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An efficient model-based method for coordinated control of urban

traffic networks

Shu Lin, Bart De Schutter, Yugeng Xi, and Hans Hellendoorn

Abstract— Traffic control is an effective and also efficient
approach to reduce traffic jams. To alleviate the traffic con-
gestion in an urban traffic network, a traffic control strategy
that can coordinate the whole traffic network from a global
point of view, is required. In this paper, an advanced control
strategy, i.e. Model Predictive Control (MPC), is applied to
control and coordinate urban traffic networks. However, the
on-line computational complexity becomes a big challenge when
the scale of the traffic network gets larger. To overcome this
problem, the MPC control strategy is reformulated and solved
efficiently on-line by a Mixed-Integer Linear Programming
(MILP) solver. An MPC controller based on MILP is established
and studied for the urban traffic network in different traffic
scenarios. The simulation results show that the MILP-based
MPC controller is a promising approach to reduce the on-line
computational complexity of MPC controllers for urban traffic
networks.

I. INTRODUCTION

Urban areas are usually both population centers and eco-

nomic centers. Some big cities have the highest population

density and the busiest economics through the world. More-

over, urban areas are also the places where a high-standard

transportation service is needed. However, urban areas are

also the places where traffic congestion most likely happens,

when people need to use the common infrastructures with

limited capacity at the same time, especially during rush

hours. Huge losses may be caused by traffic jams. Traffic

delays grow because of the congestion, and the economic

losses and the traffic pollution will also increase accordingly.

Moreover, traffic congestion may also threaten the safety

of the public transportation. Expanding the transportation

infrastructure can alleviate the congestion to some extent, but

it is too time and money consuming, and it is also limited

by the existing geography of cities. Therefore, traffic control

strategies are an attractive method to address congestion

problems of urban areas.

Since the emergence of traffic control, traffic control

strategies have gone through various developments from

isolated intersection control to coordinated control, from

fixed-time control to traffic-responsive control [1]. Isolated

intersection controllers have been well developed as local

controllers. However, even though the local controller works
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properly, it still cannot guarantee that no congestion is caused

in the other regions within the traffic network. To avoid

this phenomenon, it is necessary to have a coordinated

control strategy for the whole traffic network. A number of

coordinated urban network control strategies have already

been developed [1]. Fixed-time coordinated control strategies

control and coordinate the control measures of the network

based on the historical traffic data. But the fixed-time con-

trol strategy hardly respond to the real-time variations of

the traffic demands and the disturbances. Traffic-responsive

coordinated control strategies measure the traffic states in the

network, and adapt real-time the control schemes according

to the measured traffic states. Although the traffic-responsive

control strategy can respond in real-time to the variations

of traffic states, it is still a myopic control method, which

does not look ahead. To overcome these disadvantages, more

advanced coordinated control strategies, i.e. model-based

optimization methods (including Model Predictive Control

(MPC)), are applied to control urban traffic networks.

In the 1980s and 1990s, a number of model-based op-

timization control strategies emerged: OPAC, PRODYN,

CRONOS, and RHODES. These control strategies predict the

future traffic demands at the intersections through traffic flow

data measured by upstream detectors and the detectors in up-

stream links. But the prediction horizon is influenced by the

locations of the detectors. In recent years, some macroscopic

urban traffic models, which can describe the traffic dynamic

mechanics of the whole urban traffic network, have been de-

veloped. Model-based optimization control strategies [2], [3]

based on these prediction models were developed, and avoid

the problem of previous strategies. However, the biggest

challenge for implementing the model-based optimization

control strategy is the on-line computational complexity.

Although these strategies have a lot of advantages, the on-

line computational complexity is high.

In this paper, we reformulate and linearize a macroscopic

urban traffic network model of [4] into mixed-integer linear

equality and inequality constraints. An MPC controller is

established based on the reformulated traffic model. Then,

the original nonlinear optimization problem of the MPC con-

troller is turned into a Mixed-Integer Linear Programming

(MILP) problem, which can be solved by existing MILP

solvers. Simulation experiments are carried out to test the

MILP-based MPC controller.

II. MACROSCOPIC URBAN TRAFFIC MODEL (S MODEL)

In the macroscopic urban traffic model of [4], called the S

model, define J the set of nodes (intersections), and L the set
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Fig. 1. A link connecting two traffic-signal-controlled intersections

of links (roads) in the urban traffic network. Link (u,d) is

marked by its upstream node u (u∈ J) and downstream node

d (d ∈ J). The input and output links of link (u,d) can be

also specified by the upstream and downstream nodes. The

sets of input and output nodes for link (u,d) are Iu,d ⊂ J

and Ou,d ⊂ J (e.g., for the situation of Fig. 1 we have Iu,d =
{i1, i2, i3} and Ou,d = {o1,o2,o3}).

In order to describe the evolution of the models, we first

define some variables (see also Fig. 1):

Iu,d : set of input nodes of link (u,d),
Ou,d : set of output nodes of link (u,d),
k : simulation step counter,

nu,d(k) : number of vehicles in link (u,d) at step k,

qu,d(k) : queue length at step k in link (u,d), qu,d,o is

the queue length of the sub-stream turning to

link o,

α leave
u,d (k) : flow rate leaving link (u,d) at step k, α leave

u,d,o(k)
is the leaving flow rate of the sub-stream

towards o,

αarriv
u,d (k) : flow rate arriving at the end of the queue in

link (u,d) at step k, αarriv
u,d,o(k) is the arriving

flow rate of the sub-stream towards o,

αenter
u,d (k) : flow rate entering link (u,d) at step k, αenter

i,u,d (k)
is the flow rate entering link (u,d) from i,

βu,d,o(k) : relative fraction of the traffic turning to o at

step k,

µu,d : saturated flow rate leaving link (u,d),
gu,d,o(k) : green time length during step k for the traffic

stream towards o in link (u,d),
vfree

u,d : free-flow vehicle speed in link (u,d),

Cu,d : capacity of link (u,d) expressed in number of

vehicles,

Nlane
u,d : number of lanes in link (u,d),

∆cu,d : offset between node u and node d, which

represents the offset time between the cycle

times of the upstream and the downstream

intersections at the beginning of every control

time step,

lveh : average vehicle length.

In S model, every intersection takes the cycle time as its

simulation time interval. The cycle times for intersection

u and d, which are denoted by cu and cd respectively,

can be different from each other, as Fig. 2(a) illustrates.

In this situation, the simulation step counters of different

intersections are not same. As cycle times are the simulation

time intervals, the input and output flow rates of the link are

averaged over the cycle times in the S model.

Taking the cycle time cd as the length of the simulation

time interval for link (u,d) and kd as the corresponding time

step counter, the number of the vehicles in link (u,d) is

updated according to the input and output average flow rate

over cd at every time step kd by

nu,d(kd +1) = nu,d(kd)+
(

αenter
u,d (kd)−α leave

u,d (kd)
)
·cd . (1)

The leaving average flow rate is the sum of the leaving

flow rates α leave
u,d,o(kd) turning to each output link o ∈ Ou,d .

The leaving average flow rate over cd is determined by the

capacity of the intersection, the number of cars waiting and

arriving, and the available space in the downstream link:

α leave
u,d,o(kd) = min

(
βu,d,o(kd) ·µu,d ·gu,d,o(kd)/cd ,

qu,d,o(kd)/cd +αarriv
u,d,o(kd),

βu,d,o(kd)
(
Cd,o −nd,o(kd)

)
/cd

)
.

(2)

The number of vehicles waiting in the queue turning to

link o is updated as

qu,d,o(kd +1) = qu,d,o(kd)+
(

αarriv
u,d,o(kd)−α leave

u,d,o(kd)
)
· cd .

(3)

The flow of vehicles that entered link (u,d) will arrive at

the end of the queues after a time delay τ(kd) · cd + γ(kd),
i.e.,

αarriv
u,d (kd) =(1− γ(kd)) ·α

enter
u,d (kd − τ(kd))+

γ(kd) ·α
enter
u,d (kd − τ(kd)−1) , (4)

τ(kd) = floor

{(
Cu,d −qu,d(kd)

)
· lveh

Nlane
u,d · vfree

u,d · cd

}
,

γ(kd) = rem

{(
Cu,d −qu,d(kd)

)
· lveh

Nlane
u,d · vfree

u,d · cd

}
. (5)
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Fig. 2. Synchronization of upstream and downstream intersections

When reaching the end of the link, the arriving flow rate is

separated into sub-streams by multiplying it with the turning

rate βu,d,o(kd).
The flow rate entering link (u,d) is the sum of the flow

rates entering from all the upstream links:

αenter
u,d (kd) = ∑

i∈Iu,d

αenter
i,u,d (kd) = ∑

i∈Iu,d

α leave
i,u,d (ku). (6)

In this formula, we see that the total flow rate entering link

(u,d) is provided by the sum of the flow rates leaving the

upstream links. Recall that we have different cycle times

between the upstream and downstream intersections, so the

simulation time steps are not the same between the leaving

and entering flow rates. Some operations need to be carried

out to synchronize the leaving and entering flow rates.

A common control time interval is adopted by all the

intersections in the network, with N j an integer, as

Tctrl = N j · c j, for all j ∈ J . (7)

Tctrl is defined as the Least Common Multiple of all the

intersection cycle times in the traffic network, which ensures

all the intersections can communicate with each other and be

synchronized. For Fig. 2(a), we have Tctrl =Nu ·cu =Nd ·cd .

Fig. 2(b) shows how the leaving flow rates in the timing of

intersection u can be recast into the entering flow rates in the

timing of intersection d. First, we transform the discrete-time

leaving flow rates from the upstream links into continuous

time using a zero-order hold strategy, as

α leave,cont
i,u,d (t) = α leave

i,u,d (ku), ku · cu ≤ t < (ku +1) · cu, (8)

and then we convert the result again to obtain the average

entering flow rates in time step kd so as to make them can
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d̂(k)
n(k)

g∗(kctrl|kctrl)

g∗(kctrl|kctrl)

g(kctrl)
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Fig. 3. The framework of the MPC controller

be used by the downstream link as follows

αenter
i,u,d (kd) =

∫ (kd+1)·cd+∆cu,d

kd ·cd+∆cu,d

α leave,cont
i,u,d (t)

cd

dt . (9)

III. MODEL-BASED URBAN TRAFFIC NETWORK CONTROL

Model Predictive Control [5] is a methodology that im-

plements and repeatedly applies Optimal Control in a rolling

horizon way. The optimization problem to be solved is built

based on the prediction model of the process and an estimate

of the disturbances. In each control step, only the first control

sample of the optimal control sequence is implemented;

subsequently the horizon is shifted one sample and the

optimization is restarted again with new information of the

measurements.

Similar to Optimal Control, MPC can predict and ap-

proximate the optimal solution for the future. In contrast

to Optimal Control, through the use of feedback and the

rolling horizon approach, MPC has the ability to deal with

the uncertainty of the process, which can be caused by the

unpredictable disturbances, the (slow) variation over time

of the parameters, and model mismatches in the prediction

model. MPC can also easily deal with multi-input and multi-

output problems with constraints. Another advantage of MPC

is that one can easily select and replace the prediction model

based on the control requirements.

Fig. 3 shows the structure of the MPC controller and how

it works on the process. The MPC approach can be described

by the following three steps:

1) Prediction model. A model can be selected as pre-

diction model for MPC controller, if it can sufficiently

accurately predict the future traffic states used for eval-

uating the objective function based on the information

of current states, predicted disturbances, and future

control inputs. Therefore, the traffic model presented

in Section 2 above can be used as prediction model for

the MPC controller. It can be generally described as

n(k+1) = f
(
n(k),g(kctrl(k)),d(k)

)
(10)



where n(k) is the traffic state (the number of vehicles in

a link at simulation time step k, see (1) ) requested for

evaluating the objective function; d(k) is the predicted

disturbance (the traffic demand), which is the input

traffic flow rate for the network in the future; g(kctrl(k))
is the future control input, e.g. the green time splits.

Having the control time interval Tctrl and the simulation

time interval Tsim, we define Tctrl = MTsim. For a given

k, the corresponding value kctrl of the control time step

is given by

kctrl(k) =

⌊
k

M

⌋
, (11)

where ⌊x⌋ with x a real number denotes the largest

integer less than or equal to x. On the other hand, a

given value kctrl of the control time step corresponds

to the set
{

kctrlM,kctrlM + 1, · · · ,(kctrl + 1)M − 1
}

of

simulation time steps.

2) Optimization problem. When the prediction horizon

is Np, the future traffic states are predicted at simulation

time step k by the model as

n̂(k) = [n̂T(k+1|k) n̂T(k+2|k) · · · n̂T(k+MNp|k)]
T,

based on the predicted traffic demands at simulation

time step k

d̂(k) = [d̂T(k|k) d̂T(k+1|k) · · · d̂T(k+MNp −1|k)]T,

and the future traffic control inputs at control step kctrl

g(kctrl) =[gT(kctrl|kctrl) gT(kctrl +1|kctrl) · · ·

gT(kctrl +Np −1|kctrl)]
T .

The optimization problem with Total Time Spent

(TTS) as objective function can be expressed as

min
g(kctrl)

JTTS = J
(
n̂(k),g(kctrl)

)

s.t. model constraints from (1) to (9) (12)

Φ(g(kctrl)) = 0 (cycle time constraint)

gmin ≤ g(kctrl)≤ gmax

where the cycle time constraint holds for every inter-

section at each control time step and states that the

cycle time equals to the sum of the green time splits for

all the phases. The nonlinear optimization problem (12)

can be solved by the (multi-start) Sequence Quadratic

Programming (SQP) algorithm.

3) Rolling horizon. Once the optimal control input

g∗(kctrl) is derived from the optimization, the first sam-

ple of the optimal result, g∗(kctrl|kctrl), is transferred

to the process and implemented. When arriving to

the next control step kctrl +1, the prediction model is

fed with the real measured traffic states, the whole

prediction horizon is shifted one step forward, and

the optimization starts over again. This rolling horizon

scheme closes the control loop, enables the system

to get feedback from the real traffic network, and

makes the MPC controller robust to the uncertainty

and disturbances.

IV. URBAN TRAFFIC MODEL REFORMULATION

Due to its nonlinear non convex nature, the optimization

problem inevitably suffers from an exponentially growing

computational complexity when the scale of the controlled

traffic network grows. Moreover, a multi-start method is

usually applied to achieve better result, which needs even

more computing time. From the S model, we can conclude

that the nonlinear feature of the traffic model is caused by

the Max-Min-Plus-Scaling (MMPS) formula (2), and the

nonlinear formulas (4), (8) and (9). An MMPS model can be

equivalently transformed into a mixed-integer linear model

[6], which can be expressed by mixed-integer equalities and

inequalities. Therefore, the S model can be reformulated

into a mixed-integer linear model. Then, the optimization

problem of the MPC controller can be solved by MILP

solvers efficiently.

Two assumptions are made to build the MILP problem:

(i) We assume the estimated traffic state n̂(k) by the traffic

model stays constant during the simulation time interval Tsim,

then the objective function TTS can be approximated as in

(12); (ii) We assume the time delay of the vehicles traveling

from the beginning of the link to the end of the queues in

the link is constant, then (4) becomes linear as

αarriv
u,d (kd) =(1− γconst) ·α

enter
u,d (kd − τconst)+

γconst ·α
enter
u,d (kd − τconst −1) , (13)

where τconst and γconst are constant values obtained by (5)

with the queue length fixed.

A. Rules for equivalent transformation into mixed-integer

linear model

According to [6], consider the statement f (x)≤ 0, where

f : Rn → R. Assume that x ∈ X , where X ⊂ R
n is a

given bounded set, and define M = maxx∈X f (x), m =
minx∈X f (x).

Then, by introducing in δ ∈ {0,1}, the following equiva-

lence holds

[ f (x)≤ 0]⇔ [δ = 1] true iff

{
f (x)≤ M(1−δ )

f (x)≥ ε +(m− ε)δ
, (14)

where ε is a small tolerance, typically the machine precision.

Moreover, δ f (x) can be replaced by the auxiliary real

variable z = δ f (x) which satisfies [δ = 0] ⇒ [y = 0], [δ =
1]⇒ [y = f (x)]. Then z = δ f (x) is equivalent to [6]





z ≤ Mδ

z ≥ mδ

z ≤ f (x)−m(1−δ )

z ≥ f (x)−M(1−δ )

. (15)

B. Model reformulation from MMPS model into mixed-

integer linear model

With the equivalences above, MMPS formula (2) can be

reformulated as mixed-integer linear equations and inequal-

ities. Let

a = βu,d,o(kd) ·µu,d ·gu,d,o(kd)/cd



b = qu,d,o(kd)/cd +αarriv
u,d,o(kd) (16)

c = βu,d,o(kd)
(
Cd,o −nd,o(kd)

)
/cd

d = min(a,b),

then (2) becomes

α leave
u,d,o(kd) = min(a,b,c) = min(d,c) . (17)

Let

f1 = b−a, (18)

and define

δ1 =

{
1 if f1 ≤ 0

0 if f1 > 0
(19)

then we have

d = a+(b−a) ·δ1 = a+ f1 ·δ1 . (20)

Similarly, let

f2 = c−d, (21)

and define

δ2 =

{
1 if f2 ≤ 0

0 if f2 > 0
(22)

then we have

min(d,c) = d +(c−d) ·δ2 = d + f2 ·δ2 . (23)

Let

z1 = f1 ·δ1 (24)

z2 = f2 ·δ2 (25)

and substitute (20) into (23), then (17) becomes linear as

α leave
u,d,o(kd) = a+ z1 + z2 . (26)

Then, (19), (22), (24) and (25) can be equivalently rewritten

into inequality constraints as in (14) and (15).The maximum

value and the minimum value of f1 are M1 = Cu,d/cd and

m1 =−µu,d , and the maximum value and the minimum value

of f2 are M2 =Cd,o/cd and m2 =−min(µu,d ,Cu,d/cd).
Therefore, by introducing the additional auxiliary binary

variables δ1 and δ2, and the auxiliary real variables f1, f2, z1,

and z2, the original formula (2) in the urban traffic model is

equivalently reformulated as mixed-integer linear equations

(18), (21) and (26), and inequalities.

C. Reformulation of the model synchronization

In (9), α leave,const
i,u,d (t) is a piecewise continuous func-

tion with intervals δℓ, · · · ,δℓ+Nℓ
and function values

α leave
i,u,d (ℓ), · · · ,α leave

i,u,d (ℓ+Nℓ). Hence,

αenter
i,u,d (kd) =

1

cd

Nℓ

∑
j=0

δℓ+ jα
leave
i,u,d (ℓ+ j), (27)

which is a linear expression in the α leave
i,u,d values.

V. MILP-BASED MPC CONTROLLER

After the model reformulation, the optimization problem

of the MPC controller in (12) can be rewritten as

min
u(kctrl)

JTTS =
M(kctrl+Np)

∑
kd=Mkctrl+1

∑
(u,d)∈L

cd · n̂u,d(kd)

s.t. Au(kctrl)≤ b (28)

Aequ(kctrl) = beq

umin ≤ u(kctrl)≤ umax

where n̂u,d(k) is the estimated number of vehicles on link

(u,d) at time step k, and the TTS is a linear objective function

of n̂u,d(kd); the constraints contain the linear inequality

constraints, the linear equality constraints, and the lower and

upper bounds of the optimization variables.

For any link (u,d) ∈ L, Iu,d and Ou,d are the sets of

input nodes and output nodes to link (u,d) respectively.

In (28), the inequality constraints are the mixed-integer

inequality constraints obtained through Section IV-A and

IV-B for all the traffic streams in the network and for

all the predicted simulation time steps in future (i.e. for

kd ,kd +1, · · · ,kd +MNp−1). The equality constraints contain

the linear traffic states update equations (1) and (3), the

linear equations (18), (21) and (26) obtained from the model

reformulation, the linearized equation (13), the pre-specified

reformulated synchronization equations (27), and the cycle

time constraints for the green times of every intersection.

The vector of optimized variables at control time step kctrl

in optimization problem (28) is

u(kctrl) =[uT(kctrl|kctrl) uT(kctrl +1|kctrl) · · ·

uT(kctrl +Np −1|kctrl)]
T , (29)

where u(kctrl) at control step kctrl consists of control variables

(i.e. green time splits), state variables, and auxiliary variables

for all the nodes and links in the network. All the optimized

variables are real values except the binary variables δ1(kctrl)
and δ2(kctrl). Supplied with initial traffic states and traffic

demands of the network, the optimization problem can be

solved at the control time step kctrl by the MILP solver. The

optimal control inputs for the first control time step will be

implemented to the traffic network. Rolling one step ahead,

a new MILP optimization problem will be built, etc.

VI. CASE STUDIES

Experiments are designed to compare the MILP-based

MPC controller and the SQP-based MPC controller. We use

the BLX model of [7] to simulate the real traffic process,

and design MPC controllers based on the two optimization

algorithms to derive the control schemes for the BLX model.

Although it is a macroscopic urban traffic model, the BLX

model is still accurate enough, which is demonstrated in [7],

[8] by comparing it with a microscopic traffic model.

The urban traffic network investigated is a grid network

including 4 nodes. The cycle time of the odd numbered

nodes is 120 s, the cycle time of the even numbered nodes

is 60 s. The control interval is 120 s. The prediction horizon



is 10 control intervals. The control simulations run for the

same time period of 1200s for all the experiments. Different

traffic scenarios are studied by initializing the traffic network

with different levels of traffic densities. The results of the

experiments for unsaturated and saturated scenarios are listed

in Table I. Here, “tavrg” is the average computing time over

all the control steps, and “tmax” is the maximum computing

time. The cost function is the TTS for the entire simulation.

The number of initial points for the SQP algorithm is 5.

TABLE I

COMPARISON OF COST FUNCTIONS AND COMPUTING TIMES FOR

DIFFERENT OPTIMIZATION ALGORITHMS IN THE SATURATED AND THE

UNSATURATED TRAFFIC SCENARIOS

Scenario Algorithm TTS (veh·h) tavrg (s) tmax (s)

Saturated
SQP 1755.9 453.4 552.5

MILP 1744.4 2.7 3.3

Unsaturated
SQP 639.7 452.4 526.4

MILP 654.2 3.9 4.6

As Table I shows, for the saturated scenario, the MILP

approach obtains a lower TTS than the SQP approach within

a dramatically shorter computing time, only a few seconds.

So in this case, MILP is an efficient approach to solve the

real-time optimization problem of the MPC controller, and, at

the same time, it also obtains even better control effects than

the multi-start SQP approach. However, for the unsaturated

scenario, although the computing time of the MILP approach

is still short, the TTS fails to be better than that of the

SQP approach. This is mostly caused by assumption (ii)

made during the model reformulation. Recall that in order to

transform the optimization problem into an MILP problem,

assumption (ii) is made to linearize the original model. In

the assumption, the time delay for vehicles running from the

beginning of the link to the end of the queues is considered to

be constant. In the saturated scenario, the number of leaving

vehicles depends on the saturated flow rate of the link. In that

case, the assumption almost does not have influence on the

results of MILP. However, in the unsaturated scenario, the

number of leaving vehicles depends mainly on the number of

waiting vehicles in the queues, which will be affected by the

vehicles arriving from upstream after a certain time delay in

the link. Therefore, the assumption caused a mismatch of the

reformulated MILP problem from the original optimization

problem. As a result, the MILP approach fails to achieve

better results than the SQP approach in the unsaturated

scenario. But, considering that the MILP approach is very

fast, that the relative difference in performance is only 2.3%,

and that the constant time delay can be refined and calibrated

beforehand, the MILP approach is still an excellent choice

for the MPC controller in the unsaturated scenario.

VII. CONCLUSIONS

An MPC controller has been established to control and

coordinate urban traffic networks. To reduce the on-line com-

putational complexity, the nonlinear traffic network model is

linearized and reformulated into mixed-integer linear equa-

tions and inequalities. The reformulated optimization of the

MPC controller can be solved much faster by MILP solvers.

In the simulation experiments, the MILP-based approach

is compared with the SQP-based approach. The simulation

results show that the MILP-based approach reduces the com-

puting time dramatically in both saturated and unsaturated

scenarios. Despite of the limited performance loss under un-

saturated scenario, the MILP-based approach is a competitive

method to reduce the on-line computational complexity of

MPC controllers for large urban traffic networks.

In the future, more experiments will be carried out to

compare MILP with other optimization algorithms, and fur-

ther study the MILP-based MPC controller for urban traffic

networks.
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