem of determining the flows on each link. Once

these flows are determined, they can be implemented

by switch controllers at the junctions. So, the network

controller provides flow targets to the switch controllers,

which then have to control the position of the switch into

and out of each junction in such a way that these targets

are met as well as possible. This corresponds to blocking

flows before a junction whenever necessary and possible,

and routing the DCVs towards the outgoing links.

4.3 Set-up

We consider the following set-up. We have a transporta-

tion network with a set of origin nodes O consisting of

the loading stations, a set of destination nodes D consist-

ing of the unloading stations, and a set of internal nodes

I consisting of all the junctions in the network. We de-

fine the set of all nodes as V = O ∪I ∪D . The nodes

are connected by unidirectional links. Let L denote the

set of all links.

Furthermore, let the time instant tk be defined as

tk = t0 + kτnc

with t0 that time when we start the simulation and τnc the

sampling time for the network controller. Then, for each

pair (o,d) ∈ O ×D , there is a dynamic, piecewise con-

stant demand pattern Do,d(·) as shown in Figure 3 with

Do,d(k) the demand of bags at origin o with destination

d in the time interval [tk, tk+1) for k = 0,1, . . . ,K−1 with

K the simulation horizon (we assume that beyond tK the

demand is 0).

Next, let Ld be the set of links that belong to some route

going to destination d, Ld ⊆ L . We denote the set of

incoming links for node v ∈ V by L in
v , and the set of

outgoing links of v by L out
v . Note that for origins o ∈ O

we have L in
o = /0 and for destinations d ∈ D we have

L out
d = /0. Also, assume each origin node to have only

one outgoing link and each destination node to have only

one incoming link — if a loading station would have

...

...

Do,d

tt0 tKt1 t2 tK−2 tK−1

Do,d(0)

Do,d(1)
Do,d(K −2)

Do,d(K −1)

Figure 3: Piecewise constant time-varying demand profile Do,d .

more than one outgoing link, then one can virtually ex-

pand a loading station into a loading station connected

via a link of length 0 to a junction with a switch-out and

2 outgoing links, etc.; similarly, one can virtually expand

an unloading station with more than one incoming link.

Then |L out
o |= 1 and |L in

d |= 1.

Next, for each destination d ∈D and for each link ℓ∈Ld

in the network we will define a real-valued flow uℓ,d(k).
The flow uℓ,d(k) denotes the number of DCVs per time

unit traveling towards destination d that enter link ℓ dur-

ing the time interval [tk, tk+1).

The aim is now to compute using MPC, for each time step

k, flows uℓ,d(k) for every destination d ∈ D and for every

link ℓ ∈ Ld in such a way that the capacity of the links

is not exceeded and such that the performance criterion is

minimized over a given prediction period [tk, tk+N). Later

on we will write a model of the baggage handling system

to be used by the network controller, and show that this

model can be rewritten as an MILP model. Therefore, in

order to obtain an MILP optimization problem one has to

define a linear or piecewise affine performance criterion.

Possible goals for the network controller that allow linear

or piecewise affine performance criteria are reaching a

desired outflow at destination d or minimizing the lengths

of the queue in the network.

4.4 Model

We now determine the model for the DCV flows through

the network. Let τℓ denote the free-flow travel time on

link ℓ. Recall that the free-flow travel time of link ℓ rep-

resents the time period that a DCV requires to travel on

link ℓ when using maximum speed. In this subsection we

assume the travel time τℓ to be an integer multiple of τnc,

say

τℓ = κℓτ
nc with κℓ an integer. (1)

In case the capacity of a loading station is less than the

demand, queues might appear at the origin of the net-

work. Let qo,d(k) denote the length at time instant tk of

the partial queue of DCVs at origin o going to destination

d. In principle, the queue lengths should be integers as

their unit is “number of vehicles”, but we will approxi-

mate them using reals.

For every origin node o ∈ O and for every destination

d ∈ D we now have:

uℓ,d(k)6 Do,d(k)+
qo,d(k)

τnc
for ℓ ∈ L

out
o ∩Ld (2)
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with Do,d(k) = 0 for k > K. Moreover,

qo,d(k+1) = max

(

0, qo,d(k)+
(

Do,d(k)−

∑
ℓ∈L out

o ∩Ld

uℓ,d(k)
)

τnc

)

(3)

But queues can form also inside the network. We assume

that the DCVs run with maximum speed along the track

segments and, if necessary, they wait before crossing the

junction in vertical queues. Let qv,d(k) denote the length

at time instant tk of the vertical queue at junction v ∈ I ,

for DCVs going to destination d ∈ D . In this subsec-

tion we do not consider outflow restrictions on queues to

destination d for a junction v connected via a link to des-

tination d, and hence qv,d(k) = 0 for all k.

Taking into account that a flow on link ℓ has a delay of κℓ

time steps before it reaches the end of the link, for every

internal node v ∈ I and for every d ∈ D we have:

Fout
v,d (k)6 F in

v,d(k)+
qv,d(k)

τnc
(4)

where F in
v,d(k) is the flow into the queue at junction v, be-

ing defined as:

F in
v,d(k) = ∑

ℓ∈L in
v ∩Ld

uℓ,d(k−κℓ) (5)

and where Fout
v,d (k) is the flow out of the queue at junction

v, defined as:

Fout
v,d (k) = ∑

ℓ∈L out
v ∩Ld

uℓ,d(k) . (6)

The evolution of the length of the queue for every internal

node v ∈ I and for every d ∈ D is given by:

qv,d(k+1) = max
(

0,qv,d(k)+
(

F in
v,d(k)−Fout

v,d (k)
)

τnc
)

(7)

Moreover, for each origin o ∈ O and for each junction

v ∈ I we have the following constraints:

∑
d∈D

qo,d(k+1)≤ qmax
o (8)

∑
d∈D

qv,d(k+1)≤ qmax
v (9)

where qmax
o and qmax

o express (respectively) the maximum

number of DCVs the conveyor belt transporting bags to-

wards loading stations can accommodate and the maxi-

mum number of DCVs the track segments of the incom-

ing links of that junction can accommodate.

We also have the following constraint for every link ℓ:

∑
d∈D

uℓ,d(k)6Umax (10)

where Umax is the maximum flow of DCVs that can enter

a link.

Then, at time step k, the model of the DCV flows through

the network of tracks describing (2)–(10) can be written

as a system of equalities and a system of inequalities as

follows:

qk+1 = M
eq(qk,uk)

M
ineq(qk+1,uk)≤ 0

where

– qk is the vector consisting of all the queue lengths

qo,d(k), for all o ∈ O and for all d ∈ D , and of all

the queue lengths qv,d(k), for all v ∈ I and for all

d ∈ D ,

– uk is the vector consisting of all the flows uℓ,d(k),
for all d ∈ D and for all ℓ ∈ Ld .

4.5 Performance index

Next we define the performance index to be used for com-

puting the optimal routing at step k for a prediction period

of N time steps.

The objective is to have each bag arriving at its end point

within a given time interval [tclose
d − τ

open
d , tclose

d ) where

tclose
d is the time instant when the end point d closes and

τ
open
d is the time period for which the end point d stays

open for a specific flight. We assume tclose
d and τ

open
d to

be integer multiples of τs.

Hence, one MPC objective that allows a piecewise affine

performance criterion is to achieve a desired flow at des-

tination d during the prediction period. Let udesired
d de-

note the desired piecewise constant flow profile at desti-

nation d as sketched in Figure 4, where the area under

udesired
d equals the total number of bags out of the total

demand that have to be sent to destination d. Note that

udesired
d (k) = 0 for all k < k

open
d and all k ≥ kclose

d with

k
open
d =

tclose
d

−τopen

τnc and kclose
d =

tclose
d
τnc .

tclose
d − τ

open
d tclose

d

t

udesired
d

τnc

Figure 4: Desired arrival profile at destination d.

Let κℓd
=

τℓd
τnc . Hence, one can define the following

penalty for flow profiles corresponding to destination

d ∈ D :

J
pen
d,k = udesired

d (k)−uℓd ,d(k+κℓd
)

where ℓd is the incoming link of destination d.

Later on we will include the penalty term

k+N−1−κℓd

∑
i=k

J
pen
d,i

into the MPC performance criterion for each destina-

tion d and for each time step k. Note that we make

5



the summation of these penalization indices only up to

k+N −1−κℓd
since for i > k+N −1−κℓd

the variable

uℓd ,d(k+κℓd
) is not defined at MPC step k.

Moreover, note that using as MPC performance crite-

rion ∑
k+N−1−κℓd
i=k J

pen
d,i for each destination d and for each

time step k, could have adverse effects for small predic-

tion horizons. Therefore, to counteract these effects, we

also consider as additional controller goal maximizing

the flows of all links that are not directly connected to

unloading stations. To this aim, let τ link
ℓ,d,k be the typical4

time required for a DCV that entered link ℓ in [tk, tk+1) to

reach destination d, with τ link
ℓ,d,k an integer multiple of τs.

Also, let κl,d =
τ link
ℓ,d,k

τnc . Then one can define the following

penalty:

Jflow
ℓ,d,k =

{

uℓ,d(k) if k
open
d −κl,d ≤ k < kclose

d −κl,d

0 otherwise

This penalty will be later on used in the MPC perfor-

mance criterion.

Next, in order to make sure that all the bags will be han-

dled in finite time, we also include in the MPC perfor-

mance criterion the weighted length of queues at each

junction in the network as presented next. Let τ
junc
v,d be the

typical4 time required for a DCV in the queue at junction

v to reach destination d, with τ
junc
v,d (k) an integer multiple

of τnc. Also, let κv,d =
τ

junc
v,d

(k)

τnc . Then we define the new

penalty:

Joverdue
v,d,k =

{

dmin
v,d qv,d(k) if k ≥ kclose

d −κv,d

0 otherwise

where dmin
v,d represents the length of the shortest route

from junction v to destination d. Note that Joverdue
v,d,k is

nonzero only for steps that are larger than or equal to

kclose
d −κv,d . Moreover, for these steps Joverdue

v,d,k is propor-

tional to dmin
v,d . The reason for this is that we want to pe-

nalize more the queues at junctions that are further away

from destination d because the DCVs in those queues will

need longer time to travel to destination d.

Finally, let L dest denote the set of links directly con-

nected to unloading stations. Then the MPC performance

index is defined as follows:

Jk,N = ∑
d∈D

( k+N−1−κℓd

∑
i=k

λdJ
pen
d,i +β

k+N−1

∑
i=k

∑
v∈I

Joverdue
v,d,i −

α
k+N−1

∑
i=k

∑
ℓ∈(L \L dest)∩Ld

Jflow
ℓ,d,i

)

(11)

with λd > 0 a weight that expresses the importance of

the flight assigned to destination d, α ≪ 1 and β ≪ 1

nonnegative weighting parameters.

Then the nonlinear MPC optimization problem is defined

as follows:

4These durations are determined based on historical data.

min
uk,...,uk+N−1,qk+1,...,qk+N

Jk,N

subject to

qk+1 = M eq(qk,uk)
...

qk+N = M eq(qk+N−1,uk+N−1)
M ineq(qk+1,uk)≤ 0

...

M ineq(qk+N ,uk+N−1)≤ 0

The nonlinear MPC optimization problem defined above

is typically complex and it requires large computational

effort to solve. Therefore, in the next section we will

recast this problem into a MILP one for which efficient

and fast solvers are available.

4.6 MILP optimization problem for the

network controller

Mixed integer linear programming (MILP) problems are

optimization problems with a linear objective function,

subject to linear equality and inequality constraints. The

general formulation for a mixed-integer linear program-

ming problem is the following:

min
xMILP

c⊤xMILP

subject to

AeqxMILP = beq

AxMILP ≤ b

xlow ≤ xMILP ≤ xup

where c, xMILP, xlow, xup, beq, and b are vectors, with

xlow the lower bound of xMILP and xup its upper bound,

and where Aeq and A are matrices (all these vectors and

matrices have appropriate size). Note that MILP solvers

compute solutions xMILP for the problem above, where

some of the elements of xMILP are restricted to integer

values.

Next we transform the dynamic optimal route choice

problem presented above into an MILP problem, for

which efficient solvers have been developed (Fletcher and

Leyffer, 1998). To this aim we use the following equiv-

alences, see (Bemporad and Morari, 1999), where f is

a function defined on a bounded set X with upper and

lower bounds M and m for the function values, δ is a bi-

nary variable, y is a real-valued scalar variable, and ε is a

small tolerance (typically the machine precision):

P1: [ f (x)6 0] ⇐⇒ [δ = 1] is true if and only if

{

f (x)6 M(1−δ )
f (x)> ε +(m− ε)δ ,

P2: y = δ f (x) is equivalent to















y 6 Mδ
y > mδ
y 6 f (x)−m(1−δ )
y > f (x)−M(1−δ ) .
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As example we will show how equation (3) of the nonlin-

ear route choice model presented in the previous section

can be transformed into a system of linear equations and

inequalities by introducing some auxiliary variables. For

the other equations of the route choice model we apply a

similar procedure.

We consider now (3). This is a nonlinear equation and

thus it does not fit the MILP framework. Therefore, we

will first introduce the binary variables δo,d(k) such that

δo,d(k) = 1 if and only if

qo,d(k)+
(

Do,d(k)− ∑
l∈L out

o ∩Ld

uℓ,d(k)
)

τnc
6 0

(12)

and rewrite (3) as follows:

qo,d(k+1) =
(

1−δo,d(k)
)

·
(

qo,d(k)+
(

Do,d(k)−

∑
l∈L out

o ∩Ld

uℓ,d(k)
)

τnc
)

. (13)

Condition (12) is equivalent to (cf. Property P1):

{

f (k)6 (qmax
o +Dmax

o,d τnc)(1−δo,d(k))

f (k)> ε +(−Umaxτnc − ε)δo,d(k) ,

where f (k) = qo,d(k)+
(

Do,d(k)− ∑
l∈L out

o ∩Ld

uℓ,d(k)
)

τnc,

qmax
o is the maximal queue length at origin o, and where

Dmax
o,d = maxk Do,d(k) is the maximal demand for origin-

destination pair (o,d).

However, (13) is still nonlinear since it contains a multi-

plication of a binary variable δo,d(k) with a real-valued

(linear) function. However, by using Property P2 this

equation can be transformed into a system of linear in-

equalities.

The rest of the model equations can be transformed, in a

similar way, into a system of MILP equations. Next we

will transform the MPC performance index into its MILP

form.

The problem

min
k+N−1

∑
i=k

∑
d∈D

λd

∣

∣

∣
udesired

d (i)−uℓd ,d(i+κℓd
)
∣

∣

∣

can be written as:

min
k+N−1

∑
i=k

∑
d∈D

λdudiff
d (i)

s.t.

udiff
d (i)> udesired

d (i)−uℓd ,d(i+κℓd
)

udiff
d (i)>−udesired

d (i)+uℓd ,d(i+κℓd
)

for i = k, . . . ,k+N −1.

which is a linear programming problem.

If we add the MILP equations of the model, the nonlinear

optimization problem of Section 4.5 can be written as an

MILP problem.

Several efficient branch-and-bound MILP solvers

(Fletcher and Leyffer, 1998) are available for MILP

problems. Moreover, there exist several commercial and

free solvers for MILP problems such as, e.g., CPLEX,

Xpress-MP, GLPK, or lp_solve, see (Atamtürk and

Savelsbergh, 2005) for an overview. In principle, —

i.e., when the algorithm is not terminated prematurely

due to time or memory limitations, — these algorithms

guarantee to find the global optimum. This global opti-

mization feature is not present in the other optimization

methods that can be used to solve the original nonlinear,

nonconvex, nonsmooth optimization problem. Moreover,

if the computation time is limited (as is often the case

in on-line real-time control), then it might occur that

the MILP solution can be found within the allotted time

whereas the global and multi-start local optimization

algorithm still did not converge to a good solution (as

will be illustrated in Section 6.3).

5 Switch control

We now focus on the switch controller for the proposed

hierarchy, and on how optimal switch positions can be

determined.

Recall that at each control step k, the network controller

provides optimal flows for each link in the network and

for each destination. Let these flows be denoted by

u
opt
ℓ,d(k), . . . , u

opt
ℓ,d(k+N −1) with d ∈ D , ℓ ∈ L ∩Ld and

N the prediction horizon of the network controller. Then

the switch controller of each junction has to compute

optimal switch-in and switch-out positions such that the

tracking error between the reference optimal flow trajec-

tory and the flow trajectory obtained by the switch con-

troller is minimal for each network controller time step

k = 0, . . . ,K.

Recall that the optimal flows u
opt
ℓ,d(k), . . . ,u

opt
ℓ,d(k+N − 1)

are determined for the time window [tk, tk+N) with tk =
t0 + kτnc. Moreover, note that in order to determine the

switch control action during the time window [tk, tk+N)
we will use again MPC. Next we will refer to one junction

v ∈ I only. For all other junctions, the switch control

actions are determined similarly.

Let τsc be the switch controller sampling5 time. Also,

let ksc be an integer that expresses the number of switch

control actions determined until now. At tk, ksc is defined

as ksc = τnc

τsc k. Then let tsw
ksc denote the time instant cor-

responding to the time step ksc of the switch controller,

tsw
ksc = t0+kscτsc with t0 the time instant when we start the

simulation.

Furthermore, let sin
v (k

sc) denote the position of the

switch-in at junction v during the time interval
[

tsw
ksc , t

sw
ksc+1

)

and let sout
v (ksc) denote the position of the

switch-out at junction v during
[

tsw
ksc , t

sw
ksc+1

)

.

5We select the sampling time τnc of the network controller and the

sampling time τsc of the switch controller such that τnc is an integer

multiple of τsc.
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We want to determine the switch control sequence during

the time window [tk, tk+N) while using MPC with predic-

tion period of Nsc steps. Hence, at each MPC step ksc, the

switch controller solves the following optimization prob-

lem:

min
sv,ksc,Nsc

Jsw
v,ksc,Nsc (14)

with sv,ksc,Nsc = [sin
v (k

sc) . . . sin
v (k

sc + Nsc − 1) . . .
sout

v (ksc) . . . sout
v (ksc + Nsc − 1)]⊤ if junction v has 2

incoming and 2 outgoing links (sv,ksc,Nsc contains only

switch-in or only switch-out positions if junction v has

only 1 outgoing or only 1 incoming link respectively)

and with Jsw
v,ksc,Nsc the local MPC performance index

defined as:

Jsw
v,ksc,Nsc = ∑

ℓ∈L out
v

∣

∣

∣
X

opt
ℓ,k,ksc,Nsc(u

opt
ℓ )−Xℓ,ksc,Nsc(sv,ksc,Nsc)

∣

∣

∣

+ γ
(

nsw_in
ksc,Nsc(sv,ksc,Nsc)+nsw_out

ksc,Nsc(sv,ksc,Nsc)
)

where

– X
opt
ℓ,k,ksc,Nsc(u

opt
ℓ ) denotes the optimal number of

DCVs to enter the outgoing link ℓ of junction v dur-

ing the period
[

tsw
ksc , t

sw
ksc+Nsc−1

)

, where u
opt
ℓ is the vec-

tor consisting of all the flows u
opt
ℓ,d(k), . . . ,u

opt
ℓ,d(k +

N) with d ∈ D and ℓ ∈ L ∩ Ld . The variable

X
opt
ℓ,k,ksc,Nsc(u

opt
ℓ ) is derived later on (see (15)).

– Xℓ,ksc,Nsc(sv,ksc,Nsc) is the actual number of DCVs

entering link ℓ during the prediction period. The

variable Xℓ,ksc,Nsc is determined via simulation for

a nonlinear (event-based) model similar to the one

of Tarău et al. (2009b) (the difference is that now

the switch positions sv,ksc,Nsc are given for each pe-

riod [tsw
ksc , t

sw
ksc+1), . . . , [tsw

ksc+Nsc−1, t
sw
ksc+Nsc) instead of

for each of the next Nsc DCVs to cross a junction);

– nsw_in
ksc,Nsc(sv,ksc,Nsc) and nsw_out

ksc,Nsc(sv,ksc,Nsc) represent the

number of toggles of the switch-in and of the

switch-out respectively during the prediction win-

dow
[

tsw
ksc , t

sw
ksc+Nsc

)

, which are obtained from simu-

lation;

– γ is a nonnegative weighting parameter.

Next we derive the variable X
opt
ℓ,k,ksc,Nsc(u

opt
ℓ ). To this aim,

we first determine how many steps pksc of the network

controller will be involved in solving (14) as follows:

pksc =
⌈

Nscτsc

τnc

⌉

where ⌈x⌉ denotes the smallest integer

larger than or equal to x (so, pksc ≥ 1). Furthermore, note

that the index k of the time instant tk for which tk ≤ tsw
ksc <

tk+1 can be computed as follows: k =
⌊

kscτsc

τnc

⌋

where ⌊x⌋
denotes the largest integer less than or equal to x. Figure

5 illustrates the prediction window
[

tsw
ksc , t

sw
ksc+Nsc−1

)

with

respect to the window [tk, tk+pksc ).

The variable X
opt
ℓ,k,ksc(u

opt
ℓ ) is given by:

X
opt
ℓ,k,ksc,Nsc(u

opt
ℓ ) =τ left

1,ksc ∑
d∈D

u
opt
ℓ,d(k)+ τnc

k+pksc−2

∑
i=k+1

∑
d∈D

u
opt
ℓ,d(i)+

τ left
2,ksc ∑

d∈D

u
opt
ℓ,d(k+ pksc −1) (15)

tk tk+1 tk+2 tk+pksc−1 tk+pksc

τ left
1,ksc (p−2)τnc τ left

2,ksc
tsw
ksc tsw

ksc+Nsc−1

Figure 5: Prediction window
[

tsw
ksc , t

sw
ksc+Nsc−1

)

over which we

solve the MPC optimization problem (14) illustrated with re-

spect to the window [tk, tk+pksc ) for pksc > 2.

where ∑
k+ j
i=k+1 x(i) = 0 by definition for j < 1 and where

τ left
1,ksc =min(tk+1, t

sw
ksc+Nsc−1)− tsw

ksc ,

τ left
2,ksc =

{

tsw
ksc+Nsc−1 − tk+pksc−1 if pksc > 1

0 otherwise.

6 Case study

In this section we present a benchmark case study involv-

ing a basic set-up to illustrate the network-level control

approach for DCV-based baggage handling systems pro-

posed in this paper. First, we will describe the set-up

and the details of the scenarios used for our simulations.

Next, we will discuss and analyze the obtained results.

6.1 Set-up

We consider the network of tracks depicted in Figure

6 with 4 loading stations, 2 unloading stations, 9 junc-

tions, and 20 unidirectional links, where the free-flow

travel time is provided for each link. This network al-

lows more than four possible routes to each destination

from any origin point (e.g., d1 can be reached from o1

via junctions v1,v4,v8; v1,v4,v8,v9,v8; v1,v2,v5,v4,v8;

v1,v2,v6,v7,v9,v8, and so on). We consider this network

because on the one hand it is simple, allowing an intu-

itive understanding of and insight in the operation of the

system and the results of the control, and because on the

other hand, it also contains all the relevant elements of a

real set-up.

We assume that the velocity of each DCV varies between

0 m/s and 10 m/s. In order to faster assess the efficiency

of our control method we assume that we do not start with

an empty network but with a network already populated

by DCVs transporting bags.

6.2 Scenarios

In order to assess the performance of the proposed hierar-

chical control framework we define six scenarios where

2400 bags will be loaded into the baggage handling sys-

tem (600 bags at each loading station). We consider

three classes of demand profiles called “dp1”, “dp2”,

and “dp3” hereafter. According to these classes, the

bags arrive at each loading station in the time interval

[t0, t0 +180s), the arrival times at a loading station being

allocated randomly, using a uniform distribution accord-

ing to the following cases:
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o1 o2 o3 o4
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d1 d2
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3τnc

2τnc

2τnc

τnc τnc

Figure 6: Case study for a DCV-based baggage handling sys-

tem.

dp1: the 600 bags arrive at the loading station with a con-

stant rate of 3.3 bags/s;

dp2: 100 bags arrive at the loading station during the

time window [t0, t0 + 60s), 100 bags arrive during

[t0 + 120s, t0 + 180s), and the rest of 400 bags ar-

rives during [t0 +60s, t0 +120s);

dp3: 100 bags arrive during the time interval [t0, t0 +
120s) and the rest of the bags, i.e., 500 bags, ar-

rives after t = t0 +120s, i.e., during [t0 +120s, t0 +
180s).

We also consider two different initial states of the sys-

tem where 60, and respectively 120 DCVs are already

transporting bags in the network, running from origins

o1, . . . ,o4 to junctions v1 and v3, from v1 to v2, and from

v3 to v2. Their positions at t0 are assigned such that be-

tween each 2 consecutive DCVs we have a minimum safe

distance of 2 m, and between the DCV closest to the next

to be passed junction and the junction we again have 2 m.

Later on, when comparing the control methods in Sec-

tion 6.3, we will also use as criterion the static priorities

(the flight priorities) of all the bags to be handled. These

priorities are assigned randomly in the set {1,2} using a

uniform distribution.

We assume that we have only two flights assigned to

the unloading stations d1 and d2 (one flight assigned to

one unloading station). Furthermore, we assume that

the time windows within which we need the bags at

their end points are [t0 + 800s, t0 + 1400s) for d1 and

[t0 +1000s, t0 +1600s) for d2.

We simulate a period of 40 minutes. The control time step

for the network controller is set to 60 s, while the control

time step for the switch controller is set to 2 s. Note that in

these scenarios we also consider the occurrence of queues

at origin.

6.3 Results

In this section we compare the results obtained when us-

ing the proposed hierarchical route control framework

and the switch control approaches that have shown to

give good performance in (Tarău et al., 2009b) and (Tarău

et al., 2009a): centralized MPC, distributed MPC with a

single round of downstream and upstream communica-

tion, and distributed heuristics.

In order to solve the MILP optimization of the network

controller we have used the CPLEX solver of the Matlab

optimization toolbox Tomlab, while to solve the nonlin-

ear optimization problem of the switch controller we have

chosen the genetic algorithm implemented in Matlab via

the function ga with multiple runs (for these simulations

we run the genetic algorithm three times for each opti-

mization). Note that in order to keep the total computa-

tion time low, for both approaches — hierarchical MPC

and centralized MPC — we shift the horizon with N, re-

spectively Nsc samples at each MPC step. Also, due to the

same reason (computational requirements), we allow a

limited amount of time for solving an optimization prob-

lem corresponding to the centralized route control and

distributed MPC with a single round of downstream and

upstream communication (the computation time allowed

for each optimization is of 1 hour for centralized MPC

and 80 seconds for distributed MPC).

As prediction horizon we consider N = 11 for the net-

work controller and Nsc = 15 for the switch controller of

the hierarchical control, N = 40 for the centralized MPC

switch control, and N = 5 for the distributed MPC. We

have chosen these values since simulations indicate that

they give a good trade-off between the total computation

time and performance.

Based on simulations we now compare, for the given

scenarios, the results obtained for the proposed con-

trol frameworks. The simulations were performed on a

3.0 GHz P4 with 1 GB RAM. The results of the simu-

lations are reported in Figure 7. For this comparison

we consider the total performance of the system used

in both papers Tarău et al. (2009a) and Tarău et al.

(2009b). This performance index penalizes both the over-

due time for each bag to be handled and its additional

storage time as follows. Assume that bag index i with

i = {1,2, . . . ,Nbags} (where Nbags is the total number of

bags to be handled) arrives at its endpoint at time instant

t
bag,unload
i , then the penalization of bag index i is given by:

J
pen
i (t

bag,unload
i ) = σi max(0, t

bag,unload
i − t

bag,close
i )+

λ1 max(0, t
bag,close
i − τ

bag,open
i − t

bag,unload
i )

where t
bag,close
d is the time instant when the end point d

closes for bag index i, τ
bag,open
i is the maximum possible

length of the time window for which the end point cor-

responding to bag index i is open for that specific flight,

the weighting parameter σi represents the static priority

of bag index i, and the weighting parameter λ1 > 0 ex-

presses the penalty for the delayed baggage.

The total performance index that we use when comparing
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the methods is defined as:

Jtot(t) =
Nbags

∑
i=1

J
pen
i (tunload

i )

with t the vector that consists of time instants when

each of the bags to be handled is actually unloaded t =
[tunload

1 tunload
2 . . . tunload

Nbags ]T.

Note that the model of the real system is the event based

model of (Tarău et al., 2009b) while the prediction model

is either the model of the hierarchical control proposed in

this paper (when we refer to this control approach) or the

event based model of (Tarău et al., 2009b) when we re-

fer to centralized MPC and distributed heuristics, or a lo-

cal event based model when we refer to distributed MPC

with a single round of downstream and upstream commu-

nication. Also note that in Figure 7(a) the lower the total

performance index corresponding to one scenario is, the

better the efficiency of the baggage handling system.
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Figure 7: Comparison of the results obtained for the total

closed-loop simulation when using (1) the hierarchical con-

trol framework, (2) the centralized switch control approach

presented in Tarău et al. (2009b), (3) the distributed MPC

switch control with a single round of downstream and upstream

communication presented in Tarău et al. (2009b), and (4) the

distributed heuristic switch control presented in Tarău et al.

(2009a).

The simulation results indicate that using the hierarchical

control framework typically yields a better system per-

formance than using centralized MPC or distributed MPC

with a single round of downstream and upstream commu-

nication. But, note that the solutions of centralized MPC

or distributed MPC were returned by the prematurely ter-

minated global and multi-start local optimization method.

However, even with the computational restrictions men-

tioned above (we allow a limited amount of time for solv-

ing an optimization problem), the total computation time

of centralized MPC and of distributed MPC with a single

round of downstream and upstream communication (over

40 hours) is much larger than the one of the hierarchi-

cal control (an average of 246 s per junction, plus 12 s for

solving the MILP optimization problems).

The performance index Jtot obtained when using the dis-

tributed heuristics (for a prediction window of 5 s) is a

bit lower than the one obtained when using the hierarchi-

cal control framework, but the total computation time re-

quired to determine the solution is also much larger. Also

note that typically the heuristic approaches give worse

performance than the predictive methods (see, e.g., Tarău

et al. (2009a)). But for this we have to allow sufficient

time for computation.

Hence, the hierarchical control with MILP solutions of-

fers a balanced trade-off between the performance of the

system and the total computation time required to deter-

mine the route choice solution.

7 Conclusions

In this paper we have proposed a hierarchical control

framework for efficiently computing routes for destina-

tion coded vehicles (DCVs) that transport bags in an air-

port on a railway network. In the proposed control frame-

work the network controller computes reference flow tra-

jectories over time for each link in the network so that

the performance of the DCV-based baggage handling sys-

tem is optimized. Then the switch controllers determine

the sequence of optimal positions for their ingoing and

outgoing switches so that the tracking error between the

reference trajectory and the future flow trajectory is min-

imized. In general, the problem of computing optimal

routes for a collection of DCVs is a nonlinear, noncon-

vex, mixed integer optimization problem, and very ex-

pensive to solve in terms of computational efforts. There-

fore, we have considered flows of DCVs and then used

an alternative approach for reducing the complexity of

the computations by rewriting the nonlinear optimiza-

tion problem of the network controller as a mixed inte-

ger linear programming (MILP) problem. The advantage

is that for MILP optimization problems solvers are avail-

able that allow us to efficiently compute the global opti-

mal solution. The solution of the MILP problem is then

used in computing optimal switch control actions. For

a benchmark case study we have compared the hierar-

chical route control with switch control approaches that

have proved to give good performance in previous work.

The obtained results indicate that the proposed hierarchi-

cal route control offers a balanced trade-off between ef-

ficiency and total computation time when compared to

distributed heuristics and to predictive switch control ap-

proaches where the multi-start local optimization method
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has been terminated prematurely.

In future work we will perform extensive simulations in

order to assess the efficiency of the hierarchical route

control approach. We will also consider the line bal-

ancing problem (i.e. route assignment for each empty

DCV such that all the loading stations have enough empty

DCVs at any time instant). Furthermore, in future work

we will also use the concept of platooning and develop

efficient control methods for optimally creating the pla-

toons.
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Tarău, A., B. De Schutter, and H. Hellendoorn (2009b,

August). Receding horizon approaches for route

choice control of automated baggage handling sys-

tems. In Proceedings of the European Control Con-

ference 2009, Budapest, Hungary, pp. 2978–2983.
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