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Generalized Pheromone Update for Ant Colony Learning in

Continuous State Spaces

Jelmer van Ast, Robert Babuška, and Bart De Schutter

Abstract—In this paper, we discuss the Ant Colony Learning
(ACL) paradigm for non-linear systems with continuous state
spaces. ACL is a novel control policy learning methodology, based
on Ant Colony Optimization. In ACL, a collection of agents,
called ants, jointly interact with the system at hand in order to
find the optimal mapping between states and actions. Through
the stigmergic interaction by pheromones, the ants are guided by
each others experience towards better control policies. In order
to deal with continuous state spaces, we generalize the concept
of pheromones and the local and global pheromone update rules.
As a result of this generalization, we can integrate both crisp and
fuzzy partitioning of the state space into the ACL framework.
We compare the performance of ACL with these two partitioning
methods by applying it to the control problem of swinging-up
and stabilizing an under-actuated pendulum.

I. INTRODUCTION

Ant Colony Optimization (ACO) is a metaheuristic for

solving combinatorial optimization problems and its key in-

gredients are the pheromones [1]. These pheromones act as

a reinforcing mechanism, stimulating metaphorical ants to

search for better solutions in regions of the solution space

that are likely to contain the optimal solution. ACO resembles

the way real ants in colonies cooperate to find routes from

sources of food to the nest.

The most important ACO algorithms are the Ant System

(AS) , the Ant Colony System (ACS) , and the MAX-MIN

Ant System, which have successfully been applied to various

optimization problems [1]. The AS is important as it is the

first ACO algorithm, while the ACS and the MAX-MIN Ant

System have introduced the concepts of elitism and the local

pheromone update rule. The ACS and the MAX-MIN Ant

System are amongst the best performing ACO algorithms for

combinatorial optimization problems [2], [3]. A survey of

industrial applications of ACO is presented in [4]. One of the

first real applications of the ACO framework to optimization

problems in continuous search spaces is described in [5]. Other

work includes the Aggregation Pheromones System in [6] and

the Differential Ant-Stigmergy Algorithm in [7].

Ant Colony Learning (ACL) is a paradigm for control policy

learning for non-linear systems, based on the principles of

ACO . It has been introduced in [8] with crisp state space parti-

tioning and extended in [9] with fuzzy state space partitioning.

In this paper, we unify both methods by generalizing the
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concept of pheromones. Rather than associating a pheromone

variable to a state-action pair, generalized pheromones are

associated to a state-action pair only to a certain degree. The

main advantage of this is that a continuous-valued state can be

represented in the ACL framework without introducing non-

determinism through discretization. In this paper, we relate

crisp and fuzzy state space partitioning in the ACL framework

by means of the generalized pheromone concept. We also

present a comparison of both methods when applied to the

non-linear control problem of swinging up and stabilizing

an inverted pendulum. Note that ACL cannot be compared

to other ACO techniques, since the application domains of

control policy learning and combinatorial optimization are

very different.

This paper is structured as follows. In Section II, the ACL

paradigm is presented by describing the optimal control policy

learning problem, outlining the algorithm, and discussing its

most important aspects in more detail. Section III discusses the

generalization of the pheromone update rules and the action

selection rule to deal with continuous state spaces. It also

describes how crisp and fuzzy state space partitioning can

be unified in this way. In Section IV the inverted pendulum

swing-up and stabilization problem is used to compare both

versions of ACL and the effect of the way of partitioning the

state space.

II. ANT COLONY LEARNING FOR OPTIMAL CONTROL

A. The Optimal Policy Learning Problem

Assume that we have a nonlinear dynamic system,

characterized by a continuous-valued state vector x =
[

x1 x2 . . . xn

]T
∈ X ⊆ R

n, with X the state space and

n the order of the system. Also assume that the state can be

controlled by an input u ∈ U that can only take a finite number

of values and that the state can be measured at discrete time

steps, with a sample time Ts with t the discrete time index.

The sampled system is denoted as:

x(t+ 1) = f(x(t),u(t)).

The optimal control problem we consider is to control the

state of the system from any given initial state x(0) = x0 to

a desired goal state x(T ) = xg in at most T steps and in

an optimal way, where optimality is defined by minimizing

a certain cost function. As an example, take the following



quadratic cost function:

J(s) = J(x̃, ũ)

=

T−1
∑

t=0

eT(t+ 1)Qe(t+ 1) + uT(t)Ru(t), (1)

with s the solution found by a given ant, x̃ = x(1), . . . ,x(T )
and ũ = u(0), . . . ,u(T − 1) respectively the sequences of

states and actions in that solution, e(t + 1) = x(t + 1) − xg

the error at time t+1, and Q and R positive definite matrices

of appropriate dimensions. The problem is to find a nonlinear

mapping u(t) = h(x(t)) from the state to the input that, when

applied to the system in x0 results in a sequence of state-

action pairs (u(0),x(1)), (u(1),x(2)), . . ., (u(T − 1),x(T ))
that minimizes this cost function. The function h is called

the control policy and acts as a state feedback controller.

At time t = T the interaction with the system is stopped

and each ant is either in the goal state (x(T ) = xg), or

has timed out. We make the assumption that Q and R are

selected in such a way that xg can be reached in at most T

time steps. The matrices Q and R balance the importance of

speed versus the aggressiveness of the controller. This kind of

cost function is frequently used in optimal control of linear

systems, as the optimal controller minimizing the quadratic

cost can be derived as a closed expression after solving the

corresponding Riccati equation using the Q and R matrices

and the matrices of the linear state space description [10].

In our case, we aim at finding control policies for non-linear

systems, which in general cannot be derived analytically from

the system description and the Q and R matrices. Note that

our method is not limited to the use of quadratic cost functions.

In order to apply ACL , the continuous-valued state must

be represented by a finite number of parameters, which is

called discretization. We define a discrete state q ∈ Q.

The discretization of a continuous-valued state is denoted by

q← discretize(x,Q).

B. Outline of the ACL Algorithm

In ACL , the general outline of the algorithm is as follows.

The set C contains the ants that have not yet reached the goal

state. Initially, all M ants in this set are distributed randomly

over the state space of the system and the pheromone levels

τqu associated with each state-action pair (q,u) are set to an

initial value τqu(0) = τ0. In what is called a trial, all ants make

interaction steps with the system. First, they decide based on

the pheromone levels which action to perform, after which

they apply this action to their own copy of the system. They

store the state-action pair to their personal record, called their

partial solution sp and the pheromone level at that state-action

pair τqu is annealed through the local pheromone update. Each

copy of the system responds to the input by changing its state

x, which is observed by the ants as a change of the discrete

state q, after which they repeat the process by choosing a new

action until they reach the goal state qg, which terminates

the trial. After all ants have terminated their trial, or have

timed out, all partial solutions are added to the multiset Strial.

This set is used in the global pheromone update step, where

all solutions in the set are evaluated over the cost function,

and the state-action pairs contained in the solutions receive a

pheromone update accordingly. Figure 1 illustrates the layout

of the algorithm, with the ants interacting in parallel with their

copies of the system, while reading from and writing to a

common memory of pheromone levels.

System

Ant 1

System

Ant 2

System

Ant M

Pheromone Levels

Fig. 1. Schematic overview of the layout of the algorithm. The ants interact
in parallel with their copies of the system, while reading from and writing to
a common memory of pheromone levels.

The following sections describe the main steps of the

algorithm, i.e., the action selection, the local pheromone

update, and the global pheromone update. The complete

algorithm is given in Algorithm 1. There, the assignment

xc ← random(X ) in Step 6 selects for ant c a random state xc

from the state space X with a uniform probability distribution.

Although the domain X is listed as an input, in fact the input

is any discrete representation of this domain compatible with

the random(X ) function.

From the output of the algorithm, which are the pheromone

values, the control policy can be derived according to (4).

In the following, we explicitly distinguish between the steps

in the inner loop and the steps in the outer loop of the

algorithm. In the inner loop, the iterations are indexed by

t, while in the outer loop, the iterations are indexed by k.

In order to understand the timing of the pheromone updates

unambiguously, the pheromone variables in the inner loop

receive the superscript “local”: τ local
qu

. Before starting the inner

loop, the current pheromone levels are copied to the local

pheromone levels: τ local
qu

(0) = τqu(k) for all state-action pairs.

The first step in the inner loop is the selection of the action.

C. Action Selection

In the action selection step, each ant c determines which

action to apply to the system in a given state qc. Action

selection in ACL is done in a similar way as in the AS [1],

but without the heuristic variables and within the state-action

framework:

uc ∼ pc{u|qc} =

(

τ local
qcu

)α

∑

ℓ∈Uqc

(

τ local
qcℓ

)α , u ∈ Uqc
(2)

where pc{u|qc} is the probability for an ant c to choose the

action u in the state qc and Uqc
is the action set available

to ant c in state qc. This action selection rule is called the



Algorithm 1 The Ant Colony Learning algorithm.

Input: Q,U ,X , f ,M, τ0, ρ, γ, α, T,K

1: k ← 0; τqu ← τ0, ∀(q,u) ∈ Q× U
2: repeat

3: t← 0; Strial ← ∅; C ← {1, 2, . . . ,M}
4: for all ants c ∈ C in parallel do

5: sp,c ← ∅
6: xc(0)← random(X )
7: repeat

8: qc(t)← discretize(xc(t),Q)
9: Action selection:

uc(t) ∼ pc{u|qc(t)} =
τα
qcu

∑

ℓ∈Uqc
τα
qcℓ

,u ∈ Uqc

10: sp,c ← sp,c ∪ {(qc(t),uc(t))}
11: xc(t+ 1)← f(xc(t),uc(t))
12: Local pheromone update:

τqcuc
← (1− γ)τqcuc

+ γτ0
13: if discretize(xc(t+ 1),Q) = qg then

14: C ← C \ {c}
15: end if

16: t← t+ 1
17: until t = T or C = ∅
18: Strial ← Strial ∪ {sp,c}, ∀c ∈ {1, 2, . . . ,M}
19: end for

20: Global pheromone update,

τqu ← (1− ρ)τqu + ρ
∑

s∈Strial:
(q,u)∈s

J−1(s),

∀(q,u) : ∃s ∈ Strial : (q,u) ∈ s

21: k ← k + 1
22: until k = K

Output: τqu, ∀(q,u) ∈ Q× U

random proportional, or Boltzmann action selection rule and

the amount of exploration is implicit in the choice of α and

the pheromone levels.

D. Local Pheromone Update

The pheromones are initialized equally for all vertices and

set to a small positive value τ0. During every trial, all ants

construct their solutions in parallel by interacting with the

system until they either have reached the goal state, or the

trial exceeds a certain pre-specified number of steps T . After

every step, each ant c performs a local pheromone update for

the (qc,uc)-pair just visited, similar to the ACS [1]:

τ local
qcuc

(t+ 1) = (1− γ)τ local
qcuc

(t) + γτ0, (3)

with γ ∈ [0, 1) the local pheromone decay rate. The purpose

of the local pheromone update is to stimulate exploration of

the state-action space, by making it less attractive for an ant

to choose the same action in a certain state as its predecessor.

After the local pheromone update, all ants that have reached

the goal are removed from the set C. When this set is empty,

or when the inner loop has timed-out (i.e., when t = T ), the

algorithm continues with the global pheromone step in the

outer loop.

E. Global Pheromone Update

After completion of the trial (which, let us assume, happens

when t = T ), the pheromone levels are updated according to

the following global pheromone update step:

τqu(k + 1) =(1− ρ)τ local
qu

(T ) + ρ
∑

s∈Strial(k):
(q,u)∈s

J−1(s),

∀(q,u) : ∃s ∈ Strial(k) : (q,u) ∈ s,

with Strial the multiset of all candidate solutions found in

the trial and ρ ∈ (0, 1] the global pheromone decay rate.

This type of update rule is comparable to the AS update rule

[1], with the important difference that only the pheromone

levels are evaporated that are associated with the elements in

the update set of solutions. Note that elitism in the global

pheromone update is not possible, since the best solution

would then always be the solution starting just prior to the

goal state with the action taking the system to the goal

state immediately. Since we aim at learning optimal control

policies from any initial state, we must also include every

solution found in the update. The pheromone deposit is equal

to J−1(s) = J−1(q̃, ũ), the inverse of the cost function

over the sequence of discretized state-action pairs in s, e.g.,

according to (1). Note that minimizing the cost corresponds to

maximizing the pheromone levels corresponding to the optimal

solution. After the global pheromone update, the algorithm

continues for an incremented k at the start of the outer loop

until the maximal number of trials have taken place (i.e., when

k = K).

F. Control Policy

The control policy can be extracted from the pheromone

levels as follows:

u = h(q) = argmax
ℓ∈Uq

(τqℓ), (4)

in which ties are broken randomly. This equation means that

the control policy assigns the action to a given state that

maximizes the associated pheromone levels.

III. GENERALIZATION OF PHEROMONE UPDATE RULES

The basic ACL algorithm, as described before, has the

disadvantage that it requires the state to be discretized. In this

section, we will describe the negative effects of discretization

on the performance of the algorithm. We will introduce a

generalization of the concept of pheromones, such that these

effects can be eliminated.

A. State Space Partitioning

One possibility of applying ACL is to discretize the state

x into a finite number of bins to get the discrete state q.

Depending on the sizes and the number of these bins, portions

of the state space will be represented with the same discrete

state. One can imagine that applying an input to the system

that is in a particular discrete state, results in the system to

move to a next discrete state with some probability. Fig. 2



q1 q2 q3 q4 q5

Fig. 2. A simple scenario to illustrate that non-determinism is introduced to
the discrete state transitions if the underlying system is continuous. In both
cases, the initial state is discretized to the same bin, the same action is applied,
but the resulting discrete state is different.

illustrates this non-determinism induced by the discretization

of a continuous state space system.

With fuzzy approximation, the domain of each state variable

is partitioned using membership functions. We define the

membership functions for the state variables to be triangular-

shaped, such that the membership degrees for any value of the

state on the domain always sum up to one. Only the centers

of the membership functions have to be stored. An example

of such a fuzzy partitioning is given in Fig. 3.

A1 A2 A3 A4 A5

a1 a2 a3 a4 a5 x1

µ

1

0

Fig. 3. Membership functions A1, . . . A5, with centers a1, . . . , a5 on an
infinite domain.

Let Ai denote the membership functions for the state

variable x1, with ai their centers for i = 1, . . . , NA, with NA

the number of membership functions for x1. Similarly for x2,

denote the membership functions by Bi, with bi their centers

for i = 1, . . . , NB , with NB the number of membership

functions for x2. Likewise, the membership functions can be

defined for the other state variables in x, but for the sake of

notation, the discussion in this chapter limits the number to

two, without loss of generality.

At a discrete time step t, the membership degrees of a spe-

cific value of the state to Ai and Bi are denoted by µAi
(x1(t))

and µBi
(x2(t)) respectively. The membership degree of x1 to

Ai can be computed as follows:

µAi
(x1) =



















max
(

0,min
(

1, a2−x1

a2−a1

))

if i = 1

max
(

0,min
(

x1−aNA−1

aNA
−aNA−1

, 1
))

if i = NA

max
(

0,min
(

x1−ai−1

ai−ai−1
,
ai+1−x1

ai+1−ai

))

otherwise

The degree of fulfillment is computed by multiplying the

two membership degrees:

βij(x(t)) = µAi
(x1(t)) · µBj

(x2(t)).

Let the vector of all degrees of fulfillment for a certain state

at time t be denoted by:

β(t) = [β11(x(t)) β12(x(t)) . . . βNANB
(x(t))]T, (5)

which is a vector containing βij ∈ [0, 1] for all combinations

of i and j, and which elements sum up to one. In order to

illustrate what this vector looks like, consider the example

from Figure 4. In this example, a one-dimensional state

x = 3.2 is partitioned with crisp bins and fuzzy membership

functions of which the centers are the same.

A1 A2 A3 A4 A5

0.5 1.5 2.5 3.5 4.5 x

µ

1

0

(a) The crisp representation of x = 3.2 is: β(x) =
[0, 0, 0, 1, 0]T.

A1 A2 A3 A4 A5

0.5 1.5 2.5 3.5 4.5 x

µ

1

0

(b) The fuzzy representation of x = 3.2 is: β(x) =
[0, 0, 0.3, 0.7, 0]T.

Fig. 4. A simple example of a one-dimensional state x that is partitioned
with crisp bins and fuzzy membership functions of which the centers are the
same. This illustrates the meaning of β(x).

In ACL , it is useful to view the control problem in the

context of a graph, in which the states and pheromones are

associated with the vertices and the arcs respectively. The

control problem can then be regarded as finding the optimal

path through the graph. Figure 5 illustrates this.

x(t) x(t + 1) x(t + 2)

u1

u2 u3

Fig. 5. Graphical representation of a fuzzy state transition. In this figure,
at time t, the state is x(t) = 2 and action u1 is chosen, which brings the
system to state x(t+1) = 2.6. In the graph, the new state is represented by
a fuzzy combination of the states 2 and 3.

The operator to partition a state x using the fuzzy member-

ship functions defined by Q will be denoted as:

β(x)← fuzzify(x,Q). (6)

Note that the discretization operator from Algorithm 1 is in

fact a special case of (6), as also illustrated in Figure 4. In

fuzzy ACL , each element of β will be associated to a vertex

in the graph. With fuzzy interpolation, there is no artificially



introduced non-determinism in the decision problem, but the

transition from vertex to vertex now does not directly corre-

spond to a state transition. The pheromones are associated

to the arcs as usual, but the updating needs to take into

account the degree of fulfillment of the associated membership

functions. An ant is not assigned to a certain vertex at a

certain time, but to all vertices at the same time according

to some degree of fulfillment. For this reason, a pheromone

τij is now denoted as τiu with i the index of the vertex (i.e.

the corresponding element of β) and u the action. Similar to

the definition of the vector of all degrees of fulfillment in (5),

the vector of all pheromones for a certain action u at time t

is denoted as:

τu(t) = [τ1u(t) τ2u(t) . . . τNABu(t)]
T,

where NAB = NA ·NB .

With respect to memory requirements, the crisp represen-

tation using β(x) always has exactly one non-zero element,

which is then by definition equal to one. With pair-wise over-

lapping normalized membership functions, like the ones shown

in Figure 3, the fuzzy representation using β(x) has at most

2d non-zero elements, with d the dimension of the state space.

When β(x) is stored as a sparse data structure, this means that

the memory requirements when using fuzzy partitioning scales

exponentially with the number of dimensions. It also means

that the memory requirements are independent of the number

of membership functions used to represent the state space.

Using β and τu, we can reformulate the action selection and

the local and global pheromone update rules from Section II.

B. Action Selection

The action is chosen randomly according to the following

probability distribution:

uc ∼ pc{u|βc} =
NAB
∑

i=1

βc,i

(

τ locali,u (t)
)α

∑

ℓ∈U

(

τ locali,ℓ (t)
)α . (7)

which weights the pheromones according to the degree of

fulfillment of the current state of the ant. Note that when βc

contains exactly one 1 and for the rest only zeros, this would

correspond to the crisp case, reducing (7) to (2).

C. Local Pheromone Update

The local pheromone update from (3) can be modified to

the fuzzy case as follows:

τ local
uc

(t+ 1) = (1− γβc)τ
local
uc

(t) + (γβc)τ0, (8)

where all operations are performed element-wise and 1 =
[

1 1 . . . 1
]T

is a vector of ones of proper size. Note that

when βc contains exactly one 1 and for the rest only zeros,

corresponding to the crisp case, (8) reduces to (3).

It can be derived that after N ants have performed a local

pheromone for a given state-action pair, the pheromone vector

has been updated according to:

τ local
u
←(τ local

u
− τ01)

N
∏

c=1

(1− γβc) + τ01,

where again all operations are performed element-wise. This

result shows that the final value of the pheromone level is

independent of the order in which the local pheromone updates

are performed. This is important when ACL is implemented

in a serial manner, while the ants are actually presumed to

operate in parallel.

D. Global Pheromone Update

In order to derive a fuzzy representation of the global

pheromone update step, we introduce the following indicator

vectors. The elements of indicator vectors can take a real value

from the domain [0, 1]. The most basic indicator vector that

we need is I
u,s

(j)
i

, which, in the case of crisp state space

partitioning has only one element equal to 1, namely the one

for (q,u) = s
(j)
i . Since a solution si = {s

(1)
i , s

(2)
i , . . . , s

(Nsi
)

i }

is an ordered set of solution components s
(j)
i = (qj ,uj),

another indicator vector, Iu,si , can be created by taking the

union of all I
u,s

(j)
i

:

Iu,si =

Nsi
⋃

j=1

I
u,s

(j)
i

.

Let us denote the multiset of solutions as the ordered set

of solutions Strial = {s1, s2, . . . , sNStrial
}, we can then create

Iu,Strial
by taking the union of all Iu,s:

Iu,Strial
=

NStrial
⋃

i=1

Iu,si .

In fact, Iu,si can be regarded as a representation of the

state-action pair (qi,ui). In order to generalize the global

pheromone update step to the fuzzy case, realize that β(x(t))
from (5) can be seen as an indicator vector I

u,s
(j)
i

, if combined

with an action u. For the union operator, we can take a fuzzy

union set operator, such as:

(A ∪B)(x) = max[µA(x), µB(x)],

which for a vector operates on its elements. In this operator,

A and B are membership functions, x a variable and µA(x)
the degree to which x belongs to A. Note that when A maps

x to a crisp domain {0, 1}, the union operator is still valid.

Using these notations, we can write the generalized global

pheromone update rule as:

τu(k + 1) =

{

(1− ρ)τ local
u

(T ) + ρ
∑

s∈Strial

J−1(s)Iu,s

}

· Iu,Strial
+ (1− Iu,Strial

)τ local
u

(T )

=(1− ρIu,Strial
)τ local

u
(T )

+ ρ
∑

s∈Strial

J−1(s)Iu,s,

where all multiplications are performed element-wise. It can

easily be seen that, since the operations involving the solutions

from Strial are all either unions or sums, the global pheromone

update for multiple ants is invariant with respect to the order

of the pheromone deposits by the individual ants.



E. Control Policy

Regarding the terminal condition for the ants, with the fuzzy

implementation, none of the vertices can be identified as being

the terminal vertex. We define a set of membership functions

that is used to express the linguistic fuzzy term of the state

being close to the goal. Specifically, this is satisfied when the

membership degree of the state to the membership function

with its core equal to the goal state is larger than 0.5. If this

has been satisfied, the ant is considered to have terminated its

trial.

In order to obtain the control policy for a given state, this

state must first be represented by a β vector. For each action,

the pheromone level is a linear combination of all elements

in the pheromone vector and β. The policy then assigns the

action that has the highest pheromone level as follows:

u = h(β) = argmax
ℓ∈U

(

NAB
∑

i=1

βiτiℓ

)

.

The following section will apply ACL with both crisp and

fuzzy state space partitioning to the non-linear control problem

of swinging up and stabilizing an inverted pendulum.

IV. PENDULUM SWING-UP AND STABILIZATION

A. Problem Description

The pendulum is modeled as a pole, attached to a pivot

point at which a motor exerts a torque. The objective is to

get the pendulum from a certain initial position to its unstable

upright position, and to keep it stabilized within a certain band

around that unstable position. The torque is, however, limited

such that it is not possible to move the pendulum to its upright

position in one movement. The pendulum problem is a nice

abstraction of more complex robot control problems, like the

stabilization of a walking humanoid robot. The behavior can

be easily analyzed, while the learning problem is challenging.

The non-linear state equations of the pendulum are given by:

θ̇(t) = ω(t)

Jω̇(t) = Kmu(t)−mgL sin(θ(t))−Dω(t),

with θ(t) = x1(t) and ω(t) = x2(t) the state variables,

representing the angle and angular velocity of the pole in

continuous time respectively. Furthermore, u(t) is the applied

torque and the other parameters with their values as used in

the simulations are listed in Table I.

TABLE I
THE PARAMETERS OF THE PENDULUM MODEL AND THEIR VALUES.

Symbol Value Unit Meaning

J 0.005 kg ·m2 pendulum inertia
Km 0.1 − motor gain

D 0.01 kg ·s−1 damping
m 0.1 kg mass
L 0.1 m pendulum length

g 9.81 m · s−2 gravitational acceleration

B. Set-up of the Experiment

The system is sampled with a sampling time Ts = 0.1s
and the states are discretized using bins or fuzzy membership

functions, the centers of which define the discrete state space:

Qθ =

{

0,
2π

Nθ

, . . . ,
2π(Nθ − 1)

Nθ

}

Qω =

{

−ωmax,−ωmax +
2ωmax

Nω − 1
, . . . , ωmax,

}

,

where Nθ = 40 and Nω = 41 are the number of discretization

bins for θ and ω respectively and ωmax is the maximum

(absolute) angular velocity expected to occur. The angle will

be observed as θ(mod2π).
We will compare the performance of crisp and fuzzy ACL

. The number of ants is M = 250. The global and local

pheromone decay rates are ρ = γ = 0.1. Regarding the action

selection, we choose α = 3. The initial pheromone level is

τ0 = 0.0001. A trial is stopped after T = 300 steps, and the

algorithm is stopped after K = 100 trials. An ant reaches the

goal if its state is |π − θ| ≤ 0.1 and |ω| ≤ 0.1. The quadratic

cost function from (1) is used to measure the performance:

J(s) = J(x̃, ũ) =

T−1
∑

t=0

eT(t+ 1)Qe(t+ 1) +Ru2(t),

Q =

[

1 0
0 0.1

]

, R = 0.05.

The goal state is xg =
[

π 0
]T

. The action set contains

3 actions, namely U = {−0.8, 0, 0.8}[Nm], which will be

referred to as full negative torque, zero torque, and full positive

torque respectively. The experiments are carried out 30 times.

The plots will show the average performance and the min-max

area of worst-case and best-case performance.

C. Results

After each trial, the system is simulated using the current

control policy and a set of initial states. The resulting state

trajectories are evaluated over the cost function and the average

of these costs is recorded. This is what we call the cost of the

policy. Fig. 6 shows the evolution of the cost of the policy

over the trials.
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(a) Crisp partitioning.
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(b) Fuzzy partitioning.

Fig. 6. The cost of the control policy as a function of the number of trials
passed since the start of the experiment. The black line in each plot is the
average cost over 30 experiments and the gray area represents the range of
costs for these experiments.
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(a) Crisp partitioning.
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(b) Fuzzy partitioning.

Fig. 7. The inverted pendulum controlled from an initial state x0 = [0 0]T to the goal state xg = [π 0]T by the resulting policy derived in these
experiments with crisp and fuzzy state space partitioning respectively. The top two graphs show the trajectories of the two states, while the third graph shows
the input, and the bottom graph shows the cost.

There is a clear difference between the results of ACL with

crisp partitioning and ACL with fuzzy partitioning. With fuzzy

partition, the cost of the policy decreases rapidly and remains

at approximately the same value for about the remainder of

the trials. There is a little bump near the end of the algorithm,

indicating that it remains possible for the policy to change,

which is due to exploration. It is clearly observed that the

results for the 30 experiments are very similar, indicating a

very good repeatability of the experiment and a predictable

behavior of the algorithm.

With crisp partitioning, the cost of the policy decreases

slower, with much more variation over the 30 experiments. The

average of the cost at the end of the algorithm is also a little

higher than that of ACL with fuzzy partitioning. This means

that ACL with crisp partitioning requires more trials, is less

predictable, and results in a less optimal solution compared to

ACL with fuzzy partitioning.

In Fig. 7, the best policy found at the end of the experiments

is used to control the pendulum from the downright position

to the upright position. It can be seen that the policy resulting

from ACL with fuzzy partitioning controls the pendulum more

than two times faster than the policy resulting from ACL with

crisp partitioning. There is also less chattering of the pendulum

near the goal. This is because the control policy with fuzzy

partitioning is a continuous mapping from the state space to

the action space, whereas crisp partitioning results in a discrete

mapping.

V. CONCLUSIONS AND RECOMMENDATIONS

In this paper, we have discussed the application of ACL in

continuous state spaces. The purpose of ACL is to learn control

policies for systems with non-linear dynamics by interacting

with the system. Based on the same principles as ACO ,

the ants decide on their actions using pheromone levels. We

have presented a generalization of the concept of pheromones,

enabling it to be applied in continuous domains.

We have discussed two ways of partitioning the continuous

state space. With crisp partitioning, each partitioning bin

represents a range of continuous states, while with fuzzy

partitioning, the continuity of the state space is preserved by

using fuzzy membership functions. The implication of this

difference is that crisp partitioning introduces discretization

noise in the state transitions observed by the ants, while with

fuzzy partitioning this is not the case.

Both ACL algorithms have been applied to the control

problem of swinging up and stabilizing an inverted pendulum.

With fuzzy partitioning, during the algorithm, the cost of

the policy decreased faster, in a more predictable way, and

to a lower value compared to ACL with crisp partitioning.

The reason for this difference is that the discretization noise

makes it much less predictable to what state trajectories a

particular policy leads. Fuzzy partitioning does not have this

drawback and enables ACL to learn a near optimal control

policy in under 10 trials, which is really fast. In practice,

such fast learning is achieved when the ants are implemented

in parallel. We recommend future research to focus on the

parallel implementation of ACL .

ACKNOWLEDGMENT

This research is financially supported by Senter, Ministry

of Economic Affairs of The Netherlands within the BSIK-

ICIS project “Self-Organizing Moving Agents” (grant no.

BSIK03024)

REFERENCES
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