
Delft University of Technology
Delft Center for Systems and Control

Technical report 10-020

Predictive route control for automated
baggage handling systems using

mixed-integer linear programming∗

A.N. Tarău, B. De Schutter, and J. Hellendoorn

If you want to cite this report, please use the following reference instead:
A.N. Tarău, B. De Schutter, and J. Hellendoorn, “Predictive route control for auto-
mated baggage handling systems using mixed-integer linear programming,” Trans-
portation Research Part C, vol. 19, no. 3, pp. 424–439, June 2011. doi:10.1016/j.trc.
2010.06.004

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/10_020.html

https://doi.org/10.1016/j.trc.2010.06.004
https://doi.org/10.1016/j.trc.2010.06.004
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/10_020.html

Predictive route control for automated

baggage handling systems using

mixed-integer linear programming

A.N. Tarăua, B. De Schuttera, J. Hellendoorna

aDelft Center for Systems and Control, Delft University of Technology,

Mekelweg 2, 2628 CD Delft, The Netherlands {a.n.tarau,b.deschutter,j.hellendoorn}@tudelft.nl

Abstract

State-of-the-art baggage handling systems transport luggage in an automated way using
destination coded vehicles (DCVs). These vehicles transport the bags at high speeds on
a network of tracks. In this paper we consider the problem of controlling the route of
each DCV in the system. In general this results in a nonlinear, nonconvex, mixed-integer
optimization problem, usually very expensive in terms of computational effort. Therefore,
we present an alternative approach for reducing the complexity of the computations by
simplifying and approximating the nonlinear optimization problem by a mixed-integer
linear programming (MILP) problem. The advantage is that for MILP problems solvers
are available that allow us to efficiently compute the global optimal solution. The solution
of the MILP problem can then be used as a good initial starting point for the original
nonlinear optimization problem. We use model predictive control (MPC) for solving the
route choice problem. To assess the performance of the proposed (nonlinear and MILP)
formulations of the MPC optimization problem, we consider a benchmark case study, the
results being compared for several scenarios.

Keywords: Baggage handling systems, route choice control, mixed-integer linear
programming.

Preprint submitted to Elsevier

1. Introduction

Modern baggage handling systems in airports transport luggage at high speeds using
destination coded vehicles (DCVs) that transport the bags in an automated way on a
network of tracks.

The DCV-based baggage handling system has two levels of control. The low-level con-
trollers ensure the coordination and synchronization when loading a bag onto a DCV, in
order to avoid damaging the bags or blocking the system, and when unloading it to the
corresponding end point. Low-level controllers also compute the velocity of the DCVs such
that collisions are avoided. These low-level controllers are typically Proportional Integral
Derivative (PID) controllers and logic controllers that can stop the DCV when necessary.
Higher-level controllers compute the route assignment for each bag in the network. Cur-
rently, the DCVs are routed through the system using routing schemes based on preferred
routes. These routing schemes can be adapted to respond to the occurrence of predefined
events. However, as argued in de Neufville (1994), the patterns of loads on the system are
highly variable, depending on e.g. the season, time of the day, type of aircraft at each gate,
number of passengers for each flight. Therefore, we do not consider predefined preferred
routes. Instead we develop advanced control methods to determine the optimal routing in
case of dynamic demand.

For applications such as automated guided vehicles route planning or traffic route guid-
ance, the route assignment problem has been addressed in e.g. Gang et al. (1996); Kaufman
et al. (1998). The optimal AGV or traffic guidance routes are the shortest-path or the
shortest-time routes. Since we want the bags to arrive at their end point within given time
windows, the problem of routing DCVs cannot be solved using the methods for routing of
AGVs or traffic flows. The problem of routing the DCVs of a baggage handling system
is presented in Fay (2005) and Hallenborg and Demazeau (2006). The solution proposed
in Fay (2005) uses an analogy to data transmission through internet, but without pre-
senting any experimental results, while in Hallenborg and Demazeau (2006) a multi-agent
approach is developed. However, the later reference is not focused on control approaches
for computing the optimal route of DCVs, but on designing a multi-agent hierarchy for
baggage handling systems and analyzing the communication requirements. The goal of
our work is to develop and compare efficient control approaches for route choice control of
each individual DCV.

Theoretically, the maximum performance of such a DCV-based baggage handling sys-
tem would be obtained if one computes the optimal routes using optimal control (Lewis,
1986). However, as shown in Tarău et al. (2008), this control method becomes intractable
in practice due to the heavy computation burden. Therefore, in order to make a trade-off
between computational effort and optimality, in Tarău et al. (2009), we have developed
centralized and decentralized model predictive control (MPC). MPC is an on-line model-
based predictive control design method, see e.g. Maciejowski (2002), that uses a receding
horizon principle. As the results confirmed, centralized MPC requires high computation
time to determine a solution. The use of decentralized control lowers the computation
time, but this comes at the cost of suboptimality.

2

In this paper we investigate whether the computational effort required for computing
the route of each DCV by using centralized MPC can be lowered by using mixed-integer
linear programming (MILP). The large computation time obtained in previous work comes
from solving nonlinear, nonconvex, mixed-integer optimization problems. Note that such
problems may also have multiple local minima and are NP-hard, and therefore, difficult to
solve. So, the main contribution of this paper is that we rewrite the route choice problem as
an MILP problem, for which efficient solvers are available. The solution of this MILP will
then be used as an initial starting point for the original nonlinear optimization problem.

The paper is organized as follows. Section 2 briefly introduces the concepts of MPC
and MILP that will be used later on in solving the route choice problem. In Section 2
we also briefly recapitulate an event-driven route choice model that we have developed
in Tarău et al. (2008). Afterwards, in Section 3 we simplify the model of Section 2 by
considering streams of bags instead of individual bags, and we show that this model can
be written in the mixed-integer linear form. In Section 4, we propose two formulations
for the MPC optimization problem. The first formulation corresponds to the nonlinear
route choice problem, while the second one corresponds to the MILP route choice problem.
For a simple case study, we compare of the proposed formulations. The analysis of the
simulation results is elaborated in Section 5. The results indicate that computing the DCV
routing using the original nonlinear formulation for the MPC optimization problem gives
better performance than using the MILP formulation, but at the cost of significantly higher
computational efforts. To reduce the computation time while obtaining good results, we
solve the original MPC optimization problem, but using at each step the local solution
of the corresponding MILP formulation as initial guess. Finally, Section 6 are drawn and
directions of future research are presented.

2. Background

2.1. Model predictive control

In this section we briefly introduce the basic MPC concepts, which will later on be used
in determining the DCV routes.

MPC is an on-line model-based control design method, see e.g. Maciejowski (2002),
that uses a receding horizon principle. As illustrated in Figure 1, in the basic MPC
approach, given an horizon N , at step k ≥ 0, where k is integer-valued, corresponding to
the time instant tk = kτs with τs the sampling time, the future control sequence u(k), u(k+
1), . . . , u(k + N − 1) is computed by solving a discrete-time optimization problem over
the period [tk, tk + Nτs) so that a performance index defined over the considered period
[tk, tk + Nτs) is optimized subject to the operational constraints. After computing the
optimal control sequence, only the first control sample is implemented, and subsequently
the horizon is shifted. Next, the new state of the system is measured or estimated, and a
new optimization problem at time tk+1 is solved using this new information. In this way,
a feedback mechanism is introduced.

3

past future

horizon

kkk ++ N1

u

u(k)

u(k + 1) u(k +N − 1)

Figure 1: Basic MPC.

2.2. Mixed-integer linear programming

Mixed-integer linear programming (MILP) problems are optimization problems with a
linear objective function, subject to linear equality and inequality constraints as presented
below and where some variables are constrained to be integers. The advantage is that
for MILP optimization problems efficient solvers are available (Fletcher and Leyffer, 1998)
that allow us to efficiently compute the global optimal solution.

The general formulation for a mixed-integer linear programming problem is the follow-
ing:

minx c
Tx

subject to
Aeqx = beq

Ax ≤ b

xlow ≤ x ≤ xup

where c, x, xlow, xup, beq, and b are vectors of the same length, with xlow the lower bound of
x and xup its upper bound, and where Aeq and A are matrices. The MILP solvers compute
solutions x for the problem above, where elements of x are restricted to integer values.

In this section we present some properties that will be used later on in transforming
the original nonlinear route choice model of a DCV-based baggage handling system into
an MILP model.

These properties are in fact equivalences, see e.g. Bemporad and Morari (1999), where
f is a function defined on a bounded set X with upper and lower bounds M and m for the
function values, δ is a binary variable, y is a real-valued scalar variable, and ǫ is a small
tolerance (typically the machine precision):

4

bags

on

conveyor

belts
planes

onto

loaded

to be

bags

conveyors end points

network

of tracks

L1

L2

LL

U1

U2

UU

Figure 2: Baggage handling system using DCVs.

P1: [f(x) 6 0] ⇐⇒ [δ = 1] is true if and only if

{

f(x) 6 M(1− δ)

f(x) > ǫ+ (m− ǫ)δ ,

P2: y = δf(x) is equivalent to

y 6 Mδ

y > mδ

y 6 f(x)−m(1− δ)

y > f(x)−M(1− δ) ,

The tolerance ǫ is needed to transform a constraint of the form y > 0 into y ≥ 0, since
the solvers available for MILP problems allow only nonstrict inequalities.

2.3. System description and original model

In this section we briefly recapitulate the event-driven route choice model of a baggage
handling system that we have developed in Tarău et al. (2008).

Consider the general DCV-based baggage handling system with L loading stations and
U unloading stations sketched in Figure 2. The DCV-based baggage handling system
operates as follows: given a demand of bags and the network of tracks, the route of each
DCV has to be computed subject to operational and safety constraints such that the
performance of the system is optimized.

In this paper we focus on optimally routing the DCVs through the network. In particu-
lar we only consider routing the DCVs from the loading stations to the unloading stations.
The problem of managing the empty carts will be considered in future work.

The model of the baggage handling system we have developed in Tarău et al. (2008)
consists of a continuous part describing the movement of the individual vehicles transport-
ing the bags through the network, and of the following discrete events:

• loading a new bag into the system,

• unloading a bag that arrives at its end point,

5

• crossing a junction,

• updating the position of the switch-in at a junction,

• updating the position of a switch-out at a junction,

• updating the velocity of a DCV.

The state of the system consists of the positions of the DCVs in the network and the
positions of each switch of the network. According to the discrete-event model that we
propose, as long as there are bags to be handled, the system evolves as follows: we shift
the current time to the next event time, take the appropriate action, and update the state
of the system.

The model of the event-based system described above can be written as

t =Mroute ctrl
(

T ,x(t0),U
)

(1)

• t is a vector consisting of the time instants when the bags are loaded onto a DCV or
unloaded at their end point,

• T is a tuple that consists of the time instants when the bags arrive at loading stations,

• x(t0) is the initial state of the system with t0 the initial simulation time,

• U is the switch control input tuple for the entire network.

The operational constraints derived from the mechanical and design limitations of the
system are the following:

• the speed of each DCV is bounded between 0 and vmax,

• a switch at a junction has to wait at least τ switch time units between two consecutive
switches in order to avoid the quick and repeated back and forth movements of the
switch which may lead to mechanical damage. We assume τ switch to be an integer
multiple of τs where τs is the sampling time.

The system of inequalities describing the operational constraints of a DCV-based bag-
gage handling system can be written as follows:

C(t) ≤ 0.

2.4. Network

We represent the network of tracks that the DCVs use to transport the luggage as a
directed graph. Then the nodes via which the DCVs enter the network are called loading
stations, the nodes via which the DCVs unload the transported bags are called unloading
stations, while all other nodes in the network are called junctions. The section of track
between two nodes is called link. Note that without loss of generality we can assume that
each junction has maximum 2 incoming links and maximum 2 outgoing links, both indexed
by l ∈ {0, 1} as sketched in Figure 3. This assumption corresponds to current practice
in state-of-the-art baggage handling systems. Each junction with 2 incoming links has a

6

switch going into the junction (called switch-in hereafter). Each junction with 2 outgoing
links has a switch going out of the junction (called switch-out hereafter). Note that a
junction can have only switch-in, only switch-out, or both switch-in and switch-out.

3. Simplified route choice models

In this section we present simplified route choice models that can be written as MILP
models. We consider 3 cases with a gradually increasing complexity where the DCV-based
baggage handling system has only one unloading station, more unloading stations close
together, and more unloading stations far apart as illustrated in Figure 4. We consider these
cases since they grow in complexity and, for each of these cases, additional assumptions
have to be made in order to write an MILP model equivalent to the simplified route choice
model.

3.1. Common assumptions for all 3 cases

In order to transform the route choice problem into an MILP problem, we first simplify
it by assuming the following:

• The DCVs run with maximum speed along the track segment and, if necessary, they
wait at the end of the link in a vertical queue. In principle, the queue lengths should
be integers as their unit is “number of DCVs”, but we will approximate them using
reals. Also, we assume that the links are sufficiently long so that congestion is not
propagated towards the upstream links, i.e. we assume there is no spillback.

• The dynamic demand Di of loading station Li, i ∈ {1, . . . , L}, where L is the number
of loading stations, is approximated with a piecewise constant demand. The piecewise
constant demand Di has level changes occurring only at integer multiples of τs. This
is necessary in order to easily combine the time when a bag reaches a queue at a
junction with the time when the demand changes. So, in the time interval [tk, tk+1),
with tk = kτs, the demand at loading station Li is Di(k).

• For each link a free-flow travel time is assigned. This free-flow travel time represents
the time period that a DCV requires to travel on a link in case of no congestion,
using, hence, maximum speed. The free-flow travel time of a link is assumed to be
always a multiple of τs.

0

0 0

0 1

1

Sa
Sb

Figure 3: Incoming and outgoing links at a junction.

7

L1L1L1

LLLL
LL

U1U1

U1

U2
U2

UU UU

network of network of network of
trackstrackstracks

case 1 case 2 case 3

Figure 4: Cases with a gradually increasing complexity: network with one unloading station, more un-
loading stations close together, more unloading station far apart.

Sb

Sd

Sc

τd,0
ℓd,0

ℓd,1

τd,1

0

0

0

1

1

1

Figure 5: Network elements.

3.2. Case 1: one unloading station

In this section we consider the case of a DCV-based baggage handling system with only
one unloading station.

3.2.1. Model

The control time step for each junction in the network is τs. So, at each step k ≥ 0, for
each junction that has two incoming links, we compute a control action that determines
the position of the switch into a junction for the time period [tk, tk+1). Let Sa be such a
junction as sketched in Figure 3. Then the control action that we determine is denoted by
usw in
a (k). If we consider the position of the switch into the junction of Figure 3 to be at

step k then usw in
a (k) = 1. At each step k, we also compute, for the time period [tk, tk+1),

a control action that determines the position of the switch out of a junction that has two
outgoing links. Let Sb be such a junction. Then the control action that we determine is
denoted by usw out

b (k). For Figure 3, we have usw out
b (k) = 1.

In order to illustrate the derivation of the route choice model let us now consider the
most complex cell a network can contain, as depicted in Figure 5 where junction Sd has
two neighboring junctions Sb and Sc connected to it via its incoming links.

Next we present how the evolution of the queue length at the end of each incoming link
of Sd is determined. At step k ≥ 0, usw out

b (k) and usw out
c (k) are computed for junctions Sb

and Sc, and usw in
d (k) for junction Sd. Let ℓj,l denote the link between a junction Sj and its

8

neighbor connected via the incoming link l of Sj as illustrated in Figure 5. Also, let qj,l(k)
denote the length of the queue at the end of link ℓj,l at time instant tk. Recall that each
link in the network has been assigned a given free-flow travel time. Then, let τd,0 denote
the free-flow travel time of link ℓd,0 and τd,1 the free-flow travel time of link ℓd,1. Hence, the

control signals usw out
b (k) and usw out

c (k) influence qd,0 and qd,1 after
τd,0

τs
and respectively

τd,1

τs
time steps1.

The evolution of the length of the queue at the end of link ℓd,l, is given by:

qd,l(k + 1) = max

(

0, qd,l(k) +
(

Id,l
(

k −
τd,l

τs

)

−Omax
d,l (k)

)

τs

)

(2)

where

• qd,l(k + 1) is the length of the queue at the end of link ℓd,l at time instant tk+1.

• Id,l(k) represents the inflow2 of link ℓd,l during the period [tk, tk+1). By definition
Id,l(k) = 0 for k < 0.

• Omax
d,l (k) is the maximum number of DCVs per time unit that cross Sd during [tk, tk+1)

via link ℓd,l.

The maximum number of DCVs per time unit that wait in the queue or arrive at the
end of link ℓd,l, and that cross Sd during [tk, tk+1) is defined as follows:

Omax
d,0 (k) = (1− usw in

d (k))Omax (3)

Omax
d,1 (k) = usw in

d (k)Omax (4)

where Omax is the maximum outflow3 of a junction. Note that we have used the operator
max in (2) since the length of the queue is always larger than or equal to 0.

The inflows Id,0(k) and Id,1(k) are defined as:

Id,0(k) = usw out
b (k)Ob(k) (5)

Id,1(k) = (1− usw out
c (k))Oc(k) (6)

with Ob(k) and Oc(k) respectively the outflow of junction Sb and Sc during the time interval
[tk, tk+1). If k < 0, the outflows Ob(k) and Oc(k) are equal to 0 by definition. For k ≥ 0

1Recall that τj,l is an integer multiple of τs.
2The inflow of a link equals the number of DCVs that entered that link per time unit.
3The outflow of a junction is defined as the number of DCVs that cross that junction per time unit.

9

the outflow Oj(k) of a junction Sj with two incoming links is defined as:

Oj(k) = min

(

Omax,
(

1− usw in
j (k)

)

(qj,0(k)

τs
+ Ij,0

(

k −
τj,0

τs

)

)

+

usw in
j (k)

(qj,1(k)

τs
+ Ij,1

(

k −
τj,1

τs

)

)

)

(7)

If a junction Sj has only one incoming link (l = 0), then for k ≥ 0 the outflow Oj(k) is
defined as:

Oj(k) = min

(

Omax,
(qj,0(k)

τs
+ Ij,0

(

k −
τj,0

τs

)

)

)

(8)

Let Sexit denote the junction connected to the unloading station. Then let Oexit(k) denote
the outflow at Sexit during the period [tk, tk+1). The outflow Oexit(k) can be deducted as
previously explained. Furthermore, let U(k) denote the outflow at the unloading station
during the time interval [tk, tk+1). Then if Sexit has only one outgoing link, U(k) = Oexit

(

k−
τ
τs

)

where τ is the free-flow travel time between Sexit(k) and the unloading station. If Sexit

has 2 outgoing links we assume that the unloading station is link 0 out of Sexit. Then

U(k) =
(

1 − usw out
exit

(

k − τ
τs

)

)

Oexit
(

k − τ
τs

)

where usw out
exit (k) expresses the position of the

switch out of Sexit during the time interval [tk, tk+1).

3.2.2. MILP model

In this section we use the MILP properties presented in Section 2.2 in order to obtain
an MILP model for the route choice model given by equations (2)-(7).

We start by transforming (7) using Property P1. Let the real-valued variable f out
j (k)

be equal to

f out
j (k) =

(

1−usw in
j (k)

)

(qj,0(k)

τs
+ Ij,0

(

k−
τj,0

τs

)

)

+usw in
j (k)

(qj,1(k)

τs
+ Ij,1

(

k−
τj,1

τs

)

)

. (9)

So, we introduce the binary variable δoutd,1 (k) which equals 1 if and only if Omax ≤ f out
j (k).

Then we rewrite (7) as follows:

Oj(k) = δoutj (k)Omax + (1− δoutj (k))f out
j (k) (10)

where the condition δoutj = 1 if and only if Omax−f out
j (k) ≤ 0 is equivalent to (cf. Property

P1):
{

Omax − f out
j (k) ≤M(1− δoutj (k))

Omax − f out
j (k) ≥ ǫ+ (m− ǫ)δoutj (k)

with M = Omax and m = − 1
τs
qmax where qmax is the maximum possible length of the queue

at the end of a link.

10

But (10) is not yet linear, so, we use Property P2 and introduce the real-valued scalar
variables youtj (k) such that:

youtj (k) = δoutj (k)f out
j (k)

or equivalently:

youtj (k) 6 Mδoutj (k)

youtj (k) > 0

youtj (k) 6 f out
j (k)

youtj (k) > f out
j (k)−M(1− δoutj (k)) .

Hence, one obtains:
Oj(k) = Omaxδoutj (k) + f out

j (k)− youtj (k)

which is linear. Note that (9) can be written as a linear expression by introducing the
additional variables yinq,j,l(k) = usw in

j (k)qj,l(k) and yinI,j,l(k) = usw in
j (k)Ij,l

(

k −
τj,l
τs

)

and the
corresponding set of linear inequalities of Property P2 for f(x) = qj,l(k) with M = qmax,
and m = 0, and f(x) = Ij,l

(

k −
τj,l
τs

)

with M = Omax, and m = 0 respectively.
Similarly we write the MILP equivalent for (8). Finally, we transform (2) into its

MILP equivalent. Let the real-valued variable fd,l(k) be equal to qd,l(k) +
(

Id,l
(

k −
τd,l
τs

)

−

Omax
d,l (k)

)

τs. Additionally we also introduce the binary variable δd,l(k) which equals 1 if

and only if fd,l(k) ≤ 0 and we rewrite (2) as:

qd,l(k + 1) =
(

1− δd,l(k)
)

fd,l(k)) (11)

together with the set of linear inequalities of Property P1 with M = qmax + Omaxτs and
m = −Omaxτs.

However (11) is not yet linear. Therefore, we introduce the variable yd,l(k) = δd,l(k)fd,l(k)
and the set of linear inequalities of Property P2 for f(x) = fd,l(k), withM andm as defined
above, and we obtain:

qd,l(k + 1) = fd,l(k)− yd,l(k)

which is linear.
Next we collect all the variables for the route choice model (i.e. inputs, control variables,

and extra variables introduced by the MILP transformations) in vector v(k) and all the
partial queue lengths qj,l(k) in vector q(k + 1). Then the expressions derived above allow
us to express q(k + 1) as an affine function of v(k):

q(k + 1) = Λv(k) + γγγ

with a properly defined matrix Λ and vector γγγ, where v(k) satisfies a system of linear

11

equations and inequalities

Cv(k) = e

Fv(k) ≤ g,

which corresponds to the linear equations and constraints introduced above by the MILP
transformations.

3.3. Case 2: more unloading stations close together

In this section we determine the route choice model for a network of tracks with more
unloading stations close together as illustrated in Figure 6 where, without loss of generality,
we consider that a junction can directly serve all unloading stations (this can be done by
lumping together a sequence of junctions that are located closely together and connected
to unloading stations). Let Sexit denote this junction. Also, let U denote the number of
unloading stations in the system. Then the free-flow travel time from Sexit to unloading
station Uυ with υ ∈ {1, . . . , U}, is expressed by an integer τυ.

3.3.1. Assumptions

In this case we assume that out of the total demand of bags, a certain fraction ρυ of

bags have to be transported to unloading station Uυ for υ = 1, . . . , U such that
U
∑

υ=1

ρυ = 1.

At Sexit the stream of bags is split into m substreams according to the fractions ρυ.

3.3.2. Model

Note that one can virtually expand junction Sexit to two junctions Sprev exit and Sexit

connected via a link of length 0. Now Sexit has only one incoming link. Then the flow
model for all junctions in the network except Sexit can be derived as in the previous case.
Next we will determine the flow model corresponding to junction Sexit.

The stream of DCVs waiting at the end of link going into Sexit can be now divided into
substreams (each substream corresponding to an unloading station). Let qexitυ (k) denote
the queue length of the substream corresponding to unloading station Uυ for υ = 1, . . . , U

Sexit

U1 Uυ UU

τ1 τυ
τU

Figure 6: Unloading stations close together.

12

at time instant tk. The evolution of qexitυ (k) is then defined as follows:

qexitυ (k + 1) =qexitυ (k) +
(

ρυO
prev exit(k)− Uυ(k +

τυ

τs
)
)

τs

with Oprev exit(k) the outflow of Sprev exit and Uυ(k) the outflow of unloading station Uυ

during [tk, tk+1).
We consider two patterns that the low-level switch-out controller could follow:

Pattern 1: During the time interval [tk, tk+1) the low-level switch-out controller at Sexit

serves only one unloading station. To determine which unloading station to
serve, we introduce the integer control variable uexit(k) that indicates the index
of the unloading station to be served during the time interval [tk, tk+1).

Pattern 2: During the time interval [tk, tk+1) all unloading stations are served (we consider
fast switching). Then each partial queue is emptied according to the fractions
ρυ for υ = 1, . . . , U .

Recall that the DCVs that cross Sexit traveling towards unloading station Uυ reach the
end point with a delay of τυ time units. Then the outflow of unloading station Uυ with
υ = 1, . . . , U is given by:

Pattern 1:

Uυ(k) =

min
(qexitυ (k− τυ

τs
)

τs
+ ρυO

prev exit(k − τυ
τs
), Omax

)

if υ = uexit(k − τυ
τs
),

0 otherwise.
(12)

Pattern 2:

Uυ(k) = min
(qexitυ (k − τυ

τs
)

τs
+ ρυO

prev exit(k −
τυ

τs
), Omax

)

.

3.3.3. MILP model

The MILP equivalents for the additional equations describing the outflow of an un-
loading station except (12) can be derived using a reasoning similar to that in Section
3.2.2.

In this section we briefly explain how we write the MILP equivalents for (12). One can
introduce U binary variables δexit1 (k), . . . , δexitU (k) where δexitυ (k) = 1 means that unloading
station Uυ is served during the time interval [tk, tk+1). Additionally, we introduce the
constraint that:

U
∑

υ=1

δexitυ (k) = 1

which means that there can only be one unloading station served at the time. Then, for
υ = 1, . . . , U , we have:

Uυ(k) = δexitυ (k −
τυ

τs
)min

(qexitυ (k − τυ
τs
)

τs
+ ρυO

prev exit
υ (k −

τυ

τs
), Omax

)

13

Di,1(t), Di,2(t)

t
τs

Figure 7: Demand profile at loading station Li for a network with 2 unloading stations. The continuous
line corresponds to unloading station U1 and the dashed line demand corresponds to U2.

3.4. Case 3: more unloading stations far apart

In this section we analyze the case where the track network has more unloading stations
far apart.

3.4.1. Assumptions

For this case we define partial demand patterns at loading stations. So, each loading
station has a demand pattern corresponding to each end point. As example we illustrate
in Figure 7 the dynamic demand pattern at loading station Li, with i ∈ {1, 2, . . . , L}
for a network with 2 unloading stations. In this figure the piecewise constant demand
represented as a continuous line corresponds to unloading station U1, being denoted by
Di,1(t), and the dashed piecewise constant demand corresponds to U2, denoted by Di,2(t).
Then for a network with U unloading stations, the total demand of Li during the time
interval [tk, tk+1) is given by Di(k) =

∑U

υ=1 Di,υ(k).
Next, since we deal with partial demands at each loading station, we assume that the

DCVs wait before the junctions in partial vertical queues according to the unloading station
towards which the DCVs travel.

3.4.2. Model

The control time step for each junction in the network is τs. So, at each step k ≥ 0,
for each junction Sa with 2 incoming links, we compute usw in

a (k), while the switch out of
a junction is controlled by a low-level controller as will be presented next.

We consider two patterns that the low-level switch-out controller at Sj with j ∈
{1, . . . , S} could follow:

Pattern 1: During the time interval [tk, tk+1) the low-level switch-out controller serves only
one outgoing link of Sj. To determine which outgoing link to serve, we compute
usw out
j (k).

Pattern 2: During the time interval [tk, tk+1) the low-level controller serves both outgoing
links.

14

According to these patterns, we derive the route choice model by referring again to the
network cell illustrated in Figure 5. Without loss of generality we assume that for any
junction Sz directly connected to Uυ, the unloading station is link 0 out of Sz.

Pattern 1: We consider partial queues at the end of each link and corresponding to each
unloading station Uυ with υ ∈ {1, . . . , U}. Then the evolution of the length of
the partial queue qd,l,υ is given by:

qd,l,υ(k + 1) = qd,l,υ(k) +
(

Id,l,υ(k −
τd,l

τs
)−Od,l,υ(k)

)

τs

where Id,l,υ(k) is the partial inflow at link ℓd,l and Od,l,υ(k) is the partial outflow
of link ℓd,l during the time interval [tk, tk+1) corresponding to Uυ.

The inflow Id,0,υ(k) is defined as Id,0,υ(k) = usw out
b (k)

(

(1− usw in
b (k))Ob,0,υ(k) +

usw in
b (k)Ob,1,υ(k)

)

if Sb has 2 incoming links Id,0,υ(k) = (1−usw out
b (k))Ob,0,υ(k)

if Sb has only one incoming link. Similarly, one can define Id,1,υ(k).

The partial outflows Oj,l,υ(k) at the end of link ℓj,l (l = usw in
j (k)) are determined

such that we have maximal exhaustion of the available capacity as described in
Algorithm 1 for Oj,l,υ = Oalg

υ and qj,l,υ = qalgυ . Note that if junction Sj has 2
incoming links, then Oj,1−l,υ(k) = 0.

The outflow of unloading station Uυ during the period [tk, tk+1) is given by:

Uυ(k) = min

(

(

1− usw out
z (k −

τυ

τs
)
)

Oz,0,υ(k −
τυ

τs
), Omax

)

.

Pattern 2: We consider partial queues at each junction Sj with j ∈ {1, . . . , S} correspond-
ing to each unloading station Uυ. Then we determine the partial outflows
Oj,υ(k) for a junction Sj such that

∑U

υ=1 Oj,υ(k) ≤ Omax. We consider again
a fair distribution over all flows as described in Algorithm 1 for Oj,υ = Oalg

υ

and qj,υ = qalgυ .

Based on historical data, for each junction Sj we can determine U fixed turning
rates ηj,υ with υ = 1, . . . , U . These fixed turning rates represent the fraction of
the partial queue qj,υ(k) that will be sent to link 0 out of Sj during [tk, tk+1).

Then τs
∑U

υ=1 ηj,υOj,υ(k) DCVs will be sent towards the outgoing link 0 of Sj,

and τs
∑U

υ=1(1− ηj,υ)Oj,υ(k) DCVs will be sent towards its outgoing link 1.

Then the evolution of the length of the partial queue qd,υ is given by:

qd,υ(k + 1) = qd,υ(k) +
(

ξd,υ(k)−Od,υ(k)
)

τs

where ξd,υ(k) expresses the number of DCVs going towards unloading station
Uυ that enter the partial queue at junction Sd during the time interval [tk, tk+1),
ξd,υ(k) = (1− usw in

d (k))(1− ηb,υ)Ob,υ(k −
τd,0
τs
) + usw in

d (k)ηc,υOc,υ(k −
τd,1
τs
).

15

Accordingly, Uυ(k) = min

(

(

1− usw out
z (k −

τυ

τs
)
)

ηz,υOz,υ(k −
τυ

τs
), Omax

)

.

Algorithm 1. Outflow distribution at the end of link ℓj,l

1: Ω = {1, 2, . . . , U}
2: while Ω 6= ∅ do
3: Λ = argmin

υ∈Ω

(

qalgυ (k) + τsIj,l,υ(k)
)

4: for all υ ∈ Λ do

5: Oalg
υ (k) = min

(

q
alg
υ (k)
τs

+ Ij,l,υ(k),
Omax

|Ω|

)

6: Omax ← Omax −Oalg
υ (k)

7: end for

8: Ω← Ω \ Λ
9: end while

Let us now consider Pattern 1 and derive (as example) the output of Algorithm 1 for
link ℓd,l of the cell illustrated in Figure 5 and for U = 2. According to Algorithm 1, if
qd,l,1(k) + Id,l,1(k)τs ≥ qd,l,2(k) + Id,l,2(k)τs then the outflow Od,l,υ(k), for υ = 1, 2 is given
by:

Od,l,1(k) =min

(

qd,l,1(k)

τs
+ Id,l,1(k),

Omax

2

)

(13)

Od,l,2(k) =min

(

qd,l,2(k)

τs
+ Id,l,2(k), O

max −
qd,l,1(k)

τs
− Id,l,1(k)

)

(14)

else

Od,l,1(k) =min

(

qd,l,1(k)

τs
+ Id,l,1(k), O

max −
qd,l,2(k)

τs
− Id,l,2(k)

)

(15)

Od,l,2(k) =min

(

qd,l,2(k)

τs
+ Id,l,1(k),

Omax

2

)

(16)

3.4.3. MILP model

In this section we will transform (13)-(16) into their MILP equivalents. The rest of
the MILP route choice model for the case with more unloading stations far apart, can be
derived using a reasoning similar to that in Section 3.2.2.

To transform (13)-(16), we introduce the binary variables δd,1(k) = 1 if and only if

qd,l,1(k) ≥ qd,l,2(k), δd,2(k) = 1 if and only if
qd,l,1(k)

τs
≤

Omax

2
, δd,3(k) = 1 if and only if

qd,l,2(k)

τs
≤

Omax

2
, and δd,4(k) = 1 if and only if

qd,l,2(k)

τs
≤

Omax

2
−

qd,l,1(k)

τs
together with

the system of linear inequalities of Property P1. Then the outflows Od,l,1(k) and Od,l,2(k)

16

can be written as follows:

Od,l,1(k) =δd,1(k)

(

δd,2(k)
qd,l,1(k)

τs
+
(

1− δd,2(k)
)Omax

2

)

+

(

1− δd,1(k)
)

(

δd,4(k)
qr,1(k)

τs

(

1− δd,4(k)
)(

Omax −
qd,l,2(k)

τs

)

)

(17)

Od,l,2(k) =δd,1(k)

(

δd,4(k)
qd,l,2(k)

τs
+
(

1− δd,4(k)
)(

Omax −
qd,l,1(k)

τs

)

)

+

(

1− δd,1(k)
)

(

δd,3(k)
qd,l,2(k)

τs
+
(

1− δd,3(k)
)Omax

2

)

(18)

To transform (17)-(18) into MILP equations one has to further introduce real-valued
scalar variables and the corresponding sets of linear inequalities of Property P2 using a
reasoning similar to that in Section 3.2.2.

4. Model predictive route choice control

In this section we define the MPC optimization problem for both the nonlinear and the
MILP case.

Recall that we want to assess the performance of MPC when using the original nonlinear
model (1) and when using the approximated4 MILP model. Therefore, the performance
index should be linear or piecewise affine.

4.1. MPC objective function

The first objective of a baggage handling system is to transport all the checked-in or
transfer bags to the corresponding end points before the planes have to be loaded. However,
due to the airports’ logistics, an end point is allocated to a plane with a given time period
before the departure of the plane. Hence, the baggage handling system performs optimally
if each of the bags to be handled arrives at its given end point in a specific time window.
In previous work we have considered an objective function that penalizes both the overdue
time and the additional storage time as follows:

J tot(t) =
Nbags
∑

i=1

(

max(0, tunloadz,υ − tload plane
z,υ) + λmax(0, tload plane

z,υ − τ openz,υ − tunloadz,υ)
)

where Nbags is the number of bags to be handled, tunloadz,υ is the time instant when the bag
with index z is unloaded at its endpoint Uυ (the index υ is determined by index z since each
bag has to be unloaded at a specific end point), tload plane

z,υ is the time instant when the end

4The MILP model is an approximation of the nonlinear model due to the assumptions that we have
made to simplify the model (in particular due to the approximation of the dynamic demand of bags with
a piecewise constant demand).

17

point Uυ closes, and τ openz,υ is the maximum possible length of the time window for which
the end point Uυ is open for bag index z. The weighting parameter λ > 0 expresses the
penalty for the additionally stored bags. This objective function is nonlinear and, hence,
cannot be used to recast the nonlinear routing problem into an MILP one. Therefore, in
this paper we transform the nonlinear objective above into a piecewise constant one that
approximates J tot(t). We now consider the objective of reaching a desired outflow for each
unloading station.

Without loss of generality, in this paper we consider that each destination has assigned
only one flight. But this can be easily extended to the general case.

Let [tload plane
υ −τ openυ , tload plane

υ) be the time window when the endpoint Uυ is open where
tload plane
υ is the time instant when the end point Uυ closes and the last bags are loaded
onto the plane and τ openυ is the time period for which the end point Uυ stays open. For the
simplicity of the explanation we assume that tload plane

υ and τ openυ are integers multiple of τs.
Note that the desired outflow at each unloading station is in general a dynamic signal.

But this can always be approximated with a piecewise constant one. Since the objective is
to have each bag arriving at its end point within a given time interval, we can define the
desired outflow at unloading station Uυ with υ ∈ {1, . . . , U} as follows:

Udesired
υ (k) =

Nbags
υ

τ
open
υ

if
tload plane
υ − τ openυ

τs
≤ k ≤

tload plane
υ

τs

0 otherwise

where Nbags
υ is the total number of bags to be sent to unloading station Uυ during the

simulation period.
However, to add some additional gradient to this objective function and make sure

that all the bags will be handled, we add the weighted length of queues at each junction
in the network, but only for time steps bigger than kstop

υ with υ ∈ {1, . . . , U}, where

kstop
υ =

tload plane
υ

τs
.

Let Uυ(k) denote the actual outflow of unloading station Uυ during the period [tk, tk+1).
Then, such a performance index at step k, for a prediction horizon N , can be written as
follows:

Jk,N =
U
∑

υ=1

(

wυ

k+N−1
∑

i=k

(

|Uυ(i)− Udesired
υ (i)|+ αi,υ

S
∑

j=1

λj,υqj(i)
)

)

(19)

where

• αi,υ is a binary variable equal to 1 if i > kstop
υ and 0 otherwise;

• qj(k) denotes the sum of the partial queue lengths at junction Sj at time instant tk;

• wυ > 0 is a penalty that expresses the importance of the flight;

18

• λj,υ > 0 is a weighting parameter that expresses the penalty5 on junction Sj.

Now let us consider the case where k + N − 1 ≤ kstop
υ . Since we want to write the

problem min
U
∑

υ=1

wυ

k+N−1
∑

i=k

|Uυ(i)− Udesired
υ (i)| as a linear programming problem, the MPC

optimization problem can be rewritten as follows:

min
U
∑

υ=1

wυ

k+N−1
∑

i=k

Udiff
υ (i)

subject to
q(i+ 1) = Λv(i) + γγγ

Udiff
υ (i) > Uυ(i)− Udesired

υ (i)
Udiff
υ (i) > −Uυ(i) + Udesired

υ (i)
for i = k, . . . , k +N − 1

where, for appropriately defined Λ and γγγ, v(i) consists of all the variables for the MILP
route choice model at step i and q(i+1) consists of all the partial queue lengths such that
v(i) satisfies a system of linear equations and inequalities

Civ(i) = ei

Fiv(i) ≤ gi.

The MPC optimization problem above is a linear programming problem that has as
optimal solution

Udiff,∗
υ (i) = max

(

U∗
υ (i)− Udesired

υ (i),−U∗
υ (i) + Udesired

υ (i)
)

= |U∗
υ (i)− Udesired

υ (i)|.

For the case where k+N−1 > kstop
υ we will still obtain an MILP optimization problem

by applying a similar procedure.

4.2. Optimization problems

Next we formulate the optimization problem for both the nonlinear and the MILP
model formulations.

The nonlinear MPC optimization problem is defined as:

min
Uk,N

Jk,N(Uk,N)

subject to
t(k) =Mroute ctrl

(

T ,x(tk),Uk,N
)

C(t(k)) ≤ 0

5Since a baggage handling system has to transport all the checked-in or transfer bags to the corre-
sponding end points before the planes have to be loaded, the closer junction Sj with j ∈ {1, . . . , S} is to
the end point Uυ with υ ∈ {1, . . . , U}, the smaller is the weighting parameter λj,υ.

19

where Uk,N = (u(k),u(k+1), . . . ,u(k+N−1)) with u(k) = [usw in
1 (k) usw out

1 (k) . . . usw in
S (k)

usw out
S (k)]T, while the outflows of the unloading stations are determined via simulation.
In order to solve this mixed-integer nonlinear optimization problem one could use e.g.

mixed-integer nonlinear programming solvers such as bqpd, miqpBB, minlpBB of the Tom-
lab/MINLP optimization toolbox of Matlab, genetic algorithms, simulated annealing of
the Matlab optimization toolbox Genetic Algorithm and Direct Search, or tabu search see
e.g. Dowsland (1993); Floudas (1995); Glover and Laguna (1997); Reeves and Rowe (2002).

Similarly, the linear (MILP) MPC optimization problem is defined as:

min
Vk,N

Jk,N(Vk,N)

subject to
A

eq
k,NVk,N = b

eq
k,N

Ak,NVk,N ≤ bk,N

where Vk,N = (v(k),v(k + 1), . . . ,v(k + N − 1)) with v(k) the vector of MILP variables
at step k for the corresponding case study.

To solve the MILP optimization problem one could use solvers such as CPLEX, Xpress-
MP, GLPK, see e.g. Atamtürk and Savelsbergh (2005).

Recall from Section 3 that in order to be able to write the DCV routing problem
as an MILP optimization problem we have simplified the original problem by making
some approximations. Therefore, computing the route for each DCV in the network by
solving nonlinear MPC optimization problems will result in a better performance than by
solving the MILP optimization problems. However, this happens at the cost of higher
computational efforts. So, one could use MILP to compute a good initial point for the
nonlinear optimization problem and this would reduce the computation time. One could
also use directly the MILP solution, but at the cost of suboptimality.

5. Case study

We are interested in analyzing the trade-off between performance and computation
time when using the two formulations of the MPC optimization problems. To this aim we
consider as benchmark case study the network depicted in Figure 8. This network consists
of four loading stations and three unloading stations close together connected via single-
direction track segments, where the free-flow travel time is indicated for each link. Note
that we have chosen this case study since the network contains all the important elements
of a real network, but it allows us to faster assess the efficiency of the proposed routing
approach.

The evolution of each queue at the end of a link in the network above, qj,l for j = 1, 2, 3, 4
and l = 0, 1 is given by:

qj,l(k + 1) = max
(

0, fj,l(k)
)

20

L1

L2 L3

L4

S1

S2

S3

S4

Sexit Sprev exit

2τs
4τs

2τs 2τs

3τs

2τs

4τs

3τs

τs

τs 2τs2τs

0

0

0

0

0

1

1

1

1
1

U1 U2 U3

Figure 8: Case study for a DCV-based baggage handling system.

with fj,l(k) defined as follows:

f1,0(k) =q10(k) +
(

D1(k − 2)− (1− usw in
1 (k))Omax

)

τs

f1,1(k) =q11(k) +
(

(1− usw out
2 (k − 4))O2(k − 4)− usw in

1 (k)Omax
)

τs

f2,0(k) =q20(k) +
(

D2(k − 2)− (1− usw in
2 (k))Omax

)

τs

f2,1(k) =q21(k) +
(

D3(k − 2)− usw in
2 (k)Omax

)

τs

f3,0(k) =q30(k) +
(

usw out
2 (k − 3)O2(k − 3)− (1− usw in

3 (k))Omax
)

τs

f3,1(k) =q31(k) +
(

D4(k − 2)− (usw in
3 (k)Omax

)

τs

f4,0(k) =q40(k) +
(

O1(k − 4)− (1− usw in
4 (k))Omax

)

τs

f4,1(k) =q41(k) +
(

O3(k − 3)− usw in
4 (k)Omax

)

τs

where Oj(k) with j ∈ {1, 2, 3} is given by (7).
The evolution of the partial queues corresponding to unloading station Uυ for υ =

1, . . . , U at the end of the link leading to Sexit is given by:

qexitυ (k + 1) = qexitυ (k) +
(

ρυO
prev exit(k)− Uυ(k +

τυ

τs
)
)

τs

21

demand (DCVs/s)

t (s) t (s)t (s)

T load
T loadT load

88

4

1

5

a) b) c)

Figure 9: Demand profile.

with Uυ(k) given by (12), and

Oprev exit(k) = min

(

Omax,
(q40(k − 1)

τs
+O1(k − 5)

)

(

1− usw in
4 (k − 1)

)

+

(q41(k − 1)

τs
+O3(k − 4)

)

usw in
4 (k − 1)

)

.

We assume that the velocity of each DCV varies between 0m/s and 10m/s. In order to
faster assess the efficiency of our control method we assume that we do not start with an
empty network but with a network already populated by DCVs transporting bags. We
consider two different initial states of the network:

• at t0 20 DCVs are waiting in a queue on incoming link 0 of junction S1 and 40 DCVs
are waiting in a queue on incoming link 1 of S1.

• at t0 20 DCVs are waiting in a queue on incoming link 0 of junction S1 and 40 DCVs
on incoming link 1 of S1. Additionally, 40 DCVs are waiting in a queue on incoming
link 0 of junction S3 and 20 DCVs are waiting in a queue on incoming link 1 of S3.

To compare the results we have considered 6 scenarios where 200 bags are loaded at
each loading station, for the two different initial states of the system and where ρυ = 25 %
for υ = 1, 2, and ρ3 = 50 %. For this particular case study we consider wυ = 1 for
υ = 1, 2, 3 since the bags are not assigned to a specific destination from the beginning of
the simulation. We simulate a period of 600 s, for a network where the capacity of each
junction is 5DCVs/s. The simulation time step τs is set to 20 s. We have considered
the bag arrival pattern for each loading station according to the three different classes of
demand profiles sketched in Figure 9, where T load = 100 s is the total loading time. The
demand of each loading station equals 0 for t > T load. These scenarios will involve very
tight transportation since the time window for each unloading station is [150 s, 300 s) (the
last bag that enters the system can only arrive in time at the corresponding endpoint if
the DCV travels the shortest route with maximum speed).

Let us now compare the results obtained when using the proposed predictive control
method with different formulations of the optimization problem.

To solve the original mixed-integer nonlinear MPC optimization problem we have cho-
sen a simulated annealing algorithm of the Matlab optimization toolbox Genetic Algorithm
and Direct Search implemented via the function simulannealbnd, using multiple initial

22

points, and adapted to obtain integer variables. Based on experiments (Tarău et al., 2008),
we have noticed that both the genetic algorithm of the Matlab optimization toolbox Ge-
netic Algorithm and Direct Search implemented via the function ga and the simulated
annealing algorithm offer a good trade-off between performance and computational effort.
However, the ga solver is a multi-run approach, the starting point being selected always
randomly by the algorithm. Recall that we could use the MILP solution as an initial
feasible guess when solving the nonlinear optimization problem. Consequently, we have
chosen the simulated annealing algorithm since the simulannealbnd solver computes a
local solution starting from a user-given initial feasible solution. For solving the MILP
optimization we have used the CPLEX solver implemented through the cplex interface
function of the Matlab Tomlab toolbox. As prediction horizon we have considered N = 8
for all MPC optimization problems.

In order to have faster computation of the routing solution, in this paper we apply all
the N control samples that have been computed by the MPC method. Therefore, to have
real time computation, each time we compute the future control sequence, the CPU time
has to be smaller than τsN (for our case study this means that the CPU time has to be
smaller than 160 s at each MPC step). Note that the total computation time required to
determine the complete routing solution depends then also on how many MPC steps we
need to perform.

Based on simulations we now compare, for the given scenarios, the results obtained for
the proposed formulations of the optimization problem. The results of the simulations are
reported in Figure 10 where the total performance of the system is defined as:

J =
U
∑

υ=1

(

wυ

Ksim−1
∑

k=0

(

|Uυ(k)− Udesired
υ (k)|+ αk

S
∑

j=1

λj,υqj(k)
)

)

with Ksimτs the real time at which the last DCV transporting a bag through the network
arrives at its end point. These results confirm that computing the route choice using the
original nonlinear formulation for the MPC optimization problem gives better performance
than using the MILP formulation, but at the cost of higher computational effort. Finally,
we have computed the DCV route choice with the simulated annealing algorithm by using
as initial feasible solution for the original nonlinear MPC problem the control sequence
computed by solving the MILP optimization problem. As illustrated in Figure 10, the
results indicate that this last method offers a good trade-off between performance and
computational effort.

6. Conclusions

We have considered the problem of efficiently computing (sub)optimal routes for desti-
nation coded vehicle (DCV) that transport bags in an airport on a “mini” railway network.
This results in a nonlinear, nonconvex, mixed-integer optimization problem that is very
expensive to solve in terms of computational effort. Therefore, we have proposed an al-
ternative approach for reducing the complexity of the computations by approximating the

23

0 1 2 3 4 5 6 7
150

200

250

300

350

400

only MILP

SA (init. guess MILP)

SA (5 runs)

to
ta
l
p
er
fo
rm

an
ce

in
d
ex

J
(s
)

scenario index

(a) closed-loop performance

0 1 2 3 4 5 6 7
10

0

10
1

10
2

10
3

10
4

10
5

only MILP

SA (init. guess MILP)

SA (5 runs)

C
P
U

ti
m
e
(s
)

scenario index

(b) computation time

Figure 10: Comparison of the results obtained using the proposed MPC formulations. At each MPC
step we solve the MILP optimization only, we use the MILP solution as feasible initial guess to solve the
original MPC optimization problem, we solve the MPC original optimization using solvers for nonlinear
mixed-integer optimization problems.

nonlinear optimization problem by a mixed-integer linear programming (MILP) problem.
The advantage is that for MILP problems solvers are available that allow us to efficiently
compute the global optimal solution. These two formulations of the optimization problem
have been used to compute the route of DCVs using model predictive control (MPC) for
a benchmark case study.

Simulation results confirm that computing the route choice using the original nonlinear
formulation for the MPC optimization problem gives usually better performance than using
the MILP formulation, but at the cost of significantly higher computational efforts. To
reduce the computation time while obtaining good results, one can solve the original MPC
optimization problem, but using at each step the local solution of the corresponding MILP
formulation as initial guess.

In future work we will apply this method to more complex case studies and scenarios.
We will perform sensitivity analysis on the deviation with respect to the desired outflow
and the queues length. Furthermore, we will also consider reducing the computation time
by developing hierarchical route choice control.

Acknowledgments

This research is supported by the VIDI project “Multi-Agent Control of Large-Scale
Hybrid Systems” (DWV.6188) of the Dutch Technology Foundation STW, Applied Science
division of NWO and the Technology Programme of the Dutch Ministry of Economic
Affairs, by the BSIK project “Next Generation Infrastructures (NGI)”, by the Transport
Research Centre Delft, by the Delft Research Centre Next Generation Infrastructures,
and by the European 7th framework STREP project “Hierarchical and Distributed Model
Predictive Control (HD-MPC)” (contract number INFSO-ICT-223854).

24

References

A. Atamtürk and M. Savelsbergh. Integer-programming software systems. Annals of Op-
erations Research, 140(1):67–124, November 2005.

A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and con-
straints. Automatica, 35(3):407–427, March 1999.

R. de Neufville. The baggage system at Denver: Prospects and lessons. Journal of Air
Transport Management, 1(4):229–236, December 1994.

K.A. Dowsland. Simulated annealing. In C.R. Reeves, editor, Modern Heuristic Techniques
for Combinatorial Problems, chapter 2, pages 20–69. John Wiley & Sons, Inc., New York,
New York, USA, 1993.

A. Fay. Decentralized control strategies for transportation systems. In Proceedings of
the 2005 IEEE International Conference on Control and Automation, pages 898–903,
Budapest, Hungary, June 2005.

R. Fletcher and S. Leyffer. Numerical experience with lower bounds for MIQP branch-
and-bound. SIAM Journal on Optimization, 8(2):604–616, May 1998.

C.A. Floudas. Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications.
Oxford University Press, New York, USA, 1995.

H. Gang, J.S. Shang, and L.G. Vargas. A neural network model for the free-ranging AGV
route-planning problem. Journal of Intelligent Manufacturing, 7(3):217–227, 1996.

F. Glover and F. Laguna. Tabu Search. Kluwer Academic Publishers, Norwell, Mas-
sachusetts, USA, 1997.

K. Hallenborg and Y. Demazeau. Dynamical control in large-scale material handling sys-
tems through agent technology. In Proceedings of the 2006 IEEE /WIC/ACM Interna-
tional Conference on Intelligent Agent Technology, pages 637–645, Hong Kong, China,
December 2006.

D.E. Kaufman, J. Nonis, and R.L. Smith. A mixed integer linear programming model
for dynamic route guidance. Transportation Research Part B: Methodological, 32(6):
431–440, 1998.

F.L. Lewis. Optimal Control. John Wiley & Sons, New York, New York, USA, 1986.

J.M. Maciejowski. Predictive Control with Constraints. Prentice Hall, Harlow, UK, 2002.

C.R. Reeves and J.E. Rowe. Genetic Algorithms – Principles and Perspectives: A Guide
to GA Theory. Kluwer Academic Publishers, Norwell, Massachusetts, USA, 2002.

25

A. Tarău, B. De Schutter, and J. Hellendoorn. Travel time control of destination coded
vehicles in baggage handling systems. In Proceedings of the 17th IEEE International
Conference on Control Applications, pages 293–298, San Antonio, Texas, USA, Septem-
ber 2008.

A.N. Tarău, B. De Schutter, and J. Hellendoorn. Route choice control of automated
baggage handling systems. Transportation Research Record, (2106):76–82, 2009.

26

