
Delft University of Technology

Delft Center for Systems and Control

Technical report 10-024

Using prior knowledge to accelerate online

least-squares policy iteration∗

L. Buşoniu, B. De Schutter, R. Babuška, and D. Ernst

If you want to cite this report, please use the following reference instead:

L. Buşoniu, B. De Schutter, R. Babuška, and D. Ernst, “Using prior knowledge to

accelerate online least-squares policy iteration,” Proceedings of the 2010 IEEE In-

ternational Conference on Automation, Quality and Testing, Robotics (AQTR 2010),

Cluj-Napoca, Romania, 6 pp., May 2010. Paper A-S2-1/3005.

Delft Center for Systems and Control

Delft University of Technology

Mekelweg 2, 2628 CD Delft

The Netherlands

phone: +31-15-278.24.73 (secretary)

URL: https://www.dcsc.tudelft.nl

∗This report can also be downloaded via https://pub.deschutter.info/abs/10_024.html

https://www.dcsc.tudelft.nl
https://pub.deschutter.info/abs/10_024.html


Using prior knowledge to accelerate online least-squares policy iteration

Lucian Buşoniu, Bart De Schutter, Robert Babuška, Damien Ernst

Abstract— Reinforcement learning (RL) is a promising par-
adigm for learning optimal control. Although RL is generally
envisioned as working without any prior knowledge about the
system, such knowledge is often available and can be exploited
to great advantage. In this paper, we consider prior knowledge
about the monotonicity of the control policy with respect to
the system states, and we introduce an approach that exploits
this type of prior knowledge to accelerate a state-of-the-art RL
algorithm called online least-squares policy iteration (LSPI).
Monotonic policies are appropriate for important classes of
systems appearing in control applications. LSPI is a data-
efficient RL algorithm that we previously extended to online
learning, but that did not provide until now a way to use
prior knowledge about the policy. In an empirical evaluation,
online LSPI with prior knowledge learns much faster and more
reliably than the original online LSPI.

I. INTRODUCTION

Reinforcement learning (RL) can address important prob-

lems from a variety of fields, including automatic control,

computer science, operations research, and economics [1]–

[3]. In automatic control, RL algorithms can in principle

solve nonlinear, stochastic optimal control problems without

using a model. Rather than relying on the model, a RL

controller learns how to control the system from data. The

immediate performance is measured by a scalar reward, and

the goal is to find an optimal control policy that maximizes

the value function, i.e., the cumulative reward as a function

of the system state and possibly of the control action. For

systems with continuous or large discrete state-action spaces,

RL solutions cannot be represented exactly, but must be

approximated. State-of-the-art algorithms for approximate

RL use weighted summations of basis functions to represent

the value function, and least-squares techniques to find the

weights [4]–[8].

One such algorithm is least-squares policy iteration (LSPI)

[6]. At every iteration, LSPI evaluates the current policy,

by computing its approximate value function from transi-

tion samples, and then finds a new, improved policy from

this value function. LSPI can efficiently use transition data

collected in any manner, but works offline. In [9], we have

introduced an online variant of LSPI, which collects its own

data by interacting with the system, and performs policy im-

provements “optimistically” [3], [10], without waiting until

an accurate evaluation of the current policy is completed.

This research was financially supported by the BSIK-ICIS project (grant
no. BSIK03024). Lucian Buşoniu, Bart De Schutter, and Robert Babuška are
with the Delft Center for Systems and Control, Delft University of Technol-
ogy, the Netherlands (email: i.l.busoniu@tudelft.nl, b.deschutter@tudelft.nl,
r.babuska@tudelft.nl). Damien Ernst is a Research Associate of the Belgian
FNRS; he is affiliated with the Systems and Modeling Unit of the University
of Liège, Belgium (email: dernst@ulg.ac.be).

Such policy improvements allow online LSPI to learn fast,

i.e., to achieve good performance after interacting with the

system for only a short interval of time.

In this paper, we present a method to further accelerate

online LSPI by exploiting prior knowledge. Although RL is

usually envisioned as working without any prior knowledge,

exploiting such knowledge can be highly beneficial, if it is

available. We consider prior knowledge in the form of the

monotonicity of the control policy with respect to the state

variables. Monotonic policies are suitable for controlling e.g.,

(nearly) linear systems, nonlinear systems in neighborhoods

of equilibria where they are nearly linear, as well as some

linear systems with monotonic input nonlinearities (such as

saturation or dead-zone nonlinearities). We employ a policy

representation for which monotonicity can be ensured by im-

posing linear inequality constraints on the policy parameters.

This allows policy improvements to be performed efficiently,

using quadratic programming. A speedup of the learning

process is expected, because online LSPI restricts its focus

to the class of monotonic policies, and no longer invests

valuable learning time in trying other, unsuitable policies.

Several other online RL algorithms based on policy itera-

tion and least-squares techniques have been proposed. For

instance, [11] investigated a version of LSPI with online

sample collection, focusing on the issue of exploration. This

version does not perform optimistic policy updates, but fully

executes offline LSPI between consecutive sample-collection

episodes. An algorithm related to LSPI, called least-squares

policy evaluation [5], was studied in the optimistic context

in [12]. However, these existing techniques do not exploit

prior knowledge about the solution.

The remainder of this paper is organized as follows. The

necessary theoretical background on RL and (offline and

online) LSPI is described in Section II. Then, in Section III,

we introduce our procedure to integrate prior knowledge into

online LSPI. Section IV provides an empirical evaluation

of the resulting online LSPI with prior knowledge, for a

simulated DC motor example. Section V concludes the paper.

II. THE RL PROBLEM. ONLINE LSPI

This section first introduces the RL problem in the frame-

work of Markov decision processes, following [2], [3]. Then,

offline LSPI [6] and online LSPI [9] are described.

Consider a Markov decision process with state space X

and action space U . Assume for now that X and U are

countable. The probability that the next state xk+1 is reached

after action uk is taken in state xk is f (xk,uk,xk+1), where

f : X ×U ×X → [0,1] is the transition probability function.

After the transition to xk+1, a reward rk+1 = ρ(xk,uk,xk+1)



is received, where ρ : X×U×X→R is the reward function.

The symbol k denotes the discrete time index. The expected

infinite-horizon discounted return of initial state x0 under a

control policy h : X →U is:

Rh(x0) = lim
K→∞

Exk+1∼ f (xk,h(xk),·)

{
K

∑
k=0

γkrk+1

}
(1)

where rk+1 = ρ(xk,uk,xk+1), γ ∈ [0,1) is the discount factor,

and the notation xk+1 ∼ f (xk,h(xk), ·) means that xk+1 is

drawn from the distribution f (xk,h(xk), ·). The goal is to find

an optimal policy h∗ that maximizes the return (1) from every

x0 ∈ X . RL algorithms aim to find h∗ from transition and

reward data, without using the functions f and ρ . Moreover,

online RL algorithms collect their own data, by interacting

with the system while they learn.

The classical policy iteration algorithm starts with some

initial policy h0. At every iteration ℓ ≥ 0, the algorithm

first evaluates the current policy hℓ by computing its Q-

function Qℓ : X×U→R, which gives for every pair (x,u) the

expected return when starting in x, applying u, and following

hℓ thereafter. This Q-function is the unique solution of the

Bellman equation:

Qℓ(x,u) = Ex′∼ f (x,u,·)

{
ρ(x,u,x′)+ γQℓ(x

′,h(x′))
}

(2)

Once Qℓ is available, an improved policy is determined:

hℓ+1(x) = argmax
u

Qℓ(x,u) (3)

and the algorithm continues with this policy at the next

iteration. Policy iteration is guaranteed to converge to h∗,

see, e.g., Section 4.3 of [2].

When the state-action space is very large, Q-functions

cannot be represented exactly, but must be approximated.

Here, linearly parametrized approximators are considered:

Q̂(x,u) = ∑
n

l=1
φl(x,u)θl = φ T(x,u)θ (4)

where φ(x,u) is a vector of n basis functions (BFs), φ(x,u) =
[φ1(x,u), . . . ,φn(x,u)]

T, and θ ∈ R
n is a parameter vector.

Given this approximator, the policy evaluation problem at

the ℓth iteration, for the policy hℓ, boils down to finding θℓ
so that Q̂ℓ ≈ Qℓ, where Q̂ℓ(x,u) = φ T(x,u)θℓ.

LSPI [6] is an originally offline RL algorithm that finds

θℓ by solving the linear system:

Γθℓ = z (5)

where the matrix Γ ∈ R
n×n and the vector z ∈ R

n are

computed from samples. Specifically, consider a set of ns

samples {(xls ,uls ,x
′
ls
∼ f (xls ,uls , ·),rls = ρ(xls ,uls ,x

′
ls
)) | ls =

1, . . . ,ns}. The matrix Γ and the vector z are initialized to

zeros and updated for every sample ls = 1, . . . ,ns as follows:

Γ← Γ+φ(xls ,uls)φ
T(xls ,uls)

− γφ(xls ,uls)φ
T(x′ls ,h(x

′
ls
))

z← z+φ(xls ,uls)rls

(6)

Once θℓ is available, the approximate Q-function Q̂ℓ is

plugged into (3) to obtain an improved policy, and the

algorithm continues with this policy at the next iteration.

Note that although for the derivation above we assumed

that X and U are countable, LSPI can also be applied in

uncountable spaces, such as the continuous spaces found

in most automatic control problems. Also note that the

algorithm is called “least-squares” because the system (5)

is, in a certain sense, a least-squares approximation of the

Bellman equation (2). For a more detailed description of

LSPI, see [6].

In this paper, we consider an online variant of LSPI, which

collects its own transition samples by interacting with the

system [9]. This online variant is shown in Algorithm 1. Note

that an idealized, infinite-time setting is considered, in which

the algorithm runs forever and its result is the performance

improvement achieved while interacting with the system. In

practice, the algorithm is of course stopped after a finite time.

Algorithm 1 Online LSPI with ε-greedy exploration.

Input: BFs φ1, . . . ,φn; γ; Kθ ; {εk}k≥0; δ
1: ℓ← 0; initialize policy h0

2: Γ← δ In×n; z← 0n

3: measure initial state x0

4: for each time step k ≥ 0 do

5: uk←

{
hℓ(xk) w.p.1− εk

a uniform random action w.p.εk

6: apply uk, measure next state xk+1 and reward rk+1

7: Γ← Γ+φ(xk,uk)φ
T(xk,uk)

−γφ(xk,uk)φ
T(xk+1,hℓ(xk+1))

8: z← z+φ(xk,uk)rk+1

9: if k = (ℓ+1)Kθ then

10: find θℓ by solving Γθℓ = z

11: hℓ+1(x)← argmaxu φ T(x,u)θℓ
12: ℓ← ℓ+1

13: end if

14: end for

To ensure fast learning, online LSPI performs policy

improvements once every few transitions, without waiting

until an accurate evaluation of the current policy is completed

(unlike the offline algorithm, which processes all the samples

at every iteration, to obtain an accurate policy evaluation).

Such a variant of policy iteration is called “optimistic” [3],

[10]. The integer Kθ ≥ 1 is the number of transitions between

two consecutive policy improvements.

To collect informative data, online LSPI must also explore,

i.e., try other actions than those given by the current policy.

In Algorithm 1, ε-greedy exploration is employed, which

applies at every step k a uniformly random exploratory action

with probability εk ∈ [0,1], and the maximizing (also called

greedy) action with probability 1− εk, see, e.g., Section 2.2

of [2]. Typically, εk decreases over time, so that the algorithm

increasingly exploits the current policy. Furthermore, to

ensure the invertibility of Γ in the early stages of the learning

process, this matrix is initialized to a small multiple of the

identity matrix, using the parameter δ > 0.

Note that, in practice, online LSPI does not have to

compute and store complete improved policies (line 11).

Indeed, such a procedure would be problematic in large



and continuous state spaces. Fortunately, improved actions

can instead be found by applying the formula at line 11 on

demand, only for the states where such actions are actually

necessary.

III. ONLINE LSPI WITH PRIOR KNOWLEDGE

RL is usually envisioned as working without any prior

knowledge about the system or the solution. However, in

practice, prior knowledge is often available, and using it can

offer great benefits. We propose to exploit prior knowledge

about the policy, since this is often easier to obtain than

knowledge about the value function. Policy knowledge can

generally be described by defining constraints. The main

benefit of constraining policies is a speedup of the learning

process, expected because the algorithm restricts its focus

to the constrained class of policies, and no longer invests

valuable learning time in trying other, unsuitable policies.

We do not focus on accelerating computation, but rather

on using experience more efficiently: an algorithm is fast

if it performs well after a observing a small number of

transitions. This measure of learning speed is crucial in

practice, because obtaining data is costly (in terms of energy

consumption, wear-and-tear, and possibly economic profit),

whereas computation is relatively cheap.

We develop an online LSPI variant for globally monotonic

policies. Such policies are monotonic with respect to any

state variable, if the other state variables are held constant.

Monotonic policies are suitable for controlling important

classes of systems, including, e.g., (nearly) linear systems,

or nonlinear systems in neighborhoods of equilibria where

they are nearly linear. Monotonic policies also work well

for some linear systems with monotonic input nonlinearities

(such as saturation or dead-zone nonlinearities), for which

the policy may be strongly nonlinear, but still monotonic.

A. Globally monotonic policies

Consider a system with a D-dimensional, continuous state

space X ⊂ R
D. We assume that X is a hyperbox:

X = [xmin,1,xmax,1]×·· ·× [xmin,D,xmax,D] (7)

where xmin,d ∈ R, xmax,d ∈ R, and xmin,d < xmax,d , for d =
1, . . . ,D. For simplicity, we also assume that u is scalar, but

the entire derivation in the sequel can easily be extended to

multiple action variables.

A policy h is monotonic along the dth dimension of the

state space if and only if, for any pair (x, x̄)∈ X×X of states

that fulfill:

xd ≤ x̄d ; and xd′ = x̄d′ ∀d
′ 6= d

the policy satisfies:

δmon,d ·h(x)≤ δmon,d ·h(x̄) (8)

where δmon,d ∈ {−1,1} specifies the monotonicity direction:

if δmon,d is −1 then h is decreasing along the dth dimension,

and if it is 1 then h is increasing. A policy is (globally)

monotonic if it is monotonic along every dimension d. The

monotonicity directions are collected in a vector δmon =

[δmon,1, . . . ,δmon,D]
T ∈ {−1,1}D

, which encodes the prior

knowledge about the policy monotonicity.

B. Enforcing monotonicity

To efficiently enforce policy monotonicity, two choices are

made. The first choice is to represent the policy explicitly,

rather than implicitly via the Q-function, as in the original

online LSPI. This frees us from translating the monotonicity

constraints into Q-function constraints – generally a daunting

task. Since continuous-state policies cannot be represented

exactly in general, the explicit representation comes at the

expense of introducing policy approximation errors.

The second choice is to employ a linear policy

parametrization:1

ĥ(x) = ∑
N

i=1
ϕi(x)ϑi = ϕT(x)ϑ (9)

where ϕ(x) = [ϕ1(x), . . . ,ϕN (x)]T are axis-aligned, normal-

ized radial basis functions (RBFs) with their centers arranged

on a grid and having identical widths.2 The first and last

grid points are placed at the boundaries of the hyperbox

state space (7), and the grid spacing is equidistant along

each dimension. With this specific policy approximator, in

order to satisfy (8) it suffices to enforce a proper ordering

of the parameters corresponding to each sequence of RBFs,

along all the grid lines and in every dimension of the state

space. We have verified the sufficiency of this condition using

extensive experimentation, for many RBF configurations and

parameter values, and we conjecture that it is also sufficient

in general — although, to our knowledge, this has not been

formally proven yet.

To develop a mathematical notation for this condition,

denote the grid sizes along each dimension by, respectively,

N1, . . . ,ND; there are N = ∏D
d=1 Nd RBFs in total. Fur-

thermore, denote by ϕi1,...,iD the RBF located at grid indices

i1, . . . , iD, and by ϑi1,...,iD the parameter that multiplies this

RBF in (9). We will use these D-dimensional indices inter-

changeably with the single-dimensional indices that appear

in (9). Choosing any bijective mapping between the D-

dimensional indices and the single-dimensional ones suffices

to make these two indexing conventions equivalent.

The monotonicity conditions on the parameters can now

be written in the following, linear form:

δmon,1 ·ϑ1,i2,i3,...,iD ≤ δmon,1 ·ϑ2,i2,i3,...,iD ≤ . . .

. . .≤ δmon,1 ·ϑN1,i2,...,iD for all i2, i3, . . . , iD,

δmon,2 ·ϑi1,1,i3,...,iD ≤ δmon,2 ·ϑi1,2,i3,...,iD ≤ . . .

. . .≤ δmon,2 ·ϑi1,N2,i3,...,iD for all i1, i3, . . . , iD,

· · · · · · · · ·

δmon,D ·ϑi1,i2,i3,...,1 ≤ δmon,D ·ϑi1,i2,i3,...,2 ≤ . . .

. . .≤ δmon,D ·ϑi1,i2,i3,...,ND
for all i1, i2, . . . , iD−1

(10)

1We use calligraphic notation to differentiate mathematical objects related
to policy approximation from those related to value function approximation
(e.g., the policy parameters are denoted by ϑ , whereas the value function
parameters are denoted by θ ).

2The formula to compute the ith (nonnormalized) RBF is ϕ̄i(x) = exp
[
−

∑D
d=1(xd − ci,d)

2/b2
i,d

]
where ci,d is the center coordinate along the dth

dimension, and bi,d is the width along this dimension.



The total number of inequalities in (10) is:

∑
D

d=1

(
(Nd−1)∏

D

d′=1,d′ 6=d
Nd′

)

This type of constraints is easier to understand in the two-

dimensional case. For instance, an ordering corresponding to

a 3×3 grid of RBFs could be:

ϑ1,1 ≤ ϑ1,2 ≤ ϑ1,3

≥ ≥ ≥
ϑ2,1 ≤ ϑ2,2 ≤ ϑ2,3

≥ ≥ ≥
ϑ3,1 ≤ ϑ3,2 ≤ ϑ3,3

(11)

in which case the policy would be decreasing along the first

dimension of X – vertically in (11) – and increasing along

the second dimension – horizontally in (11).

C. Online LSPI with monotonic policies

The prior knowledge about policy monotonicity is em-

ployed in online LSPI by replacing the unconstrained policy

improvement (line 11 of Algorithm 1) with the constrained

least-squares problem:

ϑℓ+1 = argmin
ϑ satisfying (10)

∑
Ns

is=1

(
ϕT(xis)ϑ −uis

)2

where uis ∈ argmax
u

φ T(xis ,u)θℓ (12)

Here, {x1, . . . ,xNs
} is an arbitrary set of state samples to

be used for policy improvement. Since the constraints (10)

are linear, the problem (12) can be efficiently solved using

quadratic programming. The parameter vector ϑℓ+1 leads to

a monotonic and improved approximate policy ĥℓ+1(x) =
ϕT(x)ϑℓ+1, which is used instead of the unconstrained policy

to choose actions and in the updates of Γ.

For completeness, Algorithm 2 summarizes online LSPI

with monotonic policies, a general linear parametrization of

the Q-function, and ε-greedy exploration.

Algorithm 2 Online LSPI with monotonic policies.

Input: Q-function BFs φ1, . . . ,φn, policy BFs ϕ1, . . . ,ϕN ;

set of samples {x1, . . . ,xNs
}; γ; Kθ ; {εk}

∞
k=0; δ

1: ℓ← 0; initialize policy parameter ϑ0

2: Γ← δ In×n; z← 0

3: measure initial state x0

4: for each time step k ≥ 0 do

5: uk←

{
ϕT(xk)ϑℓ w.p. 1− εk

a uniform random action in U w.p. εk

6: apply uk, measure next state xk+1 and reward rk+1

7: Γ← Γ+φ(xk,uk)φ
T(xk,uk)

−γφ(xk,uk)φ
T(xk+1,ϕ

T(xk+1)ϑℓ)
8: z← z+φ(xk,uk)rk+1

9: if k = (ℓ+1)Kθ then

10: find θℓ by solving Γθℓ = z

11: find ϑℓ+1 by solving (12)

12: ℓ← ℓ+1

13: end if

14: end for

To generalize this framework to multiple action variables,

a distinct policy parameter vector should be used for every

action variable, and the monotonicity constraints should be

enforced separately, for each of these parameter vectors. Dif-

ferent monotonicity directions can be imposed for different

action variables.

IV. EXPERIMENTAL STUDY

In this section, we investigate the effects of using prior

knowledge in online LSPI. To this end, in a simulation exam-

ple involving the stabilization of a DC motor, we compare the

learning performance of online LSPI with prior knowledge

(Algorithm 2), with the performance of the original online

LSPI (Algorithm 1), which does not use prior knowledge.

A. DC motor problem

The DC motor is described by the discrete-time dynamics:

f (x,u) = Ax+Bu

A =

[
1 0.0049

0 0.9540

]
, B =

[
0.0021

0.8505

]

where x1 = α ∈ [−π,π] rad is the shaft angle, x2 = α̇ ∈
[−16π,16π] rad/s is the angular velocity, and u∈ [−10,10]V

is the control input (voltage). The state variables are re-

stricted to their domains using saturation. The goal is to

stabilize the system around x = 0, and is described by the

quadratic reward function:

ρ(x,u) =−xTQrewx−Rrewu2

Qrew =

[
5 0

0 0.01

]
, Rrew = 0.01

with discount factor γ = 0.95.

Because the dynamics are linear and the reward function

is quadratic, the optimal policy would be a linear state

feedback, of the form h(x) = LTx, if the constraints on the

state and action variables were disregarded. The gain vector

L can be computed from f and ρ , using an extension of linear

quadratic control to the discounted case, as explained, e.g.,

in, Section 3.2 of [3]. The result is L = [−12.92,−0.68]T,

corresponding to a policy that monotonically decreases along

both axes of the state space. This monotonicity property will

be used in the sequel. Note that only prior knowledge about

the signs of the feedback gains is required to establish the

policy monotonicity directions, and the actual values of these

gains are not needed.

B. Policy and Q-function approximators, parameter settings,

and performance criterion

To apply online LSPI with monotonicity constraints, the

policy is represented using a grid of RBFs, as described in

Section III-B. The grid contains 9× 9 RBFs, so the policy

has 81 parameters. The RBF width along each dimension is

identical to the distance between two adjacent RBFs along

that dimension (the grid step). To perform the policy im-

provements (12), Ns = 1000 uniformly distributed, random

state samples are employed.



The Q-function approximator relies on the same grid of

state-dependent RBFs as the policy approximator, and on

a discretization of the action space into 3 discrete values:

{−10,0,10}. (Of course, in general the Q-functions BFs can

be chosen independently from the policy BFs.) To obtain the

state-action BFs required for Q-function approximation (4),

the RBFs are replicated for every discrete action, obtaining

a total of 81 · 3 = 243 BFs. When computing approximate

Q-values, all the BFs that do not correspond to the current

discrete action are taken equal to 0, i.e., the vector of Q-

function BFs is φ(x,u) = [I (u = −10) ·ϕT(x),I (u = 0) ·
ϕT(x),I (u = 10) ·ϕT(x)]T, where the indicator function I

is 1 when its argument is true, and 0 otherwise.

Note that, although the parametrized policy produces

continuous actions, the Q-function approximator only works

for the discrete actions considered. Therefore, the continuous

actions produced by the policy must be discretized during

learning, at lines 5 and 7 of Algorithm 2.

The learning experiment has a length of 600 s and is

divided into 1.5 s learning trials. The initial state of each

trial is chosen randomly from a uniform distribution over

the state space. The policy is improved once every Kθ = 100

transitions. An exponentially decaying exploration schedule

is used that starts from an initial probability ε0 = 1, and

decays so that after t = 200 s, ε becomes 0.1. The parameter

δ is set to 0.001. The initial policy parameters, together with

the resulting policy, are identically zero.

The original online LSPI employs the same Q-function ap-

proximator and settings as online LSPI with prior knowledge,

but does not approximate the policy or enforce monotonicity

constraints. Instead, it computes greedy actions on demand,

by maximizing the Q-function (see Section II). The initial

policy chooses the first discrete action (−10) for any state.

After each online LSPI experiment is completed,

snapshots of the policy taken at increasing moments

of time are evaluated. This produces a curve record-

ing the control performance of the policy over time.

During performance evaluation, learning and exploration

are turned off. Policies are evaluated using simula-

tion, by estimating their average return (score) over

the grid of initial states X0 = {−π,−π/2,0,π/2,π} ×
{−10π,−5π,−2π,−π,0,π,2π,5π,10π}. The return from

each state on this grid is estimated by simulating only the

first K steps of the controlled trajectory, with K chosen large

enough to guarantee the estimate is within a 0.1 distance of

the true return.

C. Results and discussion

Figure 1 shows the learning performance of online LSPI

with monotonic policies, in comparison to the performance

of the original online LSPI algorithm. Mean values across 20

independent runs are reported, together with 95% confidence

intervals on these means.

Using prior knowledge leads to much faster and more re-

liable learning: the score reliably converges in around 50 s of

simulation time, during which 10000 samples are observed.

In contrast, online LSPI without prior knowledge requires

0 100 200 300 400 500 600

−700

−600

−500

−400

−300

−200

 

 

S
c
o

re

t [s]

prior knowledge, mean

95% confidence bounds

no prior knowledge, mean

95% confidence bounds

Fig. 1. Performance comparison between online LSPI with prior knowledge
and the original online LSPI algorithm. The horizontal axis shows the time
spent interacting with the system (simulation time).

more than 300 s (60000 samples) to reach a near-optimal

performance, and has a larger variation in performance across

the 20 runs, which can be seen in the wider 95% confidence

intervals.

Figure 2 compares a representative solution obtained using

prior knowledge with one obtained by the original online

LSPI. The policy of Figure 2(b), obtained without using prior

knowledge, violates monotonicity in several areas. The con-

trol performance of the monotonic policy – Figure 2(c) – is

better than the performance of the policy found without prior

knowledge – Figure 2(d). This difference appears mainly

because the monotonic policy outputs continuous actions.

Recall however from Section IV-B that this advantage cannot

be exploited during learning, when the actions must be

discretized to make them compatible with the Q-function

approximator.

The mean execution time of online LSPI with prior

knowledge is 1046.5 s, with a 95% confidence interval of

[1024.2,1068.9] s. For the original online LSPI algorithm,

the mean execution time is 87.7 s with a confidence interval

of [81.8,93.6] s. These execution times were recorded while

running the algorithms in MATLAB 7 on a PC with an Intel

Core 2 Duo E6550 2.33 GHz CPU and with 3 GB of RAM.

So, although online LSPI with prior knowledge learns

faster in terms of simulation time (number of transition

samples observed), its execution time is larger. This is

mainly because the constrained policy improvements (12)

are more computationally demanding than the original policy

improvements (3). In particular, solving (12) takes much

longer than a sampling period (around 0.75 s, whereas Ts =
0.005 s), which means that the algorithm cannot be directly

applied in real-time. To address this difficulty, besides the

obvious solution of optimizing the implementation (e.g.,

by switching from MATLAB to C, which should provide a

significant boost in execution speed), another possibility is

to perform the policy improvements asynchronously, on a

different thread than the one responsible with controlling the

system. This thread could run on another CPU core or even

on another computer. While executing policy improvement,

the system should be controlled with the previously available

policy, possibly collecting transition samples for later use in

evaluating the new policy.



−3 −2 −1 0 1 2 3
−50

0

50

α [rad]

α
’ 
[r

a
d

/s
]

h(α,α’) [V]

(a) Policy found using prior knowledge.

−3 −2 −1 0 1 2 3
−50

0

50

α [rad]

α
’ 
[r

a
d

/s
]

h(α,α’) [V]

(b) Policy found without prior knowledge.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

α
 [
ra

d
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−40

−20

0

α
’ 
[r

a
d
/s

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

u
 [
V

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−40
−20

0

r 
[−

]

t [s]

(c) Trajectory controlled by the policy found using prior
knowledge.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

α
 [
ra

d
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−40

−20

0

α
’ 
[r

a
d
/s

]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−10

0

10

u
 [
V

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−40
−20

0
r 

[−
]

t [s]

(d) Trajectory controlled by the policy found without prior
knowledge.

Fig. 2. Representative solutions found using prior knowledge (left) and without prior knowledge (right).

V. CONCLUSIONS

In this paper, we have introduced an approach to integrate

prior knowledge into online least-squares policy iteration.

In particular, we have considered problems in which a

(near-)optimal policy is known to be monotonic in the state

variables. For an example involving the control of a DC

motor, using this type of prior knowledge has led to much

faster (in terms of time spent interacting with the system)

and more reliable learning.

While the global monotonicity requirement is restrictive in

general, our approach can easily be extended to handle other

types of monotonicity restrictions. For instance, the policy

could be monotonic only with respect to a subset of state

variables, or only over a subregion of the state space, such as

in a neighborhood of an equilibrium. Multiple monotonicity

regions can also be considered. Another research direction

is representing prior knowledge using inequality constraints

of the form gin(x,h(x)) ≤ 0, and equality constraints of the

form geq(x,h(x)) = 0. Unlike the monotonicity property, such

constraints can be exploited without representing the policy

explicitly. They can be enforced while computing improved

actions, separately for every state x where such actions are

necessary.

REFERENCES

[1] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Athena Scientific, 1996.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-

tion. MIT Press, 1998.
[3] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.

Athena Scientific, 2007, vol. 2.
[4] J. Boyan, “Technical update: Least-squares temporal difference learn-

ing,” Machine Learning, vol. 49, pp. 233–246, 2002.
[5] A. Nedić and D. P. Bertsekas, “Least-squares policy evaluation algo-

rithms with linear function approximation,” Discrete Event Dynamic

Systems: Theory and Applications, vol. 13, no. 1–2, pp. 79–110, 2003.
[6] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,”

Journal of Machine Learning Research, vol. 4, pp. 1107–1149, 2003.
[7] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode rein-

forcement learning,” Journal of Machine Learning Research, vol. 6,
pp. 503–556, 2005.

[8] H. Yu and D. P. Bertsekas, “Convergence results for some temporal
difference methods based on least squares,” IEEE Transactions on

Automatic Control, vol. 54, no. 7, pp. 1515–1531, 2009.
[9] L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška, “Online

least-squares policy iteration for reinforcement learning control,” in
Proceedings 2010 American Control Conference (ACC-10), Baltimore,
US, 30 June – 2 July 2010, accepted for publication.

[10] R. S. Sutton, “Learning to predict by the method of temporal differ-
ences,” Machine Learning, vol. 3, pp. 9–44, 1988.

[11] L. Li, M. L. Littman, and C. R. Mansley, “Online exploration in
least-squares policy iteration,” in Proceedings 8th International Joint

Conference on Autonomous Agents and Multiagent Systems (AAMAS-

09), vol. 2, Budapest, Hungary, 10–15 May 2009, pp. 733–739.
[12] T. Jung and D. Polani, “Kernelizing LSPE(λ ),” in Proceedings 2007

IEEE Symposium on Approximate Dynamic Programming and Rein-

forcement Learning (ADPRL-07), Honolulu, US, 1–5 April 2007, pp.
338–345.


