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Model Predictive Control for Urban Traffic Networks via MILP

Shu Lin, Bart De Schutter, Yugeng Xi and Hans Hellendoorn

Abstract— Model Predictive Control (MPC) is an advanced
control strategy that can easily coordinate urban traffic net-
works. But, due to the nonlinearity of the traffic model, the opti-
mization problem of the MPC controller will become intractable
in practice when the scale of the controlled traffic network
grows larger. To solve this problem, the nonlinear traffic
model is reformulated into a model with only linear equations
and inequalities. Mixed-Integer Linear Programming (MILP)
algorithms can efficiently solve the reformulated optimization
problem, and guarantee the global optimum at the same time.
Moreover, the MILP optimization problem is further relaxed
by model reduction and adding upper bound constraints.

I. INTRODUCTION

Traffic congestion causes losses to both individuals and

the society. Traffic control is one of the most efficient and

also effective ways to alleviate traffic congestion, and thus

reduce the losses caused by congestion. To reduce traffic

congestion from a network-wide point of view, advanced

traffic control strategies are needed to coordinate traffic lights

of the intersections within throughout traffic networks.

There are already many control strategies [1] developed

and implemented for urban traffic. Among them, model-

based optimization methods (including Model Predictive

Control, MPC) [2] are effective control approaches based

on a similar control framework. The framework contains

three classical steps: prediction, on-line optimization, and

rolling time horizon. Due to this framework, model-based

optimization control methods are capable of coordinating

the traffic lights within urban traffic networks, of dealing

with the uncertainty of real traffic, and of avoiding myopic

control schemes. All these advantages make the model-based

optimization methods very attractive.

Many model-based optimization strategies have already

been developed. In the 1980s and 1990s, a number of model-

based optimization control strategies emerged: OPAC, PRO-

DYN, CRONOS, and RHODES [1]. These control strategies

predict the future traffic demands at the intersections through

the traffic flow data measured from the upstream detectors

and the detectors in upstream links. They showed advantages

compared with the conventional traffic-responsive strategies,

but have a limitation on the prediction horizon. In recent
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years, some macroscopic urban traffic models, which can de-

scribe the traffic dynamic mechanics of the traffic flow, have

been developed. Model-based optimization control strategies

[2] based on these prediction models were developed, and

overcame the drawbacks of previous strategies. However, the

biggest challenge for implementing the model-based opti-

mization control strategy is the high on-line computational

complexity. Although these model-based control strategies

have a lot of advantages, the real-time feasibility1 is hard

to guaranteed. Different methods have been applied to avoid

this problem.

In this paper, the real-time feasibility of MPC controllers

is increased further by improving the efficiency of solving

optimization problems. The optimization of the MPC con-

troller is reformulated into different optimization problems

solved by different optimization algorithms. First, we rewrite

the original nonlinear optimization problem into a Mixed-

Integer Linear Programming (MILP) problem, which can

be solved efficiently by an MILP solver. To achieve this,

we propose an approach to reformulate the nonlinear urban

traffic model (S model of [3], [4]) into a mixed-integer linear

model, which only contains mixed-integer linear equations

and inequalities. Next, we reduce the S model into an S∗

model by omitting one of the constraints. After reformulating

the S∗ model, a more relaxed MILP optimization problem is

obtained. Simulations are run to investigate and compare the

different optimization approaches.

II. S MODEL

A simplified model (S model [3]) is derived from the

macroscopic urban traffic network model (BLX model de-

veloped in [2], [5]). The S model is fast and also accurate

enough as a prediction model of MPC controllers [3]. In

the S model, a link is marked by its upstream node u and

downstream node d as link (u,d). The sets of upstream

and downstream nodes of link (u,d) are Iu,d and Ou,d (e.g.,

for the situation of Fig. 1 we have Iu,d = {i1, i2, i3} and

Ou,d = {o1,o2,o3}).

In order to describe the evolution of the models, we first

define some variables (see also Fig. 1):
Iu,d : set of input nodes of link (u,d),
Ou,d : set of output nodes of link (u,d),
k : simulation step counter,

nu,d(k) : number of vehicles in link (u,d) at step k,

qu,d(k) : queue length at step k in link (u,d), qu,d,o is

the queue length of the sub-stream turning to

o,

1Real-time feasibility means that the on-line optimization problem can be
solved fast enough to satisfy the real-time requirement of MPC controllers
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Fig. 1. A link connecting two traffic-signal-controlled intersections

α l
u,d(k) : flow rate leaving link (u,d) at step k, α l

u,d,o(k)
is the leaving flow rate of the sub-stream

towards o,

αa
u,d(k) : flow rate arriving at the end of the queue in

link (u,d) at step k, αa
u,d,o(k) is the arriving

flow rate of the sub-stream towards o,

αe
u,d(k) : flow rate entering link (u,d) at step k, αe

i,u,d(k)
is the flow rate entering link (u,d) from i,

βu,d,o(k) : relative fraction of the traffic turning to o at

step k,

µu,d : saturated flow rate leaving link (u,d),
gu,d,o(k) : green time length during step k for the traffic

stream towards o in link (u,d),
vfree

u,d : free-flow vehicle speed in link (u,d),

Cu,d : capacity of link (u,d) expressed in number of

vehicles,

Nlane
u,d : number of lanes in link (u,d),

∆cu,d : offset between node u and node d, which

represents the offset time between the cycle

times of the upstream and the downstream

intersections at the beginning of every control

time step,

lveh : average vehicle length.
In the S model, every intersection takes the cycle time as

its simulation time interval. The cycle times for intersection

u and d, denoted by cu and cd respectively, can be different

from each other, as Fig. 2 illustrates. In this situation, the

simulation step counters of different intersections are not

same. The input and output flow rates of the link are averaged

over the cycle times in the S model.

Taking the cycle time cd as the length of the simulation

time interval for link (u,d) and kd as the corresponding time

step counter, nu,d(kd)
2 is updated by the input and output

average flow rate as

nu,d(kd +1) = nu,d(kd)+

(

αe
u,d(kd)− ∑

o∈Ou,d

α l
u,d,o(kd)

)

·cd .

(1)

2nu,d(kd) is the average number of the vehicles in link (u,d) at step kd

including the queues

The leaving average flow rate over cd is determined by

the capacity of the intersection, the number of cars waiting

and/or arriving, and the available space in the downstream

link:

α l
u,d,o(kd) = min

(

βu,d,o(kd) ·µu,d ·gu,d,o(kd)/cd ,

qu,d,o(kd)/cd +αa
u,d,o(kd),

βu,d,o(kd)
(
Cd,o −nd,o(kd)

)
/cd

)

. (2)

The number of vehicles waiting in the queue turning to o

is updated as

qu,d,o(kd +1) =qu,d,o(kd)+
(
βu,d,o(kd) ·α

a
u,d(kd)−

α l
u,d,o(kd)

)
· cd . (3)

The flow rate entered link (u,d) will arrive at the end of

the queues after a time delay τ(kd) · cd + γ(kd), i.e.,

αa
u,d(kd) =

cd − γ(kd)

cd

·αe
u,d (kd − τ(kd))+

γ(kd)

cd

·αe
u,d (kd − τ(kd)−1) , (4)

τ(kd) = floor

{(
Cu,d −qu,d(kd)

)
· lveh

Nlane
u,d · vfree

u,d · cd

}

,

γ(kd) = rem

{(
Cu,d −qu,d(kd)

)
· lveh

Nlane
u,d · vfree

u,d · cd

}

. (5)

The flow rate entering link (u,d) is the sum of the flow

rates entering from all the upstream links:

αe
u,d(kd) = ∑

i∈Iu,d

αe
i,u,d(kd) = ∑

i∈Iu,d

α l
i,u,d(ku). (6)

Recall that different cycle times between the upstream and

downstream intersections are defined, so the flow rates

leaving from upstream links have to be synchronized before

entering the current link.

In order to control the urban traffic network, a common

control time interval Tc has to be defined for the network

model (as in Fig. 2), so that intersections can communicate

with each other and be synchronized. The control time
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interval Tc is set to the Least Common Multiple of all the

cycle times in the network, i.e. Tc = N jc j (for all j ∈ J), with

N j an integer.

Then, the flow rates expressed in the timing of intersection

u can be recast into the timing of intersection d, as Fig. 3

shows. First, we transform the discrete time leaving flow

rates from the upstream links into continuous time using the

zero-order hold strategy, as

α l,cont
i,u,d (t) = α l

i,u,d(ku), ku · cu ≤ t < (ku +1) · cu, (7)

and then sample them again to obtain the average flow rates

in time step kd so as to be used by the downstream link as

αe
i,u,d(kd) =

∫ (kd+1)·cd+∆cu,d

kd ·cd+∆cu,d

α l,cont
i,u,d (t)

cd

dt . (8)

III. MPC FOR URBAN TRAFFIC NETWORKS

Model Predictive Control [6] is a methodology that im-

plements and repeatedly applies Optimal Control over a

prediction horizon in a rolling horizon way. MPC has the

ability to deal with the uncertainty of the process, which

can be caused by the unpredictable disturbances, the (slow)

variation over time of the parameters, and model mismatches

in the prediction model. MPC can also easily deal with multi-

input and multi-output problems with constraints.

Therefore, MPC is a suitable advanced control strategy

for controlling and coordinating large urban traffic networks.

The S model can be used as the prediction model of the

MPC controller. However, due to the nonlinear nature of

the S model, only nonlinear optimization algorithms (e.g.

Sequential Quadratic Programming (SQP) and Pattern Search

(PS)) can solve the optimization problem of the MPC con-

troller. Nonlinear optimization algorithms usually search for

the optimal solution numerically by computing the nonlinear

model repeatedly. Thus, the MPC controller will become

real-time infeasible when the scale of the controlled traffic

network grows.

IV. REFORMULATION OF THE S MODEL

As shown in Section II, the nonlinear features of the S

model are caused by the Max-Min-Plus-Scaling (MMPS)

formula (2), and the nonlinear formulas (4), (7), and (8). In

order to increase the real-time feasibility of the MPC con-

troller, the nonlinear optimization problem can be rewritten

into a Mixed-Integer Linear Programming (MILP) problem

by reformulating the S model. Compared with nonlinear

optimization algorithms, MILP is an efficient optimization

algorithm guaranteeing the global optimum at the same

time. An MMPS model can be equivalently transformed

into a Mixed Logical Dynamical (MLD) model, which can

be expressed as mixed-integer equations and inequalities.

Therefore, after the S model is reformulated into an MLD

model, an efficient MILP solver can be used to solve the

optimization problem of the MPC controller. The nonlinear

formulas (4), (7), and (8) can be easily linearized by making

an assumption. Here are the two assumptions made to assist

establishing the MILP-based MPC controller:

• Assumption 1: We assume that the traffic state n(k) by

the traffic model stays constant during the simulation

time interval Ts. Then the objective function TTS can

be approximated as in (27).

• Assumption 2: We assume the time delay of the vehi-

cles traveling from the beginning of the link to the end

of the queues in the link to be constant and independent

of k. Then (4) becomes linear as

αa
u,d(kd) =(1− γconst) ·α

e
u,d (kd − τconst)+

γconst ·α
e
u,d (kd − τconst −1) , (9)

where τconst and γconst are constant values obtained by

(5) with the queue length fixed. This queue length can be

taken as the average queue length based on the historical

data.

A. Rules for Equivalent Transformation to MLD System

According to [7], consider the statement f (x)≤ 0, where

f : Rn → R. Assume that x ∈ X , where X is a given

bounded set, and select M, m such that

M ≥ max
x∈X

f (x), m ≤ min
x∈X

f (x) . (10)

Then, by introducing in δ ∈ {0,1}, the following equiva-

lence holds true

[ f (x)≤ 0]⇔ [δ = 1], iff

{

f (x)≤ M(1−δ )

f (x)≥ ε +(m− ε)δ
, (11)

where ε is a small tolerance, typically the machine precision.



Moreover, δ f (x) can be replaced by auxiliary real variable

z = δ f (x) which satisfies [δ = 0]⇒ [z = 0], [δ = 1]⇒ [z =
f (x)]. Then z = δ f (x) is equivalent to







z ≤ Mδ

z ≥ mδ

z ≤ f (x)−m(1−δ )

z ≥ f (x)−M(1−δ )

. (12)

B. Reformulation from MMPS Model to MLD Model

With the equivalences above, the MMPS formula (2) can

be reformulated as an MLD formula. Let

a = βu,d,o(kd) ·µu,d ·gu,d,o(kd)/cd

b = qu,d,o(kd)/cd +αa
u,d,o(kd) (13)

c = βu,d,o(kd)
(
Cd,o −nd,o(kd)

)
/cd

d = min(a,b),

then (2) becomes

α l
u,d,o(kd) = min(a,b,c) = min(d,c) . (14)

Let

f1 = b−a, (15)

and define

δ1 =

{

1 if f1 ≤ 0

0 if f1 > 0
(16)

then we have

d = a+(b−a) ·δ1 = a+ f1 ·δ1 . (17)

Similarly, let

f2 = c−d, (18)

and define

δ2 =

{

1 if f2 ≤ 0

0 if f2 > 0
(19)

then we have

min(d,c) = d +(c−d) ·δ2 = d + f2 ·δ2 . (20)

Let

z1 = f1 ·δ1 (21)

z2 = f2 ·δ2 (22)

and substitute (17) into (20), then (14) becomes a linear

expression

α l
u,d,o(kd) = a+ z1 + z2 . (23)

Then, (16), (19), (21) and (22) can be equivalently rewrit-

ten into inequality constraints as in (11) and (12).The max-

imum value and the minimum value of f1 are M1 =Cu,d/cd

and m1 =−µu,d , and the maximum value and the minimum

value of f2 are M2 =Cd,o/cd and m2 =−min(µu,d ,Cu,d/cd).
Therefore, by introducing the additional auxiliary binary

variables δ1 and δ2, and the auxiliary real variables f1, f2, z1,

and z2, the original formula (2) in the urban traffic model is

equivalently reformulated as mixed-integer linear equations

(15), (18) and (23), and inequalities.

With the reformulation and the assumptions above, the

urban traffic model is reformulated from an MMPS model

into an MLD model.

C. Model Synchronization Reformulation

Consider (8) for fixed i,u,d and kd , we will now show

that this result in

αe
i,u,d(kd) = F

(
α l

i,u,d(ℓ), · · · ,α
l
i,u,d(ℓ+Nℓ)

)
, (24)

with ℓ,Nℓ integers, and F is a linear function.

In (8), α l,const
i,u,d (t) is a piecewise continuous function.

Let ξℓ, · · · ,ξℓ+Nℓ
be the length of the intervals and

α l
i,u,d(ℓ), · · · ,α

l
i,u,d(ℓ+ Nℓ) be the function values of this

function on [kdcd +∆cu,d ,(kd +1)cd +∆cu,d]. Hence, the flow

rate entering link (u,d) is synchronized from time step ku to

kd by input synchronization function

αe
i,u,d(kd) = Fin

(
α l

i,u,d(ku)
)
=

1

cd

Nℓ

∑
j=0

ξℓ+ jα
l
i,u,d(ℓ+ j), (25)

which is a linear expression in the α l
i,u,d values.

When the flow rate leaving link (u,d) is computed in the S

model, the number of vehicles in downstream links nd,o(ko)
are used to calculate the number of vehicles that the down-

stream links can accept at most. The simulation time step

counter of intersection o is ko. If ko is different from kd , an

output synchronization function is needed for synchronizing

the original number of vehicles in the downstream link of

link (u,d), n
origin
d,o (ko), from time step ko to kd , as

nd,o(kd) = Fout

(
n

origin
d,o (ko)

)
, (26)

which is also a linear expression derived using the same rules

as deriving the input synchronization function.

D. Objective Function

Recall that nu,d(kd) equals to the average number of

vehicles in link (u,d) including the queues. Hence, according

to Assumption 1, the objective function, Total Time Spent

(TTS), can be approximated by linear function

JTTS =
Nd(kc+Np)

∑
kd=Ndkc+1

∑
(u,d)∈L

cd ·nu,d(kd). (27)

V. MILP BASED MPC CONTROLLER

For intersection d, the control time interval and the sim-

ulation time interval satisfy Tc = Ndcd . Then, for a given

control time step kc, the corresponding simulation time steps

are kd = Ndkc,Ndkc +1, · · · ,Nd(kc +1)−1.

After the model reformulation, the optimization problem

of the MPC controller can be expressed as an MILP problem

of the following form:

min
u(kc)

JTTS = cT ·u(kc)

s.t. Au(kc)≤ b (28)

Aequ(kc) = beq

umin ≤ u(kc)≤ umax



for appropriately defined matrices A, Aeq, and vectors c, b,

beq, umin and umax, where u(kc) contains all the optimized

variables including the control inputs, the states, and the

auxiliary variables for control time steps kc, · · · ,kc +Np −1

(see expressions (29) and (30)); the constraints contain the

linear inequality constraints, the linear equality constraints,

and the lower and upper bounds of the optimization variables.

The inequality constraints in (28) are the mixed-integer

inequality constraints obtained as in Section IV-A and IV-

B for all the traffic streams in link (u,d) (∈ L) within the

network and for all the predicted simulation time steps in

the future (i.e. for kd ,kd +1, · · · ,kd +NdNp−1). The equality

constraints contain the linear traffic states update equations

(1) and (3), the linear equations (15), (18) and (23) obtained

from the model reformulation, the linearized equation (9), the

pre-specified reformulated synchronization equations (25)

and (26), and the cycle time constraints for the green times

of every intersection.

The vector of optimized variables at control time step kc

in optimization problem (28) is

u(kc) = [uT(kc|kc) uT(kc +1|kc) · · · uT(kc +Np −1|kc)]
T ,
(29)

where u(kc) at any control time step kc consists of control

variables (i.e. green time splits), state variables, and auxiliary

variables for all the nodes and links in the traffic network

as:

u(kc) = [

Control variables
︷ ︸︸ ︷

gT(kc)

State variables
︷ ︸︸ ︷

qT(kc) nT(kc) nT
downLink(kc) αT

l (kc) αT
a (kc) αT

e (kc)

Auxiliary variables
︷ ︸︸ ︷

δ T
1 (kc) δ T

2 (kc) f T
1 (kc) f T

2 (kc) zT
1 (kc) zT

2 (kc)]
T .

(30)

where ndownLink(kc) represents the vector of the state vari-

ables which gives the number of vehicles in the downstream

links. All the optimized variables are real values except the

binary variables δ1(kc) and δ2(kc).
Supplied with initial traffic states and traffic demands of

the network, the optimization problem can be solved at the

control time step kc by an MILP solver.

VI. S∗ MODEL-BASED MPC CONTROLLER VIA

MILP

A. S∗ Model

For the S model described in Section II, the formula (2)

computing the average flow rate leaving link (u,d) is the

minimum of three parts. Each part gives the possible leaving

flow rate under a traffic scenario. Under the saturated sce-

nario, the average leaving flow rate depends on the saturated

flow rate and the green time of the link; under the unsaturated

scenario, the average flow rate is calculated according to the

waiting and arriving flow rate at the intersection; under the

over-saturated scenario, the average flow rate depends on the

flow rate that the downstream link can accept. The traffic

is always in the scenario which has the minimal average

flow rate that could possible leave the link. As an urban

traffic model, the S model is capable of describing all the

situations that may happen in reality. However, when the S

model is taken as a control model of the MPC controller, the

third part of (2) can be removed from the S model to leave

the over-saturated scenario out if extra constraints are added.

Therefore, the S model can be rewritten into S∗ model by

substituting (2) into

α l
u,d,o(kd) = min

(

βu,d,o(kd) ·µu,d ·gu,d,o(kd)/cd ,

qu,d,o(kd)/cd +αa
u,d,o(kd)

)

,

(31)

and adding upper bound constraint 0≤ nu,d(kd)≤C to traffic

state nu,d(kd) (number of vehicles in a link) to make sure

that the number of vehicles inside a link will never exceed

its storage capacity C, i.e. no more vehicles can enter the

link when it is already totally congested.

B. S∗ model-based MPC controller

An MPC controller can be established based on the S∗

model using the same method as shown in Section V. A

similar MILP optimization problem as (28) can be built

through reformulating the S∗ model into an MLD model.

But, for the new MILP optimization problem, the number

of the auxiliary variables is reduced by half because of the

reduction of the S∗ model. Although the S∗ model does not

take the over-saturated scenario into consideration, it can still

be easily guaranteed due to the constraints added. Instead of

constraining the average traffic flow rates leaving links, the

maximum number of vehicles that the downstream link can

accept is constrained by the upper bound. The traffic state

n(k), which is the number of vehicles in a link, is already

an optimized variable of the MILP optimization problem.

Hence, no extra effort is needed to add constraints to the

traffic states n(k) of all the links within the network at every

simulation time step k. In fact, the key idea of this approach

lies in relaxing the optimization problem by reducing one

constraint in the control model (the S model), and adding

upper bounds to the optimized state variables n(k) instead.

The S∗ model-based optimization problem focuses on the

same problem as the S model-based optimization problem,

but the S model-based optimization problem has tighter

constraints. So the optimization problem of MPC controllers

is relaxed and obtains more flexibility in the optimization

space.

VII. SIMULATIONS

As a macroscopic urban traffic model, the BLX model

of [5] is relatively accurate enough, which is demonstrated

in [5]. Therefore, we use the BLX model to simulate the

real traffic process, and design MPC controllers to derive

control inputs for the BLX model. In order to improve the

real-time feasibility of the MPC controller for urban traffic

networks, the on-line optimization of the MPC controller

is reformulated into different optimization problems, and



these optimization problems are solved by different optimiza-

tion methods. Multi-start Sequential Quadratic Programming

(SQP) and Pattern Search (PS) are applied to solve the S

model-based nonlinear optimization problem. To increase the

real-time feasibility, both the S model and the S∗ model are

reformulated into MLD models, and optimization problems

are constructed and solved by an MILP solver.

The network investigated is a grid network with 4 inter-

sections. The cycle times of the intersections are 120 s or

60 s respectively. The control time interval is set to the Least

Common Multiple of all the cycle times in the network, i.e.

Tc is 120 s. The prediction horizon is 10 control intervals. The

control simulations run for the same time period of 1200s for

all the experiments. Constant input traffic flow rates to the

network origins are specified as 2000 veh/h. The free-flow

speed on the link is 50 km/h. In Table I, “tavrg” is the average

optimization CPU time over all the control steps, and “tmax”

is the maximum optimization CPU time. The cost function is

TTS. The number of random initial starting points for both

the SQP algorithm and the PS algorithm is 5.

TABLE I

COMPARISON OF COST FUNCTIONS, CPU TIMES, AND THE NUMBER OF

OPTIMIZATION VARIABLES FOR DIFFERENT OPTIMIZATION ALGORITHMS

Algorithm TTS (veh·h)
CPU time (s) # variables
tavrg tmax Real Boolean

SQP 1741.5 516.6 736.5 120 -

PS 1743.8 2266.5 2533.6 120 -

S MILP 1736.9 2.7 3.0 6880 1440

S∗ MILP 1735.0 1.7 2.5 4480 720

Table I shows the simulation results for different optimiza-

tion algorithms. fmincon and patternsearch from the

optimization toolbox of Matlab are chosen as the solvers for

SQP and PS respectively. The SQP algorithm is superior in

both performance and CPU time. Two MILP approaches for

the reformulated S model and the reformulated S∗ model are

called respectively “S MILP” and “S∗ MILP” here. CPLEX,

implemented through the cplex interface function of the

Matlab Tomlab toolbox, is used as the MILP solver. Both S

MILP and S∗ MILP are much faster, and also result in lower

costs than the nonlinear optimization algorithms. Because

the problem at hand is a nonlinear non-convex optimization

problem, which has many local optima. SQP searches for the

local optimum only, which results in a sub-optimal solution.

A multi-start method can be applied to help select a better

sub-optimal solution. However, the multi-start procedure also

requires more CPU time. On the contrary, an MILP problem

can be solved efficiently by existing solvers, which are able

to find the global optimum. As Table I shows, S∗ MILP has

less optimization variables than S MILP, where the number

of auxiliary variables (real and boolean) is reduced by half

because of the model adaptation. Thus, S∗ MILP takes less

CPU time than S MILP. Moreover, due to the constraint

relaxation, S∗ MILP gains more flexibility in the optimization

space, and thus has better performance. As a result, MILP

methods, especially S∗ MILP, are suitable optimization ap-

proaches for the urban traffic MPC controllers.

VIII. CONCLUSIONS AND FUTURE WORK

Model Predictive Control provides many advantages for

controlling and coordinating urban traffic networks. But,

due to the nonlinearity of the urban traffic model, the

MPC controller will become real-time infeasible, i.e. the

optimization cannot be solved on-line, when the network

grows larger. Thus, a method is given to reformulate the

nonlinear urban traffic model into an MLD model, which

only contains linear equations and inequalities, by intro-

ducing auxiliary integer variables. The S model and the

S∗ model are both reformulated according to this method.

An efficient optimization approach using MILP is applied

to solve the reformulated MPC optimization problem. Two

MILP optimization problems based on the reformulated S

model and S∗ model are established. For the S∗ model-based

MILP problem, the constraints are relaxed.

The simulation results show that the CPU time is dra-

matically reduced if the nonlinear optimization problem of

the MPC controller is reformulated into an MILP problem.

Moreover, the MILP approaches also guarantee a better

control performance. Due to the constraints relaxation, the

S∗ model-based MILP approach obtains better optimization

results, and is also faster than the S model-based MILP

approach.

In the future, extensive simulations will be run to further

test the MPC controllers using a microscopic model instead

of the macroscopic BLX model to represent or to simulate

the real traffic network. This will result in an extensive

assessment of the performance of the MILP-based MPC

controllers.
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