
Delft University of Technology
Delft Center for Systems and Control

Technical report 10-004

Cross-entropy optimization of control
policies with adaptive basis functions∗

L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška

If you want to cite this report, please use the following reference instead:
L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška, “Cross-entropy optimization
of control policies with adaptive basis functions,” IEEE Transactions on Systems,
Man and Cybernetics, Part B: Cybernetics, vol. 41, no. 1, pp. 196–209, Feb. 2011.
doi:10.1109/TSMCB.2010.2050586

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/10_004

https://doi.org/10.1109/TSMCB.2010.2050586
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/10_004

1

Cross-Entropy Optimization of Control Policies

with Adaptive Basis Functions

Lucian Buşoniu, Damien Ernst, Member, IEEE, Bart De Schutter, Member, IEEE, and Robert Babuška

Abstract—This paper introduces an algorithm for direct search
of control policies in continuous-state, discrete-action Markov
decision processes. The algorithm looks for the best closed-loop
policy that can be represented using a given number of basis
functions (BFs), where a discrete action is assigned to each BF.
The type of the BFs and their number are specified in advance
and determine the complexity of the representation. Considerable
flexibility is achieved by optimizing the locations and shapes of
the BFs, together with the action assignments. The optimization
is carried out with the cross-entropy method and evaluates the
policies by their empirical return from a representative set of
initial states. The return for each representative state is estimated
using Monte Carlo simulations. The resulting algorithm for cross-
entropy policy search with adaptive BFs is extensively evaluated
in problems with two to six state variables, for which it reliably
obtains good policies with only a small number of BFs. In
these experiments, cross-entropy policy search requires vastly
fewer BFs than value-function techniques with equidistant BFs,
and outperforms policy search with a competing optimization
algorithm called DIRECT.

Index Terms—Markov decision processes, direct policy search,
adaptive basis functions, cross-entropy optimization.

I. INTRODUCTION

Markov decision processes (MDPs) can be used to model

important problems arising in various fields, including au-

tomatic control, operations research, computer science, eco-

nomics, etc. Algorithms to solve general MDP s are therefore

very promising for these fields. For instance, in automatic

control, such an algorithm would provide a solution to the

nonlinear, stochastic optimal control problem [1].

In an MDP , at each discrete time step, the controller

measures the state of the process and applies an action

according to a control policy.1 As a result of this action, the

process transits into a new state, possibly in a nonlinear or

stochastic fashion, and a scalar reward signal is generated that

indicates the quality of the transition. The controller measures

the new state, and the whole cycle repeats. The control goal is

to maximize the cumulative reward (the return) over the course

of interaction [1], [2]. Exact solutions can only be found for

MDP s with a finite and not too large number of distinct states

Lucian Buşoniu, Bart De Schutter, and Robert Babuška are with the Delft
Center for Systems and Control of the Delft University of Technology, The
Netherlands (email: {i.l.busoniu, b.deschutter, r.babuska}@tudelft.nl). Bart De
Schutter is also with the Marine and Transport Technology Dept. of TU Delft.
Damien Ernst is a Research Associate of the Belgian FNRS; he is affiliated
with the Systems and Modeling Unit of the University of Liège, Belgium
(email: dernst@ulg.ac.be).
The authors wish to thank Louis Wehenkel for his helpful comments.
This research was financially supported by the BSIK-ICIS project (grant
no. BSIK03024) and by the STW-VIDI project DWV.6188.

1Throughout the paper, control-theoretic terms and notations will be pre-
ferred to the artificial intelligence terminology often used in the reinforcement
learning literature on MDP s. For instance, the terms ‘controller’ and ’process’
will be used instead of ‘agent’ and ‘environment’.

and actions. In large or continuous-space MDP s, approximate

solutions must be sought. In this paper, we focus on such

approximate solutions.

The most widely used algorithms for solving MDP s rely

on (approximate) value functions, which give the returns from

every state or state-action pair [3]. Value functions are often

approximated using a linear combination of basis functions

(BFs) , because this simplifies the theoretical study of the

algorithms [4]–[7]. Unfortunately, the value-function based

algorithms suffer from significant difficulties in practice. Many

algorithms require pre-defined BF s [4], [6], [7], but designing

good BF s is a difficult task [5] that requires prior knowledge

about the value function. Such prior knowledge is almost never

available. Alternatively, many researchers have proposed to

automatically change the number, position, or shape of the

BF s in order to approximate the value function well, without

relying on prior knowledge [5], [8], [9]. However, changing

the BF s while estimating the value function can lead to

convergence problems.

Motivated by these shortcomings, direct policy search al-

gorithms have been proposed [10]–[13]. These algorithms

parametrize the policy and search for an optimal parameter

vector that maximizes the return, without using a value func-

tion. In the literature, typically ad-hoc policy approximators

are designed for specific problems, using intuition and prior

knowledge about the optimal policy [10], [12], [14]. The

idea of finding good approximators automatically, although

extensively explored for value function approximation (as

mentioned above), has not often been used in policy search.

In this paper, we develop and evaluate a flexible policy

approximator for direct policy search, inspired by the work on

automatically finding BF s for value function approximation.

The flexibility of this approximator allows it to represent

policies for a large class of MDP s. The algorithm works

for continuous states and discrete (or discretized) actions.

Policies are represented using N state-dependent BF s, where

the BF s are associated with discrete actions in a many-to-one

fashion. The type of BF s and their number N are specified in

advance and determine the complexity of the representation.

The locations and shapes of the BF s, together with the action

assignments, are the parameters subject to optimization. The

optimization criterion is a weighted sum of the returns from

a set of representative initial states, where the return for each

representative state is computed with Monte Carlo simulations.

Each simulated trajectory starts in the representative state

considered, and is controlled using the policy to be evaluated;

the resulting empirical return is one sample in the Monte Carlo

estimate. The representative states together with the weight

function can be used to focus the algorithm on important parts

of the state space.

2

Mainly due to the rich policy parametrization, the optimiza-

tion criterion may be a complicated function of the parameter

vector, e.g., nondifferentiable and with many local optima.

Moreover, both continuous and discrete parameters must be

optimized. We select the cross-entropy (CE) method [15] as

a powerful optimization tool that is able to solve this difficult

problem. The resulting algorithm for CE policy search with

adaptive BF s is evaluated in simulation, using three problems:

the optimal control of a double integrator, balancing a bicycle

riding at a constant speed, and controlling the treatment of

infection with the human immunodefficiency virus (HIV) .

CE policy search is compared with two representative value-

function techniques: fuzzy Q-iteration [7] and least-squares

policy iteration (LSPI) [6]; and with policy search using a

competing optimization algorithm called DIRECT [16].

The remainder of this paper is structured as follows. Sec-

tion II reviews related work. Section III formally describes

MDP s, reviews the algorithms to find MDP solutions, and

outlines CE optimization. In Section IV, the CE algorithm for

policy search is introduced. Section V reports the results of

our simulation experiments. Section VI concludes the paper

and provides several directions for future research.

II. RELATED WORK

Many policy search approaches focus on gradient-based pol-

icy optimization [10], [12], [14], [17]. Actor-critic algorithms

also rely on gradient-based policy optimization, but unlike

direct policy search they do estimate value functions [18]–

[21]. Such work is based on the assumption that the locally

optimal solution found by the gradient method is good enough,

which can be the case when the policy parametrization is

simple and well suited for the problem considered. Because of

our rich policy parametrization, many local optima may exist

and gradient techniques are unsuitable. Instead, we apply the

gradient-free CE method for optimization [15], and compare it

with DIRECT optimization [16]. Another optimization method

that has been applied to policy search is evolutionary compu-

tation [22]–[24], Ch. 3 of [13].

Our policy parametrization is inspired by the techniques

to automatically find BF s for value function approximation.

These techniques include, e.g., BF refinement [5], optimiza-

tion [25], nonparametric approximators [8], [26], and spectral

analysis of the transition function [9]. Out of these options, we

choose optimization, but we search for a policy approximator,

rather than a value function approximator. In value function

approximation, changing the BF s while estimating the value

function can lead to a loss of convergence. In our approach,

the BF s can be adapted without endangering the convergence

of the optimization method to good policy parameters.

CE policy search employs Monte Carlo simulations to

evaluate policies, and in this sense it is related to Monte Carlo

methods for value function estimation [27]–[29]. Although

it converges more slowly than the more popular temporal-

difference algorithms (such as Q-learning or SARSA), Monte-

Carlo value function estimation is sometimes preferable, e.g.,

because it is more resilient to incomplete information about

the state variables [2].

Using the CE method for policy optimization was first

proposed in [11]. In Ch. 4 of [13], a policy was found with

the model-reference adaptive search, which is closely related

to CE optimization. Both works focus on solving finite, small

MDP s, although they also propose solving large MDP s

with parametrized policies. In contrast, we focus on solving

continuous-state MDP s using highly flexible parametrization

based on adaptive BF s. Additionally, we consider repre-

sentative states associated with weights as a tool to focus

the optimization on important initial states, and as a way to

circumvent the need to estimate returns for every value of

the state, which is impossible when the states are continuous.

In [13], only the return starting from one initial state was

optimized, whereas in [11] the returns from every (discrete)

initial state were optimized.

In [30], we proposed an earlier version of CE policy search

with adaptive BF s. Compared to our approach from [30], in

the present paper we simplify the policy parametrization, we

enhance the algorithm with a smoothing procedure, and we

significantly extend the experimental study: the comparisons

with LSPI and DIRECT optimization are new, and so are the

results for the deterministic bicycle and HIV control.

III. PRELIMINARIES

A. Markov decision processes

In this section, Markov decision processes (MDPs) are

formally described, their optimal solution is characterized, and

the algorithms to solve MDP s are reviewed [1], [2].
1) MDPs and their solution: An MDP is defined by its

state space X , its action space U , its transition probability

function f : X ×U × X → [0,∞), and its reward function

ρ : X ×U × X → R. At each discrete time step k, given

the state xk, the controller takes an action uk according to

a control policy h : X → U . The probability that the next

state xk+1 belongs to a region Xk+1 ⊂ X of the state space

is then
∫

Xk+1
f (xk,uk,x

′)dx′. For any x and u, f (x,u, ·) is

assumed to define a valid density2 of the argument ‘·’. After

the transition to xk+1, a reward rk+1 is provided according to

the reward function ρ: rk+1 = ρ(xk,uk,xk+1). For deterministic

MDP s, the transition probability function f is replaced by a

simpler transition function, f : X ×U → X , and the reward

is completely determined by the current state and action:

rk+1 = ρ(xk,uk), ρ : X×U → R.

The expected infinite-horizon discounted return for an initial

state x0 under a policy h is:

Rh(x0) = lim
K→∞

Exk+1∼ f (xk,h(xk),·)

{
K

∑
k=0

γkρ(xk,h(xk),xk+1)

}
(1)

where γ ∈ [0,1) is the discount factor. The notation a ∼ p(·)
means that the random variable a is drawn from the density

p. The goal is to find an optimal policy h∗ that maximizes the

expected return (1) for every initial state. For any MDP , there

exists at least a deterministic optimal policy. Therefore, only

deterministic policies will be considered in the sequel.

2For simplicity, we will abuse the terminology by using the term ‘density’
to refer to probability density functions (which describe probabilities of
continuous random variables), as well as to probability mass functions (which
describe probabilities of discrete random variables).

3

2) Algorithms for solving MDPs: Algorithms that solve

MDP s can be organized in two classes: value-function based

algorithms and direct policy search algorithms. Value-function

based algorithms use value functions in order to obtain the

optimal policy. For instance, the Q-function (state-action value

function) of a policy h gives the expected return when starting

in state x, applying action u, and following h thereafter:

Qh(x,u) = Ex′∼ f (x,u,·)

{
ρ(x,u,x′)+ γRh(x′)

}
(2)

The optimal Q-function is defined as Q∗(x,u) =maxh Qh(x,u).
Any (deterministic) policy that maximizes Q∗ in every state x:

h∗(x) = argmax
u

Q∗(x,u) (3)

is by definition optimal. A policy that maximizes a Q-function

in this way is said to be greedy in that Q-function.

The Q-function Qh satisfies the Bellman equation:

Qh(x,u) = Ex′∼ f (x,u,·)

{
ρ(x,u,x′)+ γQh(x′,h(u′))

}
(4)

Similarly, the optimal Q-function satisfies the Bellman opti-

mality equation:

Q∗(x,u) = Ex′∼ f (x,u,·)

{
ρ(x,u,x′)+ γ max

u′
Q∗(x′,u′)

}
(5)

Value iteration algorithms solve the Bellman optimality

equation (5) iteratively to find the optimal Q-function, and

then use (3) to compute an optimal policy. Policy iteration

algorithms start with an initial policy. At every iteration they

compute the Q-function of the current policy using (4), and

then use (3) to find an improved, greedy policy in this Q-

function. Some value-function based algorithms use a model

of the MDP (the functions f and ρ) [1], [31], while others are

model-free and work by only using data [2], [32].

Direct policy search algorithms do not use value functions at

all, but represent and optimize the policy directly. Such algo-

rithms are most often used in combination with policy approx-

imation, so we postpone their description until Section III-A3

below, where we discuss solving MDP s approximately.

3) Approximation-based algorithms for large or continu-

ous-space MDPs: The algorithms above require to represent

value functions and policies exactly. In general, that is only

possible when X and U contain a relatively small number of

discrete elements. When X or U are continuous, or discrete

but large, approximations must be used. Consider first value-

function based techniques. In large or continuous state or

action spaces, the Q-function cannot be represented exactly,

and has to be approximated. Moreover, the Bellman equation

involves expectations that must be approximated using only

a finite number of samples. Some approximate value-function

based algorithms derive from value iteration [4], [5], [7], [8],

[33] and others from policy iteration [6], [9]. Usually, the value

function approximator is linearly parametrized, because the

theoretical study of the algorithms is easier in this case.

Direct policy search algorithms for large or continuous-

space MDP s parametrize the policy with a parameter vector

a. In principle, policy search algorithms should look for an

optimal a∗ that maximizes the return (1) for any initial state

x0 ∈ X . When X is large or continuous, computing the return

for every initial state is not possible. A practical and commonly

used procedure to circumvent this difficulty requires choosing

a finite set X0 of representative initial states. Returns are

estimated only for states in X0, and the optimization criterion

is the average return over X0 [10], [12].

Two approximations must be made to compute the returns

for x∈ X0. The first approximation replaces the infinite sum in

the return (1) with a finite sum over K steps. To ensure that an

error of at most εMC (a small positive constant) is introduced,

K is chosen with [11]:

K =

⌈
logγ

εMC(1− γ)

‖ρ‖∞

⌉
(6)

Here, the largest absolute reward ‖ρ‖∞ is assumed finite and

⌈·⌉ gives the smallest integer larger than or equal to the

argument (ceiling). The second approximation uses Monte

Carlo simulations to estimate the expectation in (1).

B. Cross-entropy optimization

This section briefly introduces the cross-entropy (CE)

method for optimization [15]. Consider the following opti-

mization problem:

max
a∈A

s(a) (7)

where s : A → R is the score function to maximize, and the

variable a takes values in the domain A . Let the maximum of

s be denoted by s∗. The CE method for optimization maintains

a density with support A . In each iteration, a number of

samples are drawn from this density and the score values for

these samples are computed. A smaller number of samples that

have the largest scores are kept, and the remaining samples

are discarded. The density is then updated using the selected

samples, such that at the next iteration the probability of

drawing better samples is increased. The algorithm stops when

the score of the worst selected sample no longer improves

significantly.

Formally, a family of probability densities {p(·;v)} has to

be chosen. This family has support A and is parametrized by

v. In each iteration τ ≥ 1, a number NCE of samples is drawn

from the density p(·;vτ−1), their scores are computed, and the

(1−ρCE) quantile3 λτ of the sample scores is determined, with

ρCE ∈ (0,1). Then, a so-called associated stochastic problem

is defined, which involves estimating the probability that the

score of a sample drawn from p(·;vτ−1) is at least λτ :

Pa∼p(·;vτ−1)(s(a)≥ λτ) = Ea∼p(·;vτ−1) {I(s(a)≥ λτ)} (8)

where I is the indicator function, equal to 1 whenever its

argument is true, and 0 otherwise. This is a stochastic problem

because it requires estimating a probability, in contrast to the

deterministic problem (7) to which it is associated.

The probability (8) can be estimated by importance sam-

pling. For the associated stochastic problem, an importance

sampling density is one that increases the probability of the

3If the score values of the samples are ordered increasingly and indexed
such that s1 ≤ ·· · ≤ sNCE

, then the (1−ρCE) quantile is: λτ = s⌈(1−ρCE)NCE⌉
.

4

interesting event s(a)≥ λτ . The best importance sampling den-

sity in the family {p(·;v)}, in the sense of the smallest cross-

entropy (smallest Kullback-Leibler divergence),4 is given by

the parameter that is the solution of:

argmax
v

Ea∼p(·;vτ−1) {I(s(a)≥ λτ) ln p(a;v)} (9)

An approximate, sample-based solution of (9) is found with:

v†
τ = argmax

v

1

NCE

NCE

∑
is=1

I(s(ais)≥ λτ) ln p(ais ;v) (10)

This is a Monte-Carlo counterpart of (9), and is therefore

called a stochastic counterpart.

CE optimization then proceeds with the next iteration using

the new density parameter vτ = v
†
τ (note that the probability

(8) is never actually computed). The updated density aims to

generate good samples with higher probability, thus bringing

λτ+1 closer to s∗. The goal is to eventually converge to a

density that generates with very high probability samples close

to optimal value(s) of a. The algorithm can be stopped when

the variation in the (1− ρCE) quantile does not exceed εCE

for dCE successive iterations, or when a maximum number of

iterations τmax is reached. Here, εCE is a small positive constant

and dCE > 1,dCE ∈ N. The largest score among the samples

generated in all the iterations is taken as the approximate

solution of the optimization problem, and the corresponding

sample as an approximate location of an optimum.

Instead of setting the new density parameter equal to the

solution v
†
τ of (10), it can also be updated incrementally:

vτ = αCEv†
τ +(1−αCE)vτ−1 (11)

where αCE ∈ (0,1]. This so-called smoothing procedure is

useful to prevent CE optimization from becoming stuck in

local optima [15].

Under certain assumptions on A and p(·;v), the stochastic

counterpart (10) can be solved analytically. One particularly

important case when this happens is when p(·;v) belongs to

the natural exponential family. For instance, when {p(·;v)} is

the family of Gaussians parametrized by the mean η and the

standard deviation σ (so, v = [η ,σ]T), the solution vτ of (10)

consists of the mean and the standard deviation of the best

samples, i.e., of the samples ais for which s(ais)≥ λτ .

While the convergence of CE optimization is not guaranteed

in general, the algorithm is usually convergent in practice

[15]. For combinatorial (discrete-variable) optimization, the

CE method provably converges with probability 1 to a unit

mass density, which always generates samples equal to a single

point. Furthermore, the probability that this convergence point

is in fact an optimal solution can be made arbitrarily close to

1 by using a sufficiently small smoothing parameter αCE [34].

IV. CE POLICY SEARCH WITH ADAPTIVE BASIS

FUNCTIONS

This section describes the proposed algorithm for policy op-

timization using the CE method. First, the policy parametriza-

tion and the performance index (score function) are discussed.

4In general, the Kullback-Leibler divergence between two densities q and p

is Ea∼q {ln[q(a)/p(a)]}= Ea∼q {lnq(a)}−Ea∼q {ln p(a)}. For an explanation
on how the Kullback-Leibler divergence is used to arrive at (9), see [15].

Then, a general algorithm is given, followed by an instantiation

that uses Gaussian radial basis functions (RBFs) (a type of BFs

described by (15) below) to parametrize policies.

A. Policy parametrization and score function

Consider a stochastic or deterministic MDP . Denote by D

the number of state variables of the MDP (i.e., the dimension

of X). In the sequel, it is assumed that the action space of

the MDP is discrete and contains M distinct actions, Ud =
{u1, . . . ,uM}. The set Ud can result from the discretization5 of

an originally larger (e.g., continuous) action space U .

The policy parametrization uses N basis functions (BFs)

defined over the state space. The BF s are parametrized by a

vector ξ ∈ Ξ that typically gives their locations and shapes.

Denote these BF s by ϕi(x;ξ) : X → R, i = 1, . . . ,N, to

highlight their dependence on ξ . The BF s are associated to

discrete actions by a many-to-one mapping. This mapping can

be represented as a vector ϑ ∈{1, . . . ,M}N
that associates each

BF ϕi to a discrete action index ϑi, or equivalently to a discrete

action uϑi
. A schematic representation of this parametrization

is given in Figure 1. The policy chooses for any x the action

associated to the BF that takes the largest value at x:

h(x) = uϑi∗
, i∗ = argmax

i

ϕi(x;ξ) (12)

Here, i∗ is the index of the largest BF at x, while ϑi∗ is the

index of the discrete action associated with this BF . Any

ties in the maximization should be broken consistently, e.g.,

always in favor of the smallest BF index.

d

1

2

1

2ϕ

ϕ

ϕ
N

c b

U

u

u

u
M1 1

ϑstate space, X

Fig. 1. A schematic representation of the policy parametrization. The vector
ϑ associates the BFs to the discrete actions. In this example, the BFs are
parametrized by their centers ci and widths bi, so that ξ = [cT

1 ,b
T
1 , . . . ,c

T
N ,b

T
N]

T.

This policy is parametrized by the vector [ξ T,ϑ T]T, ranging

in the set Ξ×{1, . . . ,M}N
. CE optimization is used to search

for an optimal parameter vector [ξ ∗T,ϑ ∗T]T that maximizes

the following score function:

s(ξ ,ϑ) = ∑
x0∈X0

w(x0)R̂
h(x0) (13)

where R̂h is the estimated return of the policy h determined

by ξ and ϑ , and X0 is a given finite set of representative

5Discretization is a standard technique for solving continuous-action MDP
s. In this paper, we assume that an appropriate discretization is available,
and focus on optimizing the policy given this discretization. In general, care
should be taken when discretizing the actions, as doing so incorrectly can
reduce the performance or even prevent finding a good policy.

5

states, weighted by w : X0→ (0,1] (see also Section III-A3).6

The return for each state in X0 is estimated by Monte Carlo

simulations:

R̂h(x0) =
1

NMC

NMC

∑
i0=1

K

∑
k=0

γkρ(xi0,k,h(xi0,k),xi0,k+1) (14)

where xi0,0 = x0, xi0,k+1 ∼ f (xi0,k,h(xi0,k), ·), and NMC is the

number of Monte Carlo simulations to carry out. So, each

simulation i0 makes use of a system trajectory that is K steps

long and generated using the policy h. The system trajectories

are generated independently. The length K is chosen with

(6) to guarantee that an error of at most εMC is introduced

by truncating the trajectory. The parameter εMC > 0 can be

chosen a few orders of magnitude smaller than the typical

return obtained from the states in X0. For deterministic MDP

s, a single trajectory is simulated for every initial state in X0,

so NMC = 1. For stochastic MDP s, several trajectories should

be simulated, NMC > 1, with a good value of NMC depending

on the MDP considered.

The performance of the resulting policy is determined by

two essential choices made by the user: the number of BF s,

together with their type; and the set of representative states,

together with their weight function. Next, we briefly discuss

these two choices.

The number N of BF s, in combination with the chosen type

of BF s, determine the accuracy of the policy approximator.

Given the type of BF s, in general a good value of N for a given

problem cannot be determined in advance, but must be found

empirically. Fortunately, as will become apparent in Section V,

at least for the example problems that we study, a relatively

small number of BF s is sufficient to provide a good policy

approximation. In two of the examples, we also study the effect

of varying N. Note that, in special cases, prior knowledge

about the complexity of an optimal policy may be available,

which could be exploited to choose beforehand a reasonable

type of BF s and value of N (e.g., in the academic, double-

integrator problem of Section V-A, an accurate representation

of an optimal policy can be found by exhaustive search).

The second choice that must be made concerns the set

X0 and the weight function w. The set X0 should consist of

(a representative selection of) the initial states from which

the system must be controlled near-optimally. For instance,

some problems only require to control the system well from a

restricted set of initial states; X0 should then be equal to this

set, or included in it when the set is too large. Initial states that

are deemed more important can be assigned larger weights.

When all initial states are equally important, the elements

of X0 should be uniformly spread over the state space, e.g.,

equidistantly, and identical weights equal to 1
|X0|

should be

assigned to every element of X0 (|·| denotes set cardinality).

Since not all of the interesting initial states can always be

included in X0, an important question is how the resulting

policy performs when applied from initial states that do not

6More generally, a density w over the initial states can be considered, and
the score function is then Ex0∼w(·)

{
Rh(x0)

}
, i.e., the expected return when

x0 ∼ w(·). Such a score function can be estimated by Monte Carlo methods.
In this paper, we only use finite sets X0 associated with weighting functions
w as in (13).

necessarily belong to X0, i.e., how it generalizes to unseen

initial states. We study the influence of X0, as well as policy

generalization, for the bicycle problem in Section V-B.

Note that the policy representation can associate multiple

BF s to a single action, and also allows actions that are not

assigned to any BF . The former mechanism is needed to

represent the (potentially complicated) regions of the state

space where an action is optimal. The latter mechanism can

remove from the policy representation any discrete actions that

are not needed to near-optimally control the system.

B. The general algorithm for CE policy search

In order to apply the CE method to the problem of finding

optimal parameters ξ ∗ and ϑ ∗ that maximize (13), an asso-

ciated stochastic problem (8) must be defined. To this end,

it is necessary to choose a family of densities with support

Ξ×{1, . . . ,M}N
. This paper focuses on continuous-state MDP

s, for which the BF s typically have continuous parameters.

This means that Ξ is a continuous set, whereas {1, . . . ,M}N

is discrete. Rather than using a density with mixed (partly

continuous and partly discrete) support, it is convenient to

employ separate densities for the two parts ξ and ϑ of the

parameter vector: a density pξ (·;vξ) for ξ , parametrized by

vξ and with continuous support Ξ, and a density pϑ (·;vϑ) for

ϑ , parametrized by vϑ and with discrete support {1, . . . ,M}N
.

Let Nvξ
be the number of elements in the vector vξ , and Nvϑ

the number of elements in vϑ .

Algorithm 1 Cross-entropy policy search.

Input: transition & reward functions f , ρ , discount factor γ ,

representative states X0, weight function w,

density families
{

pξ (·;vξ)
}
,{pϑ (·;vϑ)},

number of density parameters Nvξ
, Nvϑ

,

initial density parameters vξ ,0, vϑ ,0,

parameters N, ρCE, cCE, αCE, dCE, εCE, εMC, NMC, τmax

1: NCE← cCE(Nvξ
+Nvϑ

); τ ← 0

2: repeat

3: τ ← τ +1

4: Generate samples ξ1, . . . ,ξNCE
from pξ (·;vξ ,τ−1)

5: Generate samples ϑ1, . . . ,ϑNCE
from pϑ (·;vϑ ,τ−1)

6: Compute s(ξis ,ϑis) with (13), is = 1, . . . ,NCE

7: Reorder and reindex s.t. s1 ≤ ·· · ≤ sNCE

8: λτ ← s⌈(1−ρCE)NCE⌉

9: v
†
ξ ,τ
← argmaxvξ

∑
NCE

is=⌈(1−ρCE)NCE⌉
ln pξ (ξis ;vξ)

10: v
†
ϑ ,τ ← argmaxvϑ

∑
NCE

is=⌈(1−ρCE)NCE⌉
ln pϑ (ϑis ;vϑ)

11: vξ ,τ ← αCEv
†
ξ ,τ

+(1−αCE)vξ ,τ−1

12: vϑ ,τ ← αCEv
†
ϑ ,τ +(1−αCE)vϑ ,τ−1

13: until (τ > dCE and |λτ−τ ′ −λτ−τ ′−1| ≤ εCE, for τ ′ =
0, . . . ,dCE−1) or τ = τmax

Output: ξ̂ ∗, ϑ̂ ∗, the best sample; and ŝ∗ = s(ξ̂ ∗, ϑ̂ ∗)

The CE algorithm for policy search is given as Algorithm 1.

For easy reference, Table I collects the meaning of the

parameters and variables of CE policy search. The score

computation at line 6 of Algorithm 1 involves the Monte

Carlo estimation (14) of the return for every representative

6

TABLE I
PARAMETERS AND VARIABLES FOR CE POLICY SEARCH

Symbol Meaning

N; M number of BF s; number of discrete actions
ξ ; ϑ BF parameters; assignment of discrete actions to BF s
vξ ; vϑ parameters of the density for ξ ; and for ϑ
NCE number of samples used at every CE iteration
ρCE proportion of samples used in the CE updates
λ (1−ρCE) quantile of the sample performance
cCE multiple of the number of density parameters
αCE smoothing parameter
dCE how many iterations λ should remain roughly constant
εCE; εMC convergence threshold; precision in computing returns
NMC number of Monte Carlo simulations for each state
τ; τmax iteration index; maximum number of iterations

initial state, using the dynamics f to generate the necessary

trajectories. The stochastic counterparts in lines 9 and 10 were

simplified, using the fact that the samples are already sorted in

the ascending order of their scores. The algorithm terminates

when the variation of λ is at most εCE for dCE consecutive

iterations, or when a maximum number τmax of iterations has

been reached. The integer dCE > 1 ensures that the performance

variation does not decrease below εCE accidentally, but that it

remains steady for dCE iterations.

Many times it is convenient to use densities with unbounded

support (e.g., Gaussians) when the BF parameters are con-

tinuous. However, the set Ξ must typically be bounded, e.g.,

when ξ contains centers of RBF s, which must remain inside a

bounded state space. Whenever this situation arises, samples

can be generated from the density with larger support, and

those samples that do not belong to Ξ can be rejected. The

procedure continues until NCE valid samples are generated, and

the rest of the algorithm remains unchanged. The situation is

entirely similar for the discrete action assignments ϑ , when

it is convenient to use a family of densities pϑ (·;vϑ) with a

support larger than {1, . . . ,M}N
. An equivalent algorithm that

uses all the samples can always be given by extending the

score function to give samples falling outside the domain very

large negative scores (larger in magnitude than for any valid

sample). Additionally, for this equivalent algorithm, NCE and

ρCE have to be adapted at each iteration such that a constant

number of valid samples is generated, and that a constant

number of best samples is used for the parameter updates. The

theoretical basis of CE optimization is therefore not affected

by sample rejection.

The most important parameters in CE policy search are,

like in CE optimization, the number of samples NCE and the

proportion of best samples used to update the density, ρCE.

The parameter cCE is taken greater than or equal to 2, so that

the number of samples is a multiple of the number of density

parameters [15]. The parameter ρCE can be taken around 0.01

for large numbers of samples, or larger, around (lnNCE)/NCE, if

there are only a few samples (NCE < 100) [15]. Since it does

not make sense to impose a convergence threshold smaller

than the precision of the score function, εCE should be chosen

larger than or equal to εMC. A good value is εCE = εMC.

C. CE policy search with radial basis functions

In this section, we describe an instantiation of CE policy

search that uses state-dependent Gaussian RBF s and a binary

representation of the action assignments. We choose Gaus-

sian RBF s because they are commonly used to represent

approximate MDP solutions [4], [6], [25], [33]. Many other

types of BF s could be used instead, including, e.g., splines

and polynomials. We assume that the state space is a hyper-

box centered in the origin: X =
{

x ∈ R
D | |x| ≤ xmax

}
, where

xmax ∈ (0,∞)D, and where the absolute value and relational

operators are applied element-wise. This assumption is made

here for simplicity and can easily be relaxed.7

A special case arises when the problem has terminal states,

i.e., states that terminate process trajectories. Formally, ap-

plying any action from a terminal state returns the process

to the same state with zero reward, so that the remaining

subtrajectory is irrelevant in the return (1), see Sec. 3.4 of

[2]. In this case, we assume that the set of nonterminal

states is a hyperbox, and by a slight abuse of notation denote

this nonterminal state space by X . Since action choices need

not be made in terminal states, ignoring them in the policy

parametrization does not limit the algorithm.

The Gaussian RBF s are defined by:

ϕi(x;ξ) = exp

[
−

D

∑
d=1

(xd− ci,d)
2

b2
i,d

]
(15)

where D is the number of state variables, ci = [ci,1, . . . ,ci,D]
T

is the D-dimensional center, and bi = [bi,1, . . . ,bi,D]
T the D-

dimensional radius of the i-th RBF . Denote the vector

of centers by c = [cT
1 , . . . ,c

T
N]

T and the vector of radii by

b = [bT
1 , . . . ,b

T
N]

T. So, ci,d and bi,d are scalars, ci and bi

are D-dimensional vectors that collect the scalars for all D

dimensions, and c and b are DN-dimensional vectors that

collect the D-dimensional vectors for all N RBF s. The centers

of the RBF s must lie within the bounded state space X , and

the radii must be strictly positive, i.e., c∈XN and b∈ (0,∞)DN .

The BF s parameter vector is therefore ξ = [cT,bT]T and takes

values in Ξ = XN × (0,∞)DN .

To define the associate stochastic problem for CE optimiza-

tion, independent univariate Gaussian densities are selected for

each element of the parameter vector ξ . Gaussian densities

are commonly used in continuous-variable CE optimization,

see, e.g., Ch. 5 of [15]. They allow the CE procedure to

converge to a precise optimum location, by letting the standard

deviation of each univariate density converge to zero. The

density for each center ci,d is parametrized by the mean

ηc
i,d and standard deviation σ c

i,d ; and the density for each

radius bi,d is parametrized by the mean ηb
i,d and the standard

deviation σb
i,d . Similarly to the centers and radii themselves,

we denote the DN-dimensional vectors of means and standard

deviations respectively by ηc, σ c for the RBF centers, and

by ηb, σb for the RBF radii. The parameter for the density

pξ (·;vξ) is then vξ = [(ηc)T,(σ c)T,(ηb)T,(σb)T]T ∈ R
4DN .

Since the support of this density is R
2DN instead of the

required Ξ = XN × (0,∞)DN , samples that do not belong to

Ξ are rejected and generated again.

The means and standard deviations for the RBF centers and

7It will be relaxed, e.g., when CE policy search is applied to the HIV
infection control problem of Section V-C.

7

radii are initialized for all i as follows:

ηc
i = 0D, σ c

i = xmax, ηb
i =

1

2(N +1)
· xmax, σb

i = ηb
i

where 0D is a vector of D zeros. The density parameters for

the RBF centers are initialized to ensure a good coverage of

the state space, while the parameters for the RBF radii are

initialized heuristically to have a similar overlap between RBF

s as N varies. At the end of each iteration τ of Algorithm 1,

the means and standard deviations are updated element-wise,

as the means and standard deviations of the best samples (see

Section III-B).

The vector ϑ , which contains the assignments of discrete

actions to BF s, is represented in binary code. Each element

ϑi is represented using Nbin = ⌈log2 M⌉ bits, so that the binary

representation of ϑ has NNbin bits. Every bit is drawn from

a Bernoulli distribution parametrized by its mean ηbin ∈ [0,1]
(ηbin gives the probability of selecting 1; the probability of

selecting 0 is 1−ηbin). Similarly to the Gaussian densities

above, such a concatenation of Bernoulli distributions can

converge to a degenerate distribution that always generates

samples equal to a precise optimum. Note that, if M is not a

power of 2, bit combinations corresponding to invalid indices

are rejected and generated again. Because every bit has its own

Bernoulli parameter, the total number of Bernoulli parameters

vϑ is NNbin. The Bernoulli distribution belongs to the natural

exponential family, so the updated density parameters vϑ ,τ in

line 10 of Algorithm 1 can be computed analytically, as the

mean of the best samples in their binary representation.

Now, we briefly examine the complexity of CE policy

search with RBF s. The number of density parameters is

Nvξ
= 4DN for the RBF centers and radii, and Nvϑ

= NNbin

for the action assignments. Therefore, the total number of

samples used is NCE = cCE(4DN+NNbin). The largest amount

of computation is spent by the algorithm in the simulations

used to estimate the score of each sample. Neglecting therefore

the other computations, the complexity of one CE iteration is

at most:

tstep[cCEN(4D+Nbin) · |X0| ·NMCK] (16)

where K is the maximum length of each trajectory, and tstep is

the time needed to compute h(x) for a fixed x and to simulate

the controlled system for one time step.

V. EXPERIMENTAL STUDIES

In the sequel, the performance of CE policy search is

assessed using extensive numerical experiments, for three

problems that gradually increase in dimensionality: optimal

control of a double integrator (two dimensions, Section V-A),

balancing a bicycle that rides at a constant speed (four

dimensions, Section V-B), and controlling the treatment of

infection with the human immunodefficiency virus (HIV)

(six dimensions, Section V-C). Using the lower-dimensional

problems, we investigate the influence of the number of BF

s and of the choice of representative states, and we compare

CE policy search with alternative algorithms. HIV infection

control illustrates that CE policy search also works in a

realistic, highly challenging problem.

A. Discrete-time double integrator

In this section, a double integrator optimal control problem

is used to evaluate CE policy search. This problem is stated

such that (near-)optimal trajectories from any state terminate

in a small number of steps. This property allows extensive

simulation experiments to be run and an optimal solution to

be found without excessive computational costs.

1) Model and an optimal policy: The double integrator has

the (nonterminal) state space X = [−1,1]× [−0.5,0.5], a binary

action space Ud = {−0.1,0.1}, and the deterministic dynamics:

xk+1 = f (xk,uk) =

[
x1,k + x2,k

min
(

max(x2,k +uk,−0.5),0.5
)
]

(17)

where xd,k denotes the dth state variable at time k, and the

operators ‘min’ and ‘max’ are applied to restrict the evolution

of the velocity x2 to [−0.5,0.5]. The states for which |x1|> 1

are terminal. The goal is to drive the position x1 beyond either

boundary of the interval [−1,1] (i.e., to a terminal state), so

that when x1 crosses the boundary, x2 is as small as possible

in magnitude. This goal is expressed by the reward function:

rk+1 = ρ(xk,uk) =−(1− x̃1,k+1)
2− x2

2,k+1x̃2
1,k+1 (18)

where x̃1,k+1 = min(
∣∣x1,k+1

∣∣ ,1) so that terminal states are

equally rewarded regardless of how far beyond the interval

[−1,1] they are. The discount factor γ is set to 0.95.

Figure 2 gives an accurate representation of an optimal

policy for this problem, consisting of the optimal actions for

a regular grid of 101× 101 points covering the (nontermi-

nal) state space. The optimal actions were obtained using

the following brute-force procedure, made possible because

the problem has terminal states, and the optimal trajectories

from any initial state terminate in a small number of steps.

All the possible sequences of actions of a sufficient length

were generated, and the system was controlled with all these

sequences starting from every state on the grid. The length is

sufficient if it is larger than the lengths of optimal trajectories

from any initial state, and is determined empirically. For every

state on the grid, a sequence that produced the best discounted

return is by definition optimal, and the first action in this

sequence is an optimal action.

0

0.5

h
*
(x

−1 −0.5

x
1

0 0.5 1
−0.5

x
2

1
,x

2
)

Fig. 2. An optimal policy for the double integrator. Black corresponds to
the action −0.1, and white to +0.1.

The policy in Figure 2 should be representable with a

moderate number of RBF s. In particular, if the small-scale

8

variations in the top-left and bottom-right corners of the graph

are disregarded, the policy consists of only four constant-

action “stripes”. Since the RBF s are axis-aligned while the

stripes are diagonally-oriented, one RBF is insufficient to

approximate each stripe; a few RBF s should, however, suffice.

2) Results of CE policy search: To apply CE policy search,

the following set of representative initial states was used to

compute the score (13):

X0 = {−1,−0.9, . . . ,1}×{−0.5,−0.3,−0.1,0,0.1,0.3,0.5}

This set contains 21× 7 = 147 states, fewer than the grid of

Figure 2. The states were equally weighted using w(x0) =
1/ |X0| for any x0. The parameter settings for the algorithm

were cCE = 10, ρCE = 0.01, αCE = 0.7, εCE = εMC = 0.001, dCE =
5, τmax = 100. Little or no tuning was necessary to choose

these values. Because the system is deterministic, NMC = 1.

With these parameter settings, CE policy search was run while

gradually increasing the number N of BF s from 4 to 18.

For every value of N, 20 independent runs were performed.

The algorithm always converged before reaching the maximum

number of iterations.

Figure 3 presents the performance of the policies obtained

by CE policy search. The mean values across the 20 runs

are shown, together with their 95% confidence intervals. For

comparison, the figure also shows the exact optimal score

for X0, computed by looking for optimal open-loop action

sequences with the procedure explained in Section V-A1.

Figure 4 shows the execution time of the algorithm.8

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

−0.84

−0.82

−0.8

−0.78

−0.76

−0.74

−0.72

Number of RBFs

S
c
o

re

mean score

95% confidence bounds

optimal score

Fig. 3. Performance of CE policy search.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
10

2

10
3

10
4

Number of RBFs

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

mean execution time

95% confidence bounds

Fig. 4. Execution time of CE policy search.

8All the computation times reported in this paper were recorded while
running the algorithms in MATLAB 7 on a PC with an Intel Core 2 Duo
E6550 2.33 GHz CPU and with 3 GB RAM.

CE policy search reliably obtains near-optimal performance

for N ≥ 9. This shows that, as intuition indicated, the optimal

policy can indeed be represented well using only a small

number of (optimized) RBF s. The execution time is roughly

affine in N, as expected from (16).

3) Comparison with value-function based algorithms:

In this section, CE policy search is compared with fuzzy

Q-iteration [7], which is a representative value iteration

algorithm, and with least-squares policy iteration (LSPI)

[6], which is a representative policy iteration algorithm

(see Section III-A). Fuzzy Q-iteration relies on a linearly-

parametrized Q-function approximator with N state-dependent

BF s φ1, . . . ,φN : X→R, which are replicated for each discrete

action u j ∈Ud. Approximate Q-values are computed with:

Q̂(x,u j) =
N

∑
i=1

φi(x)θi, j (19)

where θ ∈RN×M is a matrix of parameters. Fuzzy Q-iteration

computes an approximately optimal Q-function using an ap-

proximation of the Bellman optimality equation (5), and then

outputs the greedy policy (3) in this Q-function. It converges

to a solution with a bounded suboptimality. For the double

integrator example, we defined triangular BF s distributed on

an equidistant grid with N′ points along each dimension of X ;

this led to a total number of N = (N′)2 state-dependent BF

s, and 2(N′)2 BF s for both discrete actions. In the lack of

prior knowledge, such a regular placement of BF s is a good

choice, because it provides a uniform resolution over the state

space.

From the class of policy iteration algorithms, LSPI is

selected [6]. This algorithm uses (19) to approximate the Q-

function of the current policy (rather than the optimal Q-

function, as fuzzy Q-iteration did). To find the Q-function

parameters θ , LSPI solves a projected version of the Bellman

equation (4). The coefficients of this equation are estimated

from transition samples. Once an approximate Q-function

is available, LSPI improves the policy using (3). Then, it

estimates the Q-function of the improved policy, and so

on. The sequence of policies produced by LSPI eventually

converges to a subsequence along which all the policies have a

bounded suboptimality [6]. For the double integrator example,

we defined normalized Gaussian RBF s. Like for fuzzy Q-

iteration above, the centers of the RBF s were placed on an

equidistant grid with N′ points along each dimension of X . The

radii of the RBF s along each dimension were taken identical

to the grid spacing along that dimension. A total number of

2(N′)2 state-action BF s was obtained.

For both fuzzy Q-iteration and LSPI , the number N′ of BF

s for each state variable was gradually increased from 4 to 18.

Fuzzy Q-iteration is a deterministic algorithm, hence it was

run once for every N′. LSPI requires a set of random samples,

so each LSPI experiment was run 20 times with independent

sets of samples. For N′ = 4, 1000 samples were used, and for

larger N′ the number of samples was increased proportionally

with the number 2(N′)2 of parameters: thus,
⌈
(N′)2

42 ·1000
⌉

samples were used for each N′. The performance of the

policies computed by fuzzy Q-iteration and LSPI is shown

9

in Figure 5 (compare with Figure 3), and the execution time

of the algorithms in Figure 6 (compare with Figure 4).

181614

Number of BFs on each axis

1210864

−0.84

−0.82

−0.8

−0.78

−0.76

−0.74

−0.72

S
c
o

re

fuzzy Q−iteration score

LSPI mean score

95% confidence bounds

optimal score

Fig. 5. Performance of fuzzy Q-iteration and LSPI (performances below
−0.85 are not shown).

4 6 8 10 12 14 16 18
10

−2

10
0

10
2

10
4

Number of BFs on each axis

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

fuzzy Q−iteration execution time

LSPI mean execution time

95% confidence bounds

Fig. 6. Execution time of fuzzy Q-iteration and LSPI.

Whereas CE policy search reliably obtained near-optimal

performance starting from N = 9 BF s in total, fuzzy Q-

iteration and LSPI obtain good performance starting from

around N′ = 11 BF s on each axis; the total number of BF

s is 2(N′)2 (much larger). This difference is mainly due to

the fact that the BF s used by fuzzy Q-iteration and LSPI are

equidistant and identically shaped, whereas the CE algorithm

optimizes the shapes and locations of the BF s.

The computational cost of the value-function algorithms is

smaller (for fuzzy Q-iteration, by several orders of magnitude)

than the cost of CE policy search. This indicates that, in

low-dimensional problems such as the double integrator, CE

policy search should preferably be used when a flexible policy

approximator having a fixed complexity has to be found,

and the computational costs to optimize this fixed-complexity

approximator are not a concern.

4) Comparison of CE and DIRECT optimization: In our

policy search approach, a global, mixed-integer, gradient-free

optimization problem must be solved. One algorithm that can

address this difficult optimization problem is DIRECT [16].

In this section, we compare CE optimization with DIRECT

in the context of policy search. DIRECT works in hyperbox

parameter spaces such as those considered in this paper,

by recursively splitting promising hyperboxes in three and

sampling the center of each resulting hyperbox. The hyperbox

selection procedure leads both to a global exploration of the

parameter space, and to a local search in the most promising

regions discovered so far. The algorithm is especially suitable

for problems in which evaluating the score function is com-

putationally costly [16], as is the case in policy search.9

We used DIRECT to optimize the parameters of the policy

(12) while increasing N from 4 to 18, like for CE optimization

above. DIRECT stops when the score function (13) has been

evaluated a given number of times; this stopping parameter

was set to 2000 ·5N for every N, i.e., 2000 times the number

of parameters to optimize. Since DIRECT is a deterministic al-

gorithm, each experiment was run only once. The performance

of the policies computed by DIRECT is shown in Figure 7,

and the execution time of the algorithm in Figure 8. For an

easy comparison, the CE policy search results from Figures 3

and 4 are also repeated.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

−0.84

−0.82

−0.8

−0.78

−0.76

−0.74

−0.72

Number of RBFs

S
c
o

re

cross−entropy mean score

cross−entropy 95% confidence bounds

DIRECT score

optimal score

Fig. 7. Performance of DIRECT — comparison with CE optimization.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
10

2

10
3

10
4

Number of RBFs

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

cross−entropy mean execution time

cross−entropy 95% confidence bounds

DIRECT execution time

Fig. 8. Execution time of DIRECT — comparison with CE optimization.

DIRECT performs worse than CE optimization for most

values of N, while requiring more computations for all values

of N. Also, unlike CE optimization, DIRECT does not reli-

ably improve the performance as N increases. Increasing the

allowed number of score evaluations may possibly improve the

performance of DIRECT, but would also make it even more

computationally expensive, and therefore less competitive with

CE optimization. The poor results of DIRECT, including

the high variability of its performance with increasing N,

may be due to its reliance on splitting the parameter space

into hyperboxes: this approach can perform poorly when the

parameter space is high-dimensional, as is the case for policy

search.

9We use the DIRECT implementation from the TOMLAB optimization
toolbox for MATLAB.

10

B. Bicycle balancing

Next, CE policy search is applied to a more involved

problem than the double integrator: balancing a bicycle that

rides at a constant speed on a horizontal surface (Figure 9).

This is a variant of the bicycle balancing and riding problem,

a popular benchmark for algorithms that solve MDP s [6],

[8], [35]. The steering column of the bicycle is vertical,

which means the bicycle is not self-stabilizing, but must be

actively stabilized to prevent it from falling. The state vector

is [ω, ω̇,α, α̇]T, where ω [rad] is the roll angle of the bicycle

measured from the vertical axis, α [rad] is the angle of the

handlebar, equal to 0 when the handlebar is in its neutral

position, and ω̇ , α̇ [rad/s] are the respective angular velocities.

The control variables are the displacement δ ∈ [−0.02,0.02]m

of the bicycle-rider common center of mass perpendicular

to the plane of the bicycle, and the torque τ ∈ [−2,2]Nm

applied to the handlebar. The displacement δ can be affected

by additive noise ν drawn from a uniform density over the

interval [−0.02,0.02]m. For more details about the bicycle

problem and its (nonlinear) dynamical model, see [8], [35].10

of mass
Center

δ+ν

α

ω

τ

α

ω

Fig. 9. A schematic representation of the bicycle seen from behind (left)
and from the top (right).

The bicycle is considered to have fallen when the roll angle

is larger than 12π
180

in either direction, in which case a terminal,

failure state is reached, and a reward of −1 is generated. All

other rewards are 0. The discount factor is γ = 0.98. The

rider displacement is discretized into {−0.02,0,0.02}, and the

torque on the handlebar into {−2,0,2}, leading to a discrete

action space with 9 elements. This action space is sufficient

to balance the bicycle.

In order to study the influence of the set of representative

states on the performance of the resulting policies, two dif-

ferent sets of representative states are considered. The first set

contains a few evenly-spaced values for the roll of the bicycle,

and the rest of the state variables are zero:

X0,1 =
{
−10π
180

, −5π
180

, . . . , 10π
180

}
×{0}×{0}×{0}

The second set is the cross-product of a finer roll grid and a

few values of the roll velocity:

X0,2 =
{
−10π
180

, −8π
180

, . . . , 10π
180

}
×
{
−30π
180

, −15π
180

, . . . , 30π
180

}
×{0}×{0}

For both sets, the initial states are uniformly weighted (e.g.,

when X0,1 is used, w(x0) = 1/ |X0,1|= 1/5 for any x0 ∈ X0,1).

Because we are mainly interested in the behavior of the bicycle

10For the bicycle and HIV examples, the measurement units of variables
are mentioned only once in the text, when the variables are introduced, after
which the units are omitted.

starting from different initial rolls and roll velocities, the initial

steering angle α0 and velocity α̇0 are always taken equal to

zero; this also prevents an excessive computational cost for

the CE policy search. Since a good policy can always prevent

the bicycle from falling for any state in X0,1, the optimal score

(13) for this set is 0. This is no longer true for X0,2: when ω
and ω̇ have the same sign and are too large in magnitude, the

bicycle cannot be prevented from falling by any control policy.

So, the optimal score for X0,2 is strictly negative. To prevent

including in X0,2 too many such states from which falling is

unavoidable, the initial roll velocities are not taken too large

in magnitude.

1) Balancing a deterministic bicycle: For the first set of

experiments with the bicycle, the noise was eliminated from

the simulations. The parameters of CE policy search were the

same as for the double-integrator, i.e., cCE = 10, ρCE = 0.01,

αCE = 0.7, εCE = εMC = 0.001, dCE = 5, τmax = 100. Because

the system is deterministic, a single trajectory was simulated

from every representative state, i.e., NMC = 1. CE policy search

was run while gradually increasing the number of RBF s from

3 to 8. For each set of representative states (X0,1 and X0,2)

and every value of N, 10 independent runs were performed.

The maximum number of iterations was never reached before

convergence. Figure 10 presents the performance of CE policy

search, and Figure 11 presents its execution time. The mean

values across the 10 runs are shown, together with their 95%

confidence intervals.

3 4 5 6 7 8
−10

−5

0

5
x 10

−6

Number of RBFs

S
c
o
re

X
0,1

 mean score

X
0,1

 95% confidence bounds

3 4 5 6 7 8
−0.22

−0.215

−0.21

−0.205

Number of RBFs

S
c
o

re

X
0,2

 mean score

X
0,2

 95% confidence bounds

Fig. 10. Performance of CE policy search for the deterministic bicycle, using
X0,1 (top) and X0,2 (bottom). Note the very small scale of the top figure.

For X0,1 and N ≥ 4, all the experiments reached the optimal

score of 0; the scores for N = 3 are all extremely close to

0. For X0,2, the performances obtained are around −0.21 and

do not improve as N grows. This suggests the optimal score

cannot be much larger than this value. It is remarkable that

CE policy search obtains good results with as few as 3 RBF s.

The execution times of Figure 11 are comparable with those

for the double integrator (Figure 4) for X0,1, and larger for

X0,2, even though both sets contain fewer states than were

11

3 4 5 6 7 8
10

2

10
4

10
6

Number of RBFs

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

X
0,1

 mean execution time

X
0,1

 95% confidence bounds

X
0,2

 mean execution time

X
0,2

 95% confidence bounds

Fig. 11. Execution time of CE policy search for the deterministic bicycle.

considered for the double integrator. This is because simulating

transitions for the bicycle requires the numerical integration of

its nonlinear dynamics, which is more costly than computing

the linear transitions of the double integrator.

For comparison, fuzzy Q-iteration (see Section V-A) was

applied, using an equidistant grid of triangular BF s and the

same 9 discrete actions. The number N′ of BF s on each

axis was gradually increased from 3 to 18. The resulting

solutions never reached a performance comparable to CE

policy search; e.g., when N′ = 18 the score was −0.1933

for X0,1 and −0.2383 for X0,2. Note that N′ = 18 led to a

total of 9 · 184 = 944784 BF s, vastly more than the number

of BF s required by CE policy search. The execution time

of fuzzy Q-iteration with N′ = 18 was 37487 s, similar to

the execution time of the most computationally expensive CE

policy search experiments (see Figure 11). This shows that, as

the dimension of the problem increases, and also depending

on the selection of representative states, CE policy search can

become preferable to value-function techniques also from a

computational point of view.

2) Balancing a stochastic bicycle: The second set of ex-

periments with bicycle balancing included the effects of noise.

A number of N = 7 RBF s was selected, and NMC = 10

trajectories were simulated from every initial state to compute

the score (this number was not selected too large to prevent

excessive computational costs). The rest of the parameters

remained the same as in the deterministic case. For each set of

representative states (X0,1 and X0,2), 10 independent runs were

performed. The performance of the resulting policies, together

with the execution time of the algorithm, are reported in Ta-

ble II. The mean values across the 10 runs are shown, together

with their 95% confidence intervals (in square brackets). For

an easy comparison, the results in the deterministic case with

N = 7 are also repeated.

TABLE II
RESULTS OF CE POLICY SEARCH FOR THE STOCHASTIC BICYCLE –

COMPARISON WITH THE DETERMINISTIC CASE

Score for X0,1 Score for X0,2

Stoch. 0; [0,0] −0.2093; [−0.2099,−0.2088]
Determ. 0; [0,0] −0.2102; [−0.2117,−0.2087]

Execution time
for X0,1 [s]

Execution time
for X0,2 [s]

Stoch. 22999; [21518,24480] 185205; [168421,201990]
Determ. 2400; [2225,2575] 17154; [15959,18350]

All the scores for X0,1 are optimal, and the scores for X0,2

are similar to those obtained in the deterministic case. This

shows that the policies computed have a good quality. The

execution times are one order of magnitude larger than for the

deterministic bicycle, which is expected because NMC = 10,

rather than 1 as in the deterministic case.

Figure 12 illustrates the quality of two representative poli-

cies found by CE policy search. In particular, the top part of

the figure shows how a policy computed using X0,1 generalizes

to initial states that do not belong to X0,1. The bottom

part similarly illustrates how a policy computed using X0,2

generalizes. The initial states from which the policies are

tested consist of a grid of values in the (ω, ω̇) plane; α0 and

α̇0 are always 0. The length of each trajectory is 50 s. This

length was chosen to verify whether the bicycle is balanced

robustly for a long time: it is roughly 10 times longer than

the length of the trajectory used to evaluate the score during

the optimization procedure, which was 5.36 s (corresponding

to K = 536, which was computed with (6) for εMC = 0.001).

Using the larger set X0,2 of initial states is beneficial: it leads

to a policy that balances the bicycle for a much larger portion

of the (ω, ω̇) plane. Recall that the bicycle cannot be balanced

at all from some of the states for which ω and ω̇ are large in

magnitude and have the same sign.

0.20.10

 [rad]ω
0

−0.1−0.2

−1

−0.5

0

0.5

ω
0’
 [
ra

d
/s

]

1

 [rad]

0.20.10

ω
0

−0.1−0.2

−1

−0.5

0

0.5

1

 [
ra

d
/s

]
ω

0’

Fig. 12. Generalization of typical policies computed using X0,1 (top) and
X0,2 (bottom). White markers indicate the bicycle was never balanced starting
from that initial state; the size of the gray markers is proportional with the
number of times the bicycle was properly balanced out of 10 experiments.
Black crosses mark the representative states.

C. Structured treatment interruptions for HIV infection

In this section, CE policy search is used (again in simu-

lation) to control the treatment of HIV infection. Prevalent

HIV treatment strategies involve two types of drugs, called

12

reverse transcriptase inhibitors (RTI) and protease inhibitors

(PI) . The negative side effects of these drugs in the long term

motivate the investigation of optimal strategies for their use.

One such strategy involves structured treatment interruptions

(STI) , where the patient is cycled on and off RTI and PI

therapy, see, e.g., [36].

The HIV infection dynamics are described by a six-

dimensional nonlinear model with the state vector x =
[T1,T2,T

t
1 ,T

t
2 ,V,E]

T, where:

• T1 ≥ 0 and T2 ≥ 0 are the counts of healthy type 1 and

type 2 target cells [cells/ml].

• T t
1 ≥ 0 and T t

2 ≥ 0 are the counts of infected type 1 and

type 2 target cells [cells/ml].

• V ≥ 0 is the number of free virus copies [copies/ml].

• E ≥ 0 is the number of immune response cells [cells/ml].

The control inputs are ε1, the effectiveness of the RTI drug,

and ε2, the effectiveness of the PI drug. In STI , drugs are

either fully administered (they are ‘on’), or not at all (they are

‘off’). A fully administered RTI drug corresponds to ε1 = 0.7,

while a fully administered PI drug corresponds to ε2 = 0.3.

This leads to the discrete action space Ud = {0,0.7}×{0,0.3}.
Because it is not clinically feasible to change the treatment

daily, the state is measured and the drugs are switched on or

off once every 5 days [36]. So, the system is controlled in

discrete time with a sampling time of 5 days. For the model

equations and parameters, see [36].

The system has three uncontrolled equilibria. The unin-

fected equilibrium xn = [1000000,3198,0,0,0,10]T is unsta-

ble: as soon as V becomes nonzero due to the introduc-

tion of virus copies, the patient becomes infected and the

state drifts away from xn. The unhealthy equilibrium xu =
[163573,5,11945,46,63919,24]T is stable and represents a

patient with a very low immune response, for whom the in-

fection has reached dangerous levels. The healthy equilibrium

xh = [967839,621,76,6,415,353108]T is stable and represents

a patient whose immune system controls the infection without

the need of drugs.

We consider the problem of using STI from the initial state

xu such that the immune response of the patient is maximized

and the number of virus copies is minimized, while also

penalizing the quantity of drugs administered, to account for

their side effects. The reward function is [36]:

ρ(x,u) =−QV −R1ε2
1 −R2ε2

2 +SE (20)

where Q = 0.1,R1 = R2 = 20000,S = 1000. The term SE

rewards the amount of immune response, −QV penalizes the

amount of virus copies, and −R1ε2
1 , −R2ε2

2 penalize drug use.

In order to apply CE policy search, a discount factor of γ =
0.99 was used. To compute the score, the number of simulation

steps was set to K = Tf/Ts where Tf = 800 days is a sufficiently

long time horizon for a good policy to control the infection

[36], [37]. This leads to K = 160. The state variables span

several orders of magnitude; to limit the effects of this large

variation, a transformed state vector was used, computed as the

base 10 logarithm of the original state vector. The policy was

represented using N = 8 RBF s, and only the unhealthy initial

state was used to compute the score, X0 = {xu}. The other

parameters remained unchanged from the experiments on the

other problems: cCE = 10, ρCE = 0.01, αCE = 0.7, εCE = 0.001,

dCE = 5, τmax = 100.

Figure 13 shows the trajectory of the HIV system, controlled

from the unhealthy initial state with the policy obtained by CE

policy search. The execution time to obtain this policy was

137864 s. For comparison, trajectories obtained with no treat-

ment and with fully effective treatment are also shown. The

CE solution switches the PI drug off after approximately 300

days, but the RTI drug is left on in steady state, which means

that the healthy equilibrium xh is not reached. Nevertheless,

the infection is handled much better than without STI , and

the immune response E in steady state is very strong.

In the literature, xh is reached by driving the state into the

basin of attraction of this equilibrium using STI , and then

switching off both drugs [36], [37]. The algorithm used in [37]

automatically derives a decision-tree Q-function approximator

for value iteration. This derivation produces a large number

of BF s, in the order of tens of thousands or more. While

our solution does not reach xh, it still performs remarkably

well. Note that, because of the high dimensionality of the HIV

problem, using a value-function technique with equidistant BF

s is out of the question.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a novel algorithm for direct pol-

icy search in continuous-state, discrete-action Markov decision

processes. This algorithm uses a flexible policy parametriza-

tion, inspired by the work on automatic construction of BF

s for value function approximation. CE optimization is used

to search for policy parameters that maximize the empirical

return from a representative set of initial states. CE policy

search was evaluated in a double-integrator example and in two

more difficult problems: balancing an unstable bicycle, and

the control of HIV infection. The algorithm reliably offered

a good performance, using only a small number of BF s to

represent the policy. Compared to value-function techniques

with equidistant BF s, CE policy search required vastly fewer

BF s to provide a good performance, and it required a larger

execution time for the two-dimensional double-integrator, but

a comparable execution time for the four-dimensional (deter-

ministic) bicycle. As illustrated for HIV infection control, CE

policy search can be applied to high-dimensional problems,

for which value-function techniques with equidistant BF s are

impractical due to excessive computational costs.

The theoretical study of CE policy search is an important

opportunity for further research. Convergence results for the

CE method are unfortunately only available for combinato-

rial optimization [15], [34], whereas CE policy search also

involves the optimization of continuous variables. The conver-

gence results for the related model-reference adaptive search

[13] require the restrictive assumption that the optimal policy

parameter is unique.

We applied CE policy search to optimize deterministic poli-

cies that choose among discretized actions. Nevertheless, the

algorithm can be extended to stochastic or continuous-action

policies, by adopting a suitable policy parametrization. For

13

0 200 400 600 800

10
5.1

10
5.5

10
5.9

t [days]

T
1
 [

c
e

lls
/m

l]

0 200 400 600 800
10

−2

10
0

10
2

10
4

t [days]

T
2
 [

c
e

lls
/m

l]

0 200 400 600 800
10

−5

10
0

10
5

10
10

t [days]

T
1t
 [

c
e

lls
/m

l]

0 200 400 600 800
10

−2

10
0

10
2

10
4

t [days]

T
2t
 [

c
e

lls
/m

l]

0 200 400 600 800
10

−5

10
0

10
5

10
10

t [days]

V
 [

c
o

p
ie

s
/m

l]

0 200 400 600 800
10

0

10
5

t [days]

E
 [

c
e

lls
/m

l]

0 200 400 600 800
0

0.2

0.4

0.6

0.8

t [days]

ε 1
 [

−
]

0 200 400 600 800
0

0.1

0.2

0.3

0.4

t [days]

ε 2
 [

−
]

0 200 400 600 800
10

2

10
4

10
6

10
8

t [days]

r
[−

]

Fig. 13. Trajectories from xu. Black, continuous: policy computed with CE policy search. Gray: no treatment. Black, dashed: fully effective treatment. The
states and rewards are shown on a logarithmic scale, and negative values of the reward are ignored.

instance, the current policy parametrization can be naturally

extended to continuous actions by interpolating the actions

assigned to the BF s, using the BF values as weights.

In this work, CE optimization was employed, and it was

shown to outperform DIRECT optimization in the double-

integrator problem. It would be useful to compare CE opti-

mization with other algorithms able to solve the global, mixed-

integer, gradient-free optimization problem that arises in policy

search, such as genetic algorithms, simulated annealing, and

tabu search.

REFERENCES

[1] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.
Athena Scientific, 2007, vol. 2.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

[3] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Athena Scientific, 1996.

[4] J. N. Tsitsiklis and B. Van Roy, “Feature-based methods for large scale
dynamic programming,” Machine Learning, vol. 22, no. 1–3, pp. 59–94,
1996.

[5] R. Munos and A. Moore, “Variable-resolution discretization in optimal
control,” Machine Learning, vol. 49, no. 2–3, pp. 291–323, 2002.

[6] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal
of Machine Learning Research, vol. 4, pp. 1107–1149, 2003.

[7] L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška, “Continuous-state
reinforcement learning with fuzzy approximation,” in Adaptive Agents
and Multi-Agent Systems III, ser. Lecture Notes in Computer Science,
K. Tuyls, A. Nowé, Z. Guessoum, and D. Kudenko, Eds. Springer,
2008, vol. 4865, pp. 27–43.

[8] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode rein-
forcement learning,” Journal of Machine Learning Research, vol. 6, pp.
503–556, 2005.

[9] S. Mahadevan and M. Maggioni, “Proto-value functions: A Laplacian
framework for learning representation and control in Markov decision
processes,” Journal of Machine Learning Research, vol. 8, pp. 2169–
2231, 2007.

[10] P. Marbach and J. N. Tsitsiklis, “Approximate gradient methods in
policy-space optimization of Markov reward processes,” Discrete Event
Dynamic Systems: Theory and Applications, vol. 13, no. 1–2, pp. 111–
148, 2003.

[11] S. Mannor, R. Y. Rubinstein, and Y. Gat, “The cross-entropy method
for fast policy search,” in Proceedings 20th International Conference on
Machine Learning (ICML-03), Washington, US, 21–24 August 2003, pp.
512–519.

[12] R. Munos, “Policy gradient in continuous time,” Journal of Machine
Learning Research, vol. 7, pp. 771–791, 2006.

[13] H. S. Chang, M. C. Fu, J. Hu, and S. I. Marcus, Simulation-Based
Algorithms for Markov Decision Processes. Springer, 2007.

[14] M. Riedmiller, J. Peters, and S. Schaal, “Evaluation of policy gradient
methods and variants on the cart-pole benchmark,” in Proceedings
2007 IEEE Symposium on Approximate Dynamic Programming and
Reinforcement Learning (ADPRL-07), Honolulu, US, 1–5 April 2007,
pp. 254–261.

[15] R. Y. Rubinstein and D. P. Kroese, The Cross Entropy Method: A Unified
Approach to Combinatorial Optimization, Monte-Carlo Simulation, and
Machine Learning. Springer, 2004.

[16] D. R. Jones, “DIRECT global optimization algorithm,” in Encyclopedia
of Optimization, C. A. Floudas and P. M. Pardalos, Eds. Springer,
2009, pp. 725–735.

[17] A. Y. Ng and M. I. Jordan, “PEGASUS: A policy search method for large
MDPs and POMDPs,” in Proceedings 16th Conference in Uncertainty in
Artificial Intelligence (UAI-00), Palo Alto, US, 30 June – 3 July 2000,
pp. 406–415.

[18] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approximation,”
in Advances in Neural Information Processing Systems 12, S. A. Solla,
T. K. Leen, and K.-R. Müller, Eds. MIT Press, 2000, pp. 1057–1063.

[19] V. R. Konda and J. N. Tsitsiklis, “On actor-critic algorithms,” SIAM
Journal on Control and Optimization, vol. 42, no. 4, pp. 1143–1166,
2003.

[20] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomputing, vol. 71,
no. 7–9, pp. 1180–1190, 2008.

[21] D. Liu, H. Javaherian, O. Kovalenko, and T. Huang, “Adaptive critic
learning techniques for engine torque and air-fuel ratio control,” IEEE
Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics,
vol. 38, no. 4, pp. 988–993, 2008.

[22] H. H. Chin and A. A. Jafari, “Genetic algorithm methods for solving
the best stationary policy of finite Markov decision processes,” in Pro-
ceedings 30th Southeastern Symposium on System Theory, Morgantown,
US, 8–10 March 1998, pp. 538–543.

[23] D. Barash, “A genetic search in policy space for solving Markov
decision processes,” in AAAI Spring Symposium on Search Techniques
for Problem Solving under Uncertainty and Incomplete Information, Palo
Alto, US, 22–24 March 1999.

14

[24] S.-M. Tse, Y. Liang, K.-S. Leung, K.-H. Lee, and T. S.-K. Mok, “A
memetic algorithm for multiple-drug cancer chemotherapy schedule
optimization,” IEEE Transactions on Systems, Man, and Cybernetics—
Part B: Cybernetics, vol. 37, no. 1, pp. 84–91, 2007.

[25] I. Menache, S. Mannor, and N. Shimkin, “Basis function adaptation
in temporal difference reinforcement learning,” Annals of Operations
Research, vol. 134, no. 1, pp. 215–238, 2005.

[26] C. G. Atkeson and B. J. Stephens, “Random sampling of states
in dynamic programming,” IEEE Transactions on Systems, Man, and
Cybernetics—Part B: Cybernetics, vol. 38, no. 4, pp. 924–929, 2008.

[27] M. G. Lagoudakis and R. Parr, “Reinforcement learning as classifica-
tion: Leveraging modern classifiers,” in Proceedings 20th International
Conference on Machine Learning (ICML-03). Washington, US, 21–24
August 2003, pp. 424–431.

[28] D. P. Bertsekas, “Dynamic programming and suboptimal control: A
survey from ADP to MPC,” European Journal of Control, vol. 11, no.
4–5, pp. 310–334, 2005, special issue for the CDC-ECC-05 in Seville,
Spain.

[29] C. Dimitrakakis and M. Lagoudakis, “Rollout sampling approximate
policy iteration,” Machine Learning, vol. 72, no. 3, pp. 157–171, 2008.

[30] L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška, “Policy search
with cross-entropy optimization of basis functions,” in Proceedings 2009
IEEE International Symposium on Adaptive Dynamic Programming and
Reinforcement Learning (ADPRL-09), Nashville, US, 30 March – 2
April 2009, pp. 153–160.

[31] J. Rust, “Numerical dynamic programming in economics,” in Handbook
of Computational Economics, H. M. Amman, D. A. Kendrick, and
J. Rust, Eds. Elsevier, 1996, vol. 1, ch. 14, pp. 619–729.

[32] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of Artificial Intelligence Research, vol. 4,
pp. 237–285, 1996.

[33] D. Ormoneit and S. Sen, “Kernel-based reinforcement learning,” Ma-
chine Learning, vol. 49, no. 2–3, pp. 161–178, 2002.

[34] A. Costa, O. D. Jones, and D. Kroese, “Convergence properties of the
cross-entropy method for discrete optimization,” Operations Research
Letters, vol. 35, no. 5, pp. 573–580, 2007.

[35] J. Randløv and P. Alstrøm, “Learning to drive a bicycle using re-
inforcement learning and shaping,” in Proceedings 15th International
Conference on Machine Learning (ICML-98), Madison, US, 24–27 July
1998, pp. 463–471.

[36] B. Adams, H. Banks, H.-D. Kwon, and H. Tran, “Dynamic multidrug
therapies for HIV: Optimal and STI control approaches,” Mathematical
Biosciences and Engineering, vol. 1, no. 2, pp. 223–241, 2004.

[37] D. Ernst, G.-B. Stan, J. Gonçalves, and L. Wehenkel, “Clinical data
based optimal STI strategies for HIV: A reinforcement learning ap-
proach,” in Proceedings 45th IEEE Conference on Decision & Control,
San Diego, US, 13–15 December 2006, pp. 667–672.

