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Fuzzy models and observers for freeway traffic state tracking

Zs. Lendek, R. Babuška, B. De Schutter

Abstract— Traffic state estimation is a prerequisite for traffic
surveillance and control. For macroscopic traffic flow models
several estimation methods have been investigated, including
extended and unscented Kalman filters and particle filters. In
this paper we propose a fuzzy observer for the continuous time
version of the macroscopic traffic flow model METANET. In
order to design the observer, we first derive a dynamic Takagi-
Sugeno fuzzy model that exactly represents the traffic model of
a segment of a highway stretch. The fuzzy observer is designed
based on the fuzzy model and applied to the traffic model. The
simulation results are promising for the future development
of fuzzy observers for a highway stretch or a whole traffic
network.

I. INTRODUCTION

Reliable traffic models are important for several tasks:

simulation of different scenarios and conditions, prediction

of traffic conditions that will occur in a network, and traffic

control. The modeling of traffic networks may be performed

at several levels: microscopic, mesoscopic, or macroscopic

level. Traffic state estimation is a fundamental task for

traffic surveillance and control [1], [11], [17], and has been

extensively investigated during the last decades [4], [9],

[16]. Vehicular traffic in general has a highly nonlinear

behavior, and for freeway networks or stretches it is often

described by macroscopic models. These models represent

the average traffic behavior in aggregated variables (average

flow, density, and speed on a segment of a highway). Some of

these variables are measured by various detectors, e.g., loop

detectors, video cameras, radars. However, the measurements

are in general corrupted by noise, or data may be missing,

thereby making the estimation or filtering of these variables

necessary.

One of the intensively used models for traffic state esti-

mation is the second-order macroscopic traffic flow model

METANET [15], which describes a stretch of a highway in

terms of flow, density, and average speed. Several estimation

methods, both online and offline have been applied based

on this model: Extended Kalman filters [7], [21], [22], Un-

scented Kalman filters [7], [12], and more recently, particle

filters [12]. These filters are applied to a discrete traffic flow

model, where the model mismatch is accounted for by noise.

The nonlinear versions of the Kalman filter approximate the

distributions of the variables with Gaussians. However, since

the model is highly nonlinear, the transformation of Gaussian

random variables is no longer Gaussian. Therefore, to obtain
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more accurate estimates of the variables, particle filters have

been used. However, they have the disadvantage of large

computational costs.

To obtain more accurate estimates with reduced compu-

tational costs, in this paper, we propose a fuzzy observer

for freeway traffic state estimation in continuous time. A

large class of nonlinear systems can be represented or well

approximated by Takagi-Sugeno (TS) fuzzy models [18],

which in theory can approximate a general nonlinear system

to an arbitrary degree of accuracy [5]. The TS fuzzy model

consists of a fuzzy rule base. The rule antecedents partition

a given subspace of the model variables into fuzzy regions,

while the consequent of each rule is usually a linear or affine

model, valid locally in the corresponding region.

For a TS fuzzy model, well-established methods and

algorithms can be used to design observers that estimate un-

measurable states. Several types of such observers have been

developed for TS fuzzy systems, among which: fuzzy Thau-

Luenberger observers [19], [20], reduced-order observers [2],

[3], and sliding-mode observers [14]. In general, the design

methods for observers lead to an Linear Matrix Inequality

(LMI) feasibility problem, which is easy to solve.

In this paper, we aim to develop a fuzzy representation

of the second-order macroscopic flow model, and design

observers for the obtained fuzzy model. Although fuzzy

methods have been used for traffic modeling and control, and

set-valued methods have been applied to estimate the traffic

density [10], to the authors’ knowledge, TS fuzzy observers

have not been used for traffic state tracking.

The rest of the paper is organized as follows. The traffic

flow model in details and the variables and parameters used

are described in Section II. The derivation of the fuzzy

models is presented in Section III. The observer design for

these fuzzy models, together with simulation results, are

presented in Section IV. Finally, Section V concludes the

paper.

II. THE TRAFFIC MODEL

In this paper, we consider a macroscopic model of traffic

flow, namely the METANET model developed in [15]. In

this model, a freeway link m is divided into Nm segments

(see Figure 1), each with a length Lm and λm lanes. Traffic

dynamics are described in terms of space-mean speed, vm,i,

flow, qm,i, and density, ρm,i, where i denotes the segment

index. This model is in general used in discrete time, with a

sampling period T . The model equations are derived from the

fundamental relation between speed, density, and flow, the

law of conservation of vehicles, and a heuristic relationship



travel direction
freeway link m

. . .. . .segment 1 segment i segment Nm

qm,i

ρm,i

vm,i

Fig. 1. Traffic variables in the traffic flow model.

of the speed dynamics. The basic equations1 that describe

each segment i of a link m are given as [9]:

ρm,i(k + 1) = ρm,i(k) +
T

Lmλm

(qm,i−1(k)− qm,i(k))

qm,i(k) = ρm,i(k) · vm,i(k) · λm

vm,i(k + 1) = vm,i(k) +
T

τ

[
V (ρm,i(k))− vm,i(k)

]

+
T

Lm

vm,i(k)(vm,i−1(k)− vm,i(k))

−
ν · T

τ · Lm

ρm,i+1(k)− ρm,i(k)

ρm,i(k) + κ
+ ξv(k)

V (ρm,i(k)) = vf,m · exp
[
−

1

am

(ρm,i(k)

ρcr,m

)am
]

(1)

where ξv is a random variable to account for the model

mismatch in the speed dynamics.

The model (1) can be seen as a simple Euler discretization

of the continuous-time model

ρ̇m,i =
1

Lmλm

(qm,i−1 − qm,i)

qm,i = ρm,i · vm,i · λm

v̇m,i =
1

τ

[
V (ρm,i)− vm,i

]
+

1

Lm

vm,i(vm,i−1 − vm,i)

−
ν

τ · Lm

ρm,i+1 − ρm,i

ρm,i + κ
+ dξv

V (ρm,i) = vf,m · exp
[
−

1

am

( ρm,i

ρcr,m

)am
]

(2)

where dξv denotes the continuous-time disturbance.

Measured variables are in general the traffic flow qm,i, and

the mean speed vm,i, therefore the measurements y1 and y2
are

y1 = qm,i y2 = vm,i (3)

These measurements are usually corrupted by noise, i.e., a

correct expression is

y1 = qm,i + ζq y2 = vm,i + ζv (4)

The variable that has to be estimated on-line is ρm,i, the

traffic density on the ith segment.

In the sequel, model (2) is used and only one link is

considered, therefore the subscript m is dropped. The vari-

ables are defined in Table I. The parameters and their values,

adapted from [9], that are used for simulation purposes, are

defined in Table II.

1In this paper, we only consider the model (1). Note however, that other
equations, such as node, on-ramp, off-ramp, merge, split can also be dealt
with.

TABLE I

VARIABLES IN THE TRAFFIC MODEL.

Symbol Variable Units

k time step –
i segment index –
ρm,i(k) traffic density veh/km/lane
vm,i(k) space-mean speed km/h
qm,i(k) traffic volume or flow veh/h

TABLE II

PARAMETERS OF THE TRAFFIC MODEL.

Symbol Parameter Value Units

Lm length of segment 0.5 km
λm number of lanes 3 –
vf,m free flow speed 102 km/h
ρcr,m critical density 30 veh/km/lane
τ time constant 18 s

ν anticipation constant 60 km2/h
κ constant 40 veh/km
am parameter 2.34 –
vmin minimum velocity 7.4 km/h
vmax maximum velocity 200 km/h
ρmin minimum density 0 veh/km/lane
ρmax maximum density 150 veh/km/lane

III. FUZZY TRAFFIC MODELS

A. State-space description

In order to better illustrate how the fuzzy models are

derived, consider one segment, and assume that both the

state transition model (2) and the measurement model (3)

are exact, i.e., the models are not corrupted by noise. Noise

will be considered in the observer design in Section IV-C.

Then, the nonlinear system for which a fuzzy model

should be obtained is

ρ̇i =
1

Lλ
(qi−1 − qi)

qi = ρi · vi · λ

v̇i =
1

τ

[
V (ρi)− vi

]
+

1

L
vi(vi−1 − vi)

−
ν

τ · L

ρi+1 − ρi

ρi + κ

V (ρi) = vf · exp
[
−

1

am

( ρi

ρcr

)am
]

y1 = qi

y2 = vi

(5)

In general, TS fuzzy systems (except for descriptor systems)

do not contain algebraic constraints, and therefore qi has to

be eliminated. Also, consider qi−1, vi−1, and ρi+1 inputs for

the ith segment. Then, we have

ρ̇i = −
1

L
ρivi +

1

Lλ
qi−1

v̇i =
1

τ
(V (ρi)− vi)−

1

L
v2i

+
ν

τ · L

ρi

ρi + κ

+
1

L
vivi−1 −

ν

τ · L

ρi+1

ρi + κ

(6)



V (ρi) = vf · exp
[
−

1

am

( ρi

ρcr

)am
]

After some manipulations, we get

(
ρ̇i
v̇i

)
=

(
− 1

L
vi 0

ν
τ ·L

1

ρi+κ
− 1

τ
− 1

L
vi

)(
ρi
vi

)
+

(
0

1

τ
V (ρi)

)

+

(
1

Lλ
0 0

0 1

L
vi − ν

τ ·L
1

ρi+κ

)


qi−1

vi−1

ρi+1





V (ρi) = vf · exp
[
−

1

am

( ρi

ρcr

)am
]

(7)

The variables qi−1, vi−1, and ρi+1 depend on the states of
the neighboring segments and qi−1 = ρi−1vi−1λ, i.e., the
product of two states of the previous segment. By rearranging
the terms, we get

(
ρ̇i
v̇i

)
=

(
0 − 1

L
ρi

ν
τ ·L

1

ρi+κ
− 1

τ
− 1

L
vi

)(
ρi
vi

)
+

(
0

1

τ
V (ρi)

)

+

(
1

L
ρi−1 0
1

L
vi − ν

τ ·L
1

ρi+κ

)(
vi−1

ρi+1

)

V (ρi) = vf · exp
[
−

1

am

( ρi

ρcr

)am
]

(8)

Note that this model is still fully equivalent to the original

continuous-time model (5), and it is not an approximation.

Starting from this model, we aim to obtain fuzzy represen-

tations of it.

B. Fuzzy modeling using sector nonlinearity

A method to obtain an exact fuzzy representation of a

nonlinear dynamic system is by using the sector nonlinearity

approach [13].

1) The approach: The main idea of obtaining a fuzzy

model using the sector nonlinearity approach is as follows.

For simplicity, consider a nonlinear system of the form

ẋ = f(z)x+ g(z)u

y = Cx
(9)

with f and g smooth nonlinear matrix functions, x ∈ Rn

the state vector, u ∈ Rnu the input vector, and y ∈ Rny the

measurement vector, z some vector function of x, y, and u,

all variables assumed to be bounded on a compact set Cxyu.

Let nlj(·) ∈ [nlj , nlj ], j = 1, 2, . . . , p be the set of

bounded nonlinearities in f and g, i.e., components of either

f or g. An exact TS fuzzy representation of (9) can be

obtained by constructing first the weighting functions

w
j
0(·) =

nlj − nlj(·)

nlj − nlj
w

j
1(·) = 1− w

j
0(·) j = 1, 2, . . . , p

and defining the membership functions as

hi(z) =

p∏

j=1

w
j
ij
(zj) (10)

with i = 1, 2, · · · , 2p, ij ∈ {0, 1}. These membership

functions are normal, i.e., hi(z) ≥ 0 and
∑r

i=1 hi(z) = 1,

r = 2p, where r is the number of rules.

Using the membership functions defined in (10), an exact

representation of (9) is given as:

ẋ =

r∑

i=1

hi(z)(Aix+Biu)

y =Cx

(11)

with r the number of local linear models, Ai, Bi, i =
1, 2, . . . , r matrices of proper dimensions, and hi, i =
1, 2, . . . , r defined as in (10).

2) The fuzzy flow model: Note that model (8) cannot be

written2 in the form (9). However, it can be written as

ẋ = f(z)x+ g(z)u+ a(z)

y = h(z)x
(12)

i.e., with an affine term and a fuzzy measurement model.

In order to obtain a fuzzy representation of (8) similar

to (11), consider first the state equations only.

A reasonable assumption is that ρi−1, ρi, and vi are

bounded, ρi−1 ∈ [ρi−1,min, ρi−1,max], ρi ∈ [ρi,min, ρi,max],
and vi ∈ [vi,min, vi,max]. Since the minimum values can

be taken nonnegative, the system (8) is well-defined on a

compact set of variables. There are 5 nonlinearities, for

which weighting functions are constructed, as follows:

1) 1
L
ρi with the weighting functions w1

0 =
ρi,max−ρi

ρi,max−ρi,min

,

w1
1 = 1− w1

0;

2) 1
ρi+κ

leads to w2
0 =

ρi−ρi,min

ρi+κ

ρi,max+κ

ρi,max−ρi,min

, w2
1 = 1 −

w2
0;

3) 1
τ
+ 1

L
vi, with w3

0 =
vi,max−vi

vi,max−vi,min

, w3
1 = 1−w3

0; note

that the nonlinearity 1
L
vi leads to the same weighting

functions;

4) exp
[
− 1

am

(
ρi

ρcr

)am
]
, the nonlinearity in V (ρi), with

the weighting functions

w4
0 =

exp

[
−

1

am

(
ρi,min

ρcr

)am
]
−exp

[
−

1

am

(
ρi
ρcr

)am
]

exp

[
−

1

am

(
ρi,min

ρcr

)am
]
−exp

[
−

1

am

(
ρi,max

ρcr

)am
] ,

w4
1 = 1− w4

0

5) 1
L
ρi−1 with the weighting functions w5

0 =
ρi−1,max−ρi−1

ρi−1,max−ρi−1,min

, w5
1 = 1− w5

0;

Using these weighting functions a fuzzy model with 25 =
32 rules is constructed.

Consider now the measurement function:

y =

(
qi
vi

)
=

(
viλ 0
0 1

)(
ρi
vi

)
(13)

The nonlinearity viλ in the measurement function leads to

the weighting functions w6
0 =

vi,max−vi

vi,max−vi,min

, w6
1 = 1 − w6

0 ,

i.e., the same weighting functions as in the above item 3.

Since vi is directly measured, the membership functions of

the measurements do not depend on states to be estimated

(the membership functions of the states depend on ρi, that

is not measured).

In general, fuzzy representations of nonlinear systems

obtained by the sector nonlinearity approach suffer from two

2To obtain the form (9), one has to divide by ρi, in which case the
nonlinearities grow unbounded.



drawbacks. The first is that in general these local models

do not necessarily retain the properties of the nonlinear

system, e.g., for a globally observable nonlinear system

one can obtain non-observable local models. However, for

the obtained traffic model this is not the case, i.e., all

local models are observable from the obtained measurement

matrices.

A second drawback of the approach is the large number

of rules obtained, in this case 32. To investigate whether a

suitable fuzzy model with a smaller number of rules can

be obtained, two other methods are tested next, that obtain

approximations of the nonlinear system.

C. Fuzzy approximations of the traffic model

A first fuzzy approximation of the flow model was ob-

tained by linearizing the nonlinear system in several oper-

ating points and interpolating the local models so obtained.

Although by linearization in general a good approximation

is obtained, in this case, due to the product of the variables,

35 = 243 local models were necessary. Even for this number

of local models, the norm of the difference of the true

model and the approximation was as large as 6 · 103. For

such a large number of rules, the observer design implies

a large computational cost, actually exceeding the memory

capacities of our machine. Therefore, the results obtained by

linearization are not presented here.

Second, we used the method of [8], which is based on

substitution instead of linearization. For this, we considered

the model (8), with states ρi and vi, and inputs vi−1, ρi+1,

ρi−1. For each of the variables ρi, vi, and ρi−1, three

operating points were chosen: the maximum, minimum, and

average value. In each combination of these points, a local

linear model has been obtained by substituting the chosen

values in the matrices. With this method, 27 rules were

obtained. However, this fuzzy model was an approximation

of the model (8), with a bound on norm of the difference of

the true model and the approximation as large as 2.5 · 103.

This difference could have been reduced by adding more

operating points, but the addition of even one more point

leads to 36 rules, which is more than the number of rules

obtained by the sector nonlinearity approach. Moreover,

the model approximation error lead to a large bias in the

estimation, and therefore the results are not presented here.

Due to the above presented drawbacks of the obtained

approximate models, in the sequel we use the 32 rule TS

model obtained by the sector nonlinearity approach.

IV. OBSERVER DESIGN

A. Fuzzy observer design

Recall that the fuzzy model obtained in Section III-B.2 is

of the form

ẋ =
r∑

i=1

hi(z)(Aix+Biu+ ai)

y =

r∑

i=1

hi(z)Cix

where the vector of scheduling variables z is a function of
the state variables x = [ρi vi]

T , the input ρi−1, and the
output vi. Of these, ρi has to be estimated, and therefore,
the fuzzy observer is of the following general form

˙̂x =

r∑

i=1

hi(ẑ)(Aix̂+Biu+ ai +Ki(y − ŷ))

ŷ =

r∑

i=1

hi(ẑ)Cix̂

(14)

where ẑ denotes the estimated scheduling variables, and with
the observer gains Ki, i = 1, 2, . . . , r computed such that
the estimation error dynamics

ė = ẋ− ˙̂x

=

r∑

i=1

hi(ẑ)(Aie−Ki(y − ŷ))

+

r∑

i=1

(hi(z)− hi(ẑ))(Aix+Biu+ ai)

(15)

are asymptotically stable. Since vi is measured, the member-

ship functions of the measurement model do not depend on

states to be estimated. Therefore, we have

ė =

r∑

i=1

r∑

j=1

hi(ẑ)hj(z)(Ai −KiCj)e

+
r∑

i=1

(hi(z)− hi(ẑ))(Aix+Biu+ ai)

(16)

Stability results for dynamics with such vanishing distur-

bances (i.e., (hi(z)−hi(ẑ))(Aix+Biu+ai) disappears as ẑ

tends to z) involve a Lipschitz condition on the disturbance:

there exists a known µ > 0 so that

∥∥∥
r∑

i=1

(hi(z)− hi(ẑ))(Aix+Biu+ ai)
∥∥∥ ≤ µ‖e‖ (17)

Under this condition, the dynamics (16) are asymptotically
stable [2], if there exist P , Ki, i = 1, 2, . . . , r, S so that

(
H(P (Ai −KiCi)) + µ2S P

P −S

)
< 0

i = 1, 2, . . . , r
(
H(Gij) + 2µ2S 2P

2P −2S

)
< 0

i, j = 1, 2, . . . , r i 6= j

(18)

with Gij = P (Ai −KiCj) + P (Aj −KjCi), where H(X)
denotes the Hermitian of the matrix X , H(X) = X +XT .

B. Observer design for the fuzzy traffic model

The model obtained by the sector nonlinearity approach is

the exact fuzzy representation of the model (5), and therefore

the observer is actually designed for the model (5). It remains

to be seen is whether (17) holds and whether (18) can be

satisfied.
The membership functions hi are the product of the

weighting functions wi. Since ρi−1, ρi+1, and vi−1 are
assumed to be known from the neighboring segments, and
vi is measured, these values can be used in the weighting
functions, i.e., one does not have to use the estimated value



of vi. Then, the three weighting functions that depend on
the state ρi (that has to be estimated) are continuous on a
compact set and therefore Lipschitz in e. By analyzing these
functions, we have:

‖w1
0(z)− w

1
0(ẑ)‖ ≤ ‖e‖

1

ρmax − ρmin

‖w2
0(z)− w

2
0(ẑ)‖ ≤ ‖e‖

ρmax + κ

(ρmax − ρmin)(ρmin + κ)

‖w4
0(z)− w

4
0(ẑ)‖ ≤ ‖e‖

·
1

exp
[
− 1

am

(
ρi,min

ρcr

)am
]
− exp

[
− 1

am

(
ρi,max

ρcr

)am
]

The same bounds hold for wi
1, i = 1, 2, 4. Moreover, for

each membership function we have

hi(z)− hi(ẑ) =

5∏

j=1

w
j
ij
(z)−

5∏

j=1

w
j
ij
(ẑ)

≤

5∑

j=1

(wj
ij
(z)− w

j
ij
(ẑ))

with ij ∈ {0, 1}. Therefore, hi(z) − hi(ẑ) is Lipschitz in

z−ẑ, with the Lipschitz constant smaller than or equal to the

number of rules times the sum of the Lipschitz constants of

the weighting functions. For the values in Table II, an upper

bound can be obtained as ‖hi(z) − hi(ẑ)‖ ≤ 0.1608‖e‖.

Moreover, since all variables are defined on a compact set,

‖Aix+ Biu+ ai‖ is bounded, in this case ‖Aix+ Biu+
ai‖ ≤ 1.22 · 105.

Using this bound, (18) can be written as an LMI problem,

and solved using Matlab’s feasp function. Note however, that

this bound represents the worst-case scenario and is rarely

needed. In fact, as long as the estimated initial states are close

enough to the real ones, if (18) has a solution, the estimated

states will converge to the true ones. Therefore, for solving

(18), we considered µ = 100 and computed the matrices

P , Ki, i = 1, 2, . . . , r, and S. For randomly generated

ρi−1, ρi+1, and vi−1, true initial states x0 = [15, 120]T ,

and estimated initial states x̂0 = [10, 70]T , the estimation

error trajectory is presented in Figure 2. As expected, the

estimation error converges to zero, i.e., the estimated states

converge to the true states. For the numerical integration the

Matlab function ode45 was used.
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Fig. 2. Estimation error.

C. Robust observer

Recall that in the traffic flow model (2), the average

velocity is in fact a heuristic relationship, and a noise is

considered to account for the model mismatch. Also, the

measurements are in general not accurate, i.e., the correct

measurement model is (4). In order to attenuate the effect

of these disturbances on the estimated states, we consider a

robust fuzzy observer.
A fuzzy system of the form

ẋ =

r∑

i=1

hi(z)(Eix+ Fiǫ)

y = Gx

(19)

is asymptotically stable [6] with γ disturbance attenuation

(i.e., the effect of the disturbance on the output is attenuated

by a factor γ) under zero initial conditions (x(0) = 0), if

there exists P = PT > 0 such that(
H(PEi) +GTG PFi

FT
i P −γ2I

)
< 0, i = 1, 2, . . . , r (20)

holds.
Taking into account the corrupting noises, and the observer

designed in Section III-B.2, the estimation error dynamics
can be written as

ė =

r∑

i=1

r∑

j=1

hi(ẑ)hj(z)
[
(Ai −KiCj)e−Ki

(
ζq
ζv

)]

+

(
0
1

)
ξv +

r∑

i=1

(hi(z)− hi(ẑ))(Aix+Biu+ ai)

=

r∑

i=1

r∑

j=1

hi(ẑ)hj(z)
[
(Ai −KiCj)e

+

((
0
1

)
−Ki

)


ξv
ζq
ζv




]

+

r∑

i=1

(hi(z)− hi(ẑ))(Aix+Biu+ ai)

(21)

Combining the conditions (20) and (18), we have that the
dynamics (21) is asymptotically stable with γ disturbance
attenuation, under zero initial condition, if there exist µ, P ,
Ki, i = 1, 2, . . . , r, S so that

∥∥∥
r∑

i=1

(hi(z)− hi(ẑ))(Aix+Biu+ ai)
∥∥∥ ≤ µ‖e‖





H(Gi) + µ2S + I P P

((
0
1

)
−Ki

)

P −S 0((
0
1

)
−Ki

)T

P 0 −γ2I




< 0





H(Gij) + 2µ2S + 2I 2P 2P

((
0
1

)
−Ki

)

2P −2S 0

2P

((
0
1

)
−Ki

)T

P 0 −γ2I




< 0

(22)

where Gi = P (Ai − KiCi) Gij = P (Ai − KiCj) + P (Aj −

KjCi).

The above conditions were written in an LMI form, and

solved with Matlab’s mincx, that minimizes a linear objective



under LMI conditions. With µ = 100, as in the previous case,

the maximum disturbance attenuation that can be achieved is

γ = 0.08. The estimation error under zero initial conditions,

for a randomly generated trajectory can be seen in Figure 3.

For this trajectory, the noise signals were generated according

to a uniform distribution, ξv ∈ [−5, 5], ζq ∈ [−10, 10], and

ζv ∈ [−5, 5], and for the numerical integration the Matlab

function ode45 was used. As can be seen, the effect of the

disturbance on the estimation error was attenuated with even

more than the computed factor γ.
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Fig. 3. Estimation error with γ disturbance attenuation under zero initial
conditions.

V. CONCLUSIONS

In this paper we have proposed a fuzzy observer for the

well-known second-order traffic flow model METANET in

order to estimate the non-measured states. To design the

observer, first a dynamic Takagi-Sugeno fuzzy model was

derived using the sector nonlinearity approach. This fuzzy

model is an exact representation of the continuous-time

traffic flow model. For the obtained fuzzy model, fuzzy

observers were designed, and also disturbance attenuation

has been achieved.

In this paper the modeling and observer design was

performed in continuous time. Since the METANET model

has been validated in discrete time, in our future research, we

will derive a discrete-time observer, that can also be tested

on measured data. A drawback of the model developed is

that the number of rules grows exponentially with the num-

ber of segments considered. Therefore, we will investigate

distributed observer design.
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