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An improved distributed version of Han’s

method for distributed MPC of canal systems

Minh Dang Doan ∗ Tamás Keviczky ∗ Bart De Schutter ∗

∗ Delft University of Technology, Delft, The Netherlands
(e-mail: {m.d.doan,t.keviczky,b.deschutter}@tudelft.nl)

Abstract: Recently, we have introduced a distributed version of Han’s method that can be used
for distributed model predictive control (DMPC) of dynamically coupled linear systems, under
coupling constraints (Doan et al., 2009). Some DMPC problems of water networks can be cast
into this type. In this paper, we propose an improved version of this method and apply it to a
canal system. The simulation results show that the modifications lead to faster convergence of
the method, thus making it more practical in control of water networks.

Keywords: distributed optimization, model predictive control, water networks, dual
decomposition, decentralized and cooperative control

1. INTRODUCTION

Optimization techniques have played a fundamental role
in designing automatic control systems for most part
of the past half century. This dependence is even more
obvious in today’s wide-spread use of online optimization-
based control methods, such as Model Predictive Control
(MPC) (Maciejowski, 2002; Rawlings and Mayne, 2009).
The ability to express important process constraints and
characterize comprehensive economic objective functions
has made MPC the industry standard for controlling large-
scale systems ranging from chemical processes to basic
infrastructure.

For control of large-scale networked systems, centralized
MPC may be considered impractical, inflexible, and un-
suitable due to information exchange requirements and
computational aspects. The subsystems in the network
may belong to different authorities that prevent sending all
necessary information to one processing center. Moreover,
the optimization problem yielded by centralized MPC can
be excessively large for real-time computation. In order
to deal with these limitations, distributed model predictive
control (DMPC) has been proposed for control of such
large-scale systems, by decomposing the overall system
into small subsystems (Jia and Krogh, 2001; Camponogara
et al., 2002; Rawlings and Stewart, 2008). The subsystems
then employ distinct MPC controllers that only solve local
optimization problems, use local information from neigh-
boring subsystems, and collaborate to achieve globally
attractive solutions.

Approaches to DMPC design differ from each other in
the problem setup. For systems with decoupled dynamics,
Dunbar and Murray (2006) proposed a DMPC scheme
focusing on multiple vehicles with coupled cost functions,
and utilizing predicted trajectories of the neighbors in
each subsystem’s optimization. A DMPC scheme with a
sufficient stability test for dynamically decoupled systems
was proposed by Keviczky et al. (2006), in which each
subsystem optimizes also over the behaviors of its neigh-

bors. Richards and How (2007) proposed a robust DMPC
method for decoupled systems with coupled constraints,
based on constraint tightening and a serial solution ap-
proach. For systems with coupled dynamics and decoupled
constraints Venkat et al. (2008) proposed a distributed
MPC scheme, based on a Jacobi algorithm that deals with
the primal problem, using a convex combination of new
and old solutions. Other research related to the DMPC
field is reported by Jia and Krogh (2002); Du et al. (2001);
Li et al. (2005); Camponogara and Talukdar (2007); Mer-
cangoz and Doyle III (2007); Alessio and Bemporad (2007,
2008); Necoara et al. (2008). A recent survey on DMPC
can be found in (Scattolini, 2009).

Recently, we have developed a distributed version of Han’s
parallel method for convex optimization (Doan et al.,
2009). The method aims to define local controllers for
dynamically coupled subsystems, which share coupling
constraints and minimize a separable objective function.
Relying on a decomposition of the dual optimization prob-
lem such that local problems have analytical solutions,
the algorithm has an iterative update procedure which
converges asymptotically to the global optimizer of the
primal problem. At each iteration, the controllers exchange
information with other “neighboring” subsystems, with
which they are “connected” in terms of dynamics or con-
straint coupling.

In this paper, we present an improved distributed version
of Han’s parallel algorithm for a class of convex optimiza-
tion problems (Han and Lou, 1988; Doan et al., 2009) and
show that it is applicable for DMPC of water networks.
The improvements are illustrated in a simulation of the
new DMPC scheme for a 4-reach canal system. The paper
is organized as follows. The problem setup is described in
Section 2. In Section 3, we summarize the original Han’s
method and the distributed version, followed by the new
modified distributed version to speed up the convergence
of the algorithm. The simulation results in Section 4 illus-
trate the properties of the DMPC scheme for the example



setup of the 4-reach canal. Section 5 concludes the paper
and indicates some directions for future research.

2. PROBLEM SETUP

2.1 The canal system

In this paper we illustrate the application of the novel
DMPC approach to the control of a system of irrigation
canals. Irrigation canals are large systems, consisting of
many interacting components, and spanning vast geo-
graphical areas. For the most safe and efficient operation
of these canals, maintaining the levels of the water flows
close to pre-specified reference values is crucial, both under
normal operating conditions as well as in extreme situa-
tions. Manipulation of the water flows in irrigation canals
is done using devices such as pumps and gates.

The example irrigation canal to be considered is a 4-
reach canal system as illustrated in Figure 1. In this
system, water flows from an upstream reservoir through
the reaches, under the control of 4 gates and a pump at
the end of the canal system that discharges water.

The control design is based on the master-slave control
paradigm, in which the master controllers compute the
flows through the gates, while each slave controller uses
the local control actuators to guarantee the flow set by
master controller (Schuurmans et al., 1999). We will use
the new DMPC method to design the master controllers.

reach 1

reach 2

reach 3

reach 4

gate 1

gate 2

gate 3

gate 4

pump

upstream

reservoir

Fig. 1. The example canal system

2.2 Modeling the canal

Subsystem modeling The canal system is divided into
4 subsystems, each of which corresponds to a reach and
also includes the local controller at the upstream gate of
the reach. The 4th subsystem has one more controller,
corresponding to the pump at its downstream end.

We first use a simplified model for each subsystem as
illustrated in Figure 2, and then obtain an overall model
by connecting subsystem models. A subsystem is approx-
imately modeled by a reservoir with upstream in-flow and
downstream out-flow.

The discrete-time model of reach i is represented by:

hi
k+1 − hi

k =
Ts

Ai
s

[(

Qi
in

)

k
−
(

Qi
out

)

k

]

(1)

where superscript i represents the subsystem index, sub-
script k is for the time index, Ts is the sampling time,
h is the downstream water level of the reach (zero level

is set at the autonomous steady state), As is the water
surface (volume of reservoir = h · As), Qin and Qout are
in-flow and out-flow of the canal which are measured at
the upstream and downstream ends, respectively. Denote
the flow passing ith gate by qi, and the flow passing the
pump by p4. Due to the mass conservation law, we have
Qi

out = Qi+1
in = qi+1, for i = 1, 2, 3, and Q4

out = p4.
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Fig. 2. Model of a reach

In order to derive local dynamics, we choose input and
state vectors of subsystem i as

xi
k = hi

k

ui
k =











qik , i = 1, 2, 3
[

qik
pik

]

, i = 4

The dynamics of each subsystem can be represented by a
discrete-time, linear time-invariant model of the form:

xi
k+1 =

∑

j=1,··· ,4

Aijxj
k +Bijuj

k, (2)

with the state-space matrices:

Aii = 1 , i = 1, · · · , 4; Aij = 0 , i 6= j

Bii = Ts/A
i
s , i = 1, 2, 3; B44 =
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4
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4
s

]
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[
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4
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]

Bij = 0, j 6∈ {i, i+ 1}

Centralized MPC problem The centralized MPC prob-
lem makes use of a quadratic cost function:
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4
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in which N is the prediction horizon, and {Qi, Ri}i=1,··· ,4

are given positive definite weights. It is easy to verify that
this cost function can be rewritten as J = xTHx where H
is a block-diagonal, positive definite matrix.

The constraints of the optimization problem include dy-
namical constraints (i.e. the model equations), initial state
constraint, terminal constraint xi

N = 0, i = 1, · · · , 4, and
local state and input constraints:

|ui
k| ≤ ui

max, |xi
k| ≤ xi

max

Following the method of Doan et al. (2009), the opti-
mization problem to be solved by the centralized MPC
controller at each sampling interval can be represented in
a compact form as

min
x

xTHx (4)

s.t. aTl x = bl, l = 1, . . . , neq

aTl x ≤ bl, l = neq + 1, . . . , s

with s = neq + nineq, where neq and nineq are the number
of scalar equality and inequality constraints, respectively.



3. DISTRIBUTED MODEL PREDICTIVE CONTROL
METHOD

The optimization problem (4) will be solved by a dis-
tributed algorithm that is based on Han’s parallel method
for convex programs (Han and Lou, 1988). In the follow-
ing we will give a summary of Han’s method for convex
quadratic programs, and then describe the distributed
version of Han’s method for quadratic programs in the
form (4). Then we will proceed by describing the modified
distributed version, which is the main contribution in this
paper.

3.1 Han’s parallel method for convex quadratic programs

The original Han’s method considers general convex opti-
mization problems where the constraint is an intersection
of many convex sets. The algorithm is based on Fenchel’s
duality to perform a dual decomposition, and iteratively
projects the dual variables onto local constraint sets. The
sum of dual variables can be shown to converge to the
minimizer of the dual problem (Han and Lou, 1988). A
simplified version of Han’s method for the quadratic opti-
mization problem (4) is summarized in Algorithm 1.

Algorithm 1. Han’s method for convex programs
—————————————————————————

Choose parameter α big enough 1 . For p = 1, 2, . . . :

1) For l = 1, . . . , s, find z
(p)
l that solves

min
z

1

2
‖z+ αy

(p−1)
l − x(p−1)‖

2

2

s.t. aTl z = bl or aTl z ≤ bl

2) Assign y
(p)
l = y

(p−1)
l + (1/α)

(

z
(p)
l − x(p−1)

)

3) Set y(p) = y
(p)
1 + · · ·+ y

(p)
s

4) Compute: x(p) = H−1y(p)

—————————————————————————

In this representation, each vector yl is a dual variable
corresponding to lth constraint. For problem (4), Han’s
method was proved to converge to the global optimum if
the cost function is strongly convex, or equivalently if H
is positive definite (Han and Lou, 1988). An interesting
property of this method is that the number of parallel
processes is equal to the number of constraints (as opposed
to other dual decomposition methods where the number
of parallel processes often equals the number of variables).

3.2 Distributed version of Han’s method

Han’s algorithm involves calculation of the global vari-
ables, therefore a global coordination method is required.
A distributed version of Han’s method was proposed by
Doan et al. (2009), and it makes use of the explicit solu-
tions in Step 1 of Algorithm 1, and exploits the structure of
(4) to decompose the computations, hence avoiding global
communications.

1 Han and Lou (1988) recommended α = α0 , s/ρ, where s is the
number of constraints and ρ is one half of the smallest eigenvalue of
H.

The main idea behind the distributed version of Han’s
method is illustrated in Figures 3 and 4, with a simple
system consisting of 4 subsystems and the coupling matrix
that shows how subsystems are coupled via their variables
(boxes on the same row illustrate the variables that are
coupled in one constraint). In Han’s method using global
variables, a subsystem has to communicate with all other
subsystems in order to compute the updates of the global
variables. For the distributed version of Han’s method,
each subsystem only communicates with the other subsys-
tems of which the variables are necessary for computing
the updates of its local variables.

1 2 3 4

Fig. 3. Communication links of the 2nd subsystem in the
centralized coordination version of Han’s algorithm
for an example 4-subsystem problem. An update
for a global variable requires the 2nd subsystem to
communicate with all the others.

1 2 3 4

Fig. 4. Communication link of the 2nd subsystem in the
distributed coordination version of Han’s algorithm
for an example 4-subsystem problem. The 2nd sub-
system only cares about its local variable, therefore it
does not need to communicate with the others that
do not couple with it.

The distributed version of Han’s method was proved to
achieve the same convergence property as the original
method of Han (Doan et al., 2009).

3.3 Modifications of Han’s method to speed up convergence

A disadvantage of Han’s method (and its distributed
version) is the slow convergence rate, due to the fact that
it is essentially a projection method to solve the dual
problem of (4). Therefore, we need to modify the method
to achieve better convergence rate.

In this paper, we present 2 modifications of the distributed
version of Han’s method:



• Scaling of the step sizes related to dual variables by
using different αl values for the update of each dual
variable l instead of the same α for all dual variables.

• Use of nonzero initial guesses, which allows taking the
current MPC solution as the start for the next sample
step.

We will use the same notations as in Doan et al. (2009,
Section VI), which are briefly summarized below:

• Li: the set of indices of constraints that subsystem
i is responsible for updating their dual variables
throughout the algorithm.

• N i: the neighborhood of subsystem i, consisting of i
itself and other subsystems that have direct dynami-
cal or constraint couplings with subsystem i.

• LN i : the set of indices of constraints within responsi-
bility of all subsystems in N i.

• x(p)|i: the self image of the global variable vector x(p)

made by subsystem i; this vector has the same size
as x(p), containing all variables of subsystem i at the
right positions, and zeros for the other entries.

• x(p)|N i

: the neighborhood image of x(p) made by
subsystem i, using variables of all subsystems inside
N i at the right positions, and zeros for the other
entries.

• x
(p)|N i

assumed: the assumed neighborhood image x(p) made

by subsystem i. The difference between x
(p)|N i

assumed and

x(p)|N i

is that only the values of variables belonging
to subsystem i are correct, while for the variables of
other neighboring subsystems j ∈ {N i \ i}, the values
could be different from the real ones.

• I
i: index matrix of subsystem i; it is the mask for

the global variable x such that only variables of
subsystem i are kept, i.e. x(p)|i = I

ix(p).

We present the improved distributed version of Han’s
method in the following algorithm:

Algorithm 2. Improved distributed algorithm for
the MPC optimization problem

—————————————————————————

Pre-computed parameters : Each subsystem i computes and
stores the following parameters throughout the control
scheme:

• For each l ∈ Li: αl =
(

kα
)

l
α0, where kα is the

scaling vector. αl acts as local step size regarding lth

dual variable, and therefore kα should be chosen such
that the convergence rates of all s dual variables are
improved. The method to choose kα will be discussed
in this section.

• For each l ∈ Li: c̄l = −1
aT

l
al

H−1al. We can see

that c̄l can be computed locally by a local controller
with a priori knowledge of the parameter al and the
weighting blocks on the diagonal ofH that correspond
to the non-zero elements of al.

MPC step:

At the beginning of the MPC step, the current states of
all subsystems are measured. The sequences of predicted
states and inputs generated in the previous MPC step
are shifted forward one step, then we add zero states and

zero inputs to the end of the shifted sequences. The new
sequences are then used as the initial guess for solving
the optimization problem in the current MPC step. The
initial guess for each subsystem can be defined locally. For
subsystem i, denote the initial guess as x(0)|i. At the first
MPC step, we have x(0)|i = 0, ∀i.

The idea of using previously predicted states and inputs
for initialization is a popular technique in MPC (Rawlings
and Mayne, 2009). Especially with Han’s method, whose
convergence rate is slow, an initial guess that is close to the
optimal solution will be very helpful to reduce the number
of iterations.

The current state is plugged into the MPC problem,
then we get an optimization problem of the form (4).
This problem will be solved in a distributed way by the
following iterative procedure.

Distributed iterative procedure to solve the optimization
problem:

Initialize with p = 0. Each subsystem i communicates
with the neighbors j ∈ N i to get x(0)|j , then constructs

x(0)|N i

=
∑

j∈N i x
(0)|j . Subsystem i computes its local

dual variable y(0)|N i

= Hx(0)|N i

, and then computes
initial intermediate variables:

γ
(0)
l = max{aTl (x

(0)|N i

− y(0)|N i

)− bl, 0}, l ∈ Li

Next, for p = 1, 2, . . . , the following steps are executed:

1) Communications to get the updated main vari-
ables
Each controller i communicates with its neighbors j ∈
N i to get updated values of their variables, contained
in x(p−1)|j . Vice versa, i also sends its updated
variables in x(p−1)|i to its neighbors as requested.
After getting information from the neighbors, con-

troller i constructs the neighborhood image x(p−1)|N i

as:

x(p)|N i

=
∑

j∈N i

x(p)|j

2) Update intermediate variables γl in parallel
In this step, the local controllers update γl corre-
sponding to each constraint l under their responsibil-
ity. More specifically, each local controller i updates
γl for each l ∈ Li in the following manner:
• If constraint l is an equality constraint (l ∈

{1, . . . , neq}), then γ
(p)
l = aTl x

(p−1)|N i

+γ
(p−1)
l −

bl.
• If constraint l is an inequality constraint (l ∈

{neq+1, . . . , s}), then γ
(p)
l = max{aTl x

(p−1)|N i

+

γ
(p−1)
l − bl, 0}.

3) Communications to get the updated interme-
diate variables
Each local controller i communicates with its neigh-

bors to get updated γ
(p)
l values that the neighbors

just computed in Step 2).
4) Update main variables in parallel

Local controller i uses all γ
(p)
l values that it has (by

communications and those computed by itself) to
compute an assumed neighborhood image of x:



x
(p)|N i

assumed =
∑

l∈L
Ni

1

αl

γ
(p)
l c̄l (5)

Then controller i selects the values of its variables

in x
(p)|N i

assumed to construct the new self image:

x(p)|i = I
ix

(p)|N i

assumed (6)

which contains u
i,(p)
0 , . . . , u

i,(p)
N−1, x

i,(p)
1 , . . . , x

i,(p)
N .

After updating their variables, each local controller
checks the local termination criteria. When all local
controllers have converged 2 , the algorithm stops and
the local control actions are implemented, otherwise
the controllers proceed to Step 1) to start a new
iteration.

Implement MPC input :

When the iterative procedure finishes, each subsystem

applies the first input u
i,(p)
0 , then waits for the next state

measurement to start a new MPC step.

—————————————————————————

Method to choose the scaling vector:

In the modified version of distributed Han’s method, a
good choice of the scaling vector helps to dramatically
improve the convergence speed. We have observed that the
convergence rate of some dual variables under the respon-
sibility of a subsystem i will affect the convergence rate
of dual variables under the responsibility of its neighbors
in N i. Therefore the choice of scaling vector should focus
on improving the convergence rate of “slower convergent”
dual variables. In our simulation, we rely on the Hessian
to find the scaling vector. Specifically, for a subsystem i
whose variables have the average weight h̄i (e.g. average
of entries related to i’s states and inputs in the diagonal
of the Hessian), we choose the scale factor

(

kα
)

l
= 1/h̄i,

with all l ∈ Li. We also multiply the scaling vector kα
with a factor θ < 0 for enlarging the step sizes of all dual
variables; this θ is tuned in the first MPC step.

The choice of the scaling vector depends on the structure
of the centralized optimization problem, thus we only need
to choose it once in the first MPC step. Then for the next
MPC steps, we can reuse the same scaling vector.

4. SIMULATION RESULTS AND DISCUSSION

DMPC methods are applied to the regulation problem of
the simulated canal system of Section 2, which has a per-
turbed initial state. We use distributed Han’s method with
and without the modifications described in Section 3.3 for
the same setup, and compare the results. Figure 5 shows
that the distributed Han’s method with modifications
achieves better convergence rate, allowing the distributed
optimization to converge within an acceptable number of
iterations. A simulation of closed-loop MPC is performed
for 20 sample steps. Figure 6 shows that the distributed
solutions converge to the centralized solutions in every
sample step.

2 Checking the termination criteria in a distributed fashion requires
a dedicated logic scheme, the description of which is omitted for
brevity.
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Although the new scheme is verified by this simulation,
there are still several theoretical issues that need to be
addressed:

Firstly, there is no convergence proof for the modified
distributed version of Han’s method yet. We observe
that in setups that are more complicated, the method to
choose scaling vector proposed in this simulation does not
always work well (sometimes after several sample steps,
the algorithm does not converge in the next sample steps).
Note that with this method we aim to solve the dual
problem, therefore the primal iterate would be infeasible
unless the algorithm converges.

Secondly, in the MPC formulation we keep both inputs
and states as variables of the centralized optimization
problem. This formulation is advantageous in distributed
MPC because the Hessian will have a diagonal structure,
and the neighborhood of each subsystem will only contain
its direct neighbors (the neighborhood would be greatly
extended if we eliminate the states in the optimization
problem). However, using states as variables requires con-
sidering the dynamical equations as equality constraints
of the optimization problem, and the existence of equality
constraints typically requires an exact solution in order



to guarantee feasibility. In future research, we will also
study MPC formulations in which all states are eliminated,
so that the centralized optimization only has inequality
constraints. Such formulation would allow stopping the
algorithm in a finite number of steps, and the final iterate
could be feasible (although it may be suboptimal).

Another problem is that the proposed method is for
quadratic programs only. Although many MPC prob-
lems for linear time-invariant systems are formulated as
quadratic programs, there are other variants that use
different objective functions, and nonlinear MPC would
also yield more complicated optimization problems than
quadratic programs. With such problems, we might not be
able to implement Han’s parallel method in a distributed
fashion. This issue motivates the research for other decom-
position methods that can handle more general problems,
e.g. convex problems with linear or decoupled nonlinear
constraints.

Last but not least, the MPC formulation in this paper
employs the terminal constraint xN = 0, which is conserva-
tive since it reduces the domain of attraction of MPC. An
improvement could be made by replacing this constraint
with less restrictive conditions (e.g. terminal constraint
set and terminal controller). However, there is still no
distributed scheme to construct the terminal constraint set
and the terminal controller (and also the terminal penalty
matrix that is solution of the Riccati equation), other than
assuming them to be completely decoupled.

5. CONCLUSIONS

The modified distributed version of Han’s method has an
improved convergence rate, thus it is more suitable for
DMPC of large-scale water networks. Future research will
involve finding a way to construct the scaling vector of
the modified distributed version of Han’s method together
with a theoretical proof of the convergence. We will also in-
vestigate different distributed optimization methods using
dual decomposition techniques to address nonlinear MPC
with more general optimization problem. Another direc-
tion is to find distributed MPC schemes for suboptimal
MPC.
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