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Approximate dynamic programming and

reinforcement learning

Lucian Buşoniu, Bart De Schutter, and Robert Babuška

Abstract Dynamic Programming (DP) and Reinforcement Learning (RL) can be

used to address problems from a variety of fields, including automatic control, arti-

ficial intelligence, operations research, and economy. Many problems in these fields

are described by continuous variables, whereas DP and RL can find exact solutions

only in the discrete case. Therefore, approximation is essential in practical DP and

RL. This chapter provides an in-depth review of the literature on approximate DP

and RL in large or continuous-space, infinite-horizon problems. Value iteration, pol-

icy iteration, and policy search approaches are presented in turn. Model-based (DP)

as well as online and batch model-free (RL) algorithms are discussed. We review

theoretical guarantees on the approximate solutions produced by these algorithms.

Numerical examples illustrate the behavior of several representative algorithms in

practice. Techniques to automatically derive value function approximators are dis-

cussed, and a comparison between value iteration, policy iteration, and policy search

is provided. The chapter closes with a discussion of open issues and promising re-

search directions in approximate DP and RL.
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1 Introduction

Dynamic programming (DP) and reinforcement learning (RL) can be used to ad-

dress important problems arising in a variety of fields, including e.g., automatic

control, artificial intelligence, operations research, and economy. From the per-

spective of automatic control, the DP/RL framework comprises a nonlinear and

stochastic optimal control problem [9]. Moreover, RL can be seen as adaptive op-

timal control [75, 83]. Algorithms that solve such a problem in general would be

extremely useful for optimal control. From the perspective of artificial intelligence,

RL promises a methodology to build an artificial agent that learns how to survive and

optimize its behavior in an unknown environment, without requiring prior knowl-

edge [74]. Developing such an agent is a central goal of artificial intelligence. Be-

cause of this mixed inheritance from optimal control and artificial intelligence, two

sets of equivalent names and notations are used in DP and RL : e.g., ‘controller’ has

the same meaning as ‘agent’, and ‘process’ has the same meaning as ‘environment’.

In this chapter, we will mainly use control-theoretical terminology and notations.

The DP/RL problem can be formalized as a Markov decision process (MDP) .

In an MDP , at each discrete time step, the controller (agent) measures the state of

the process (environment) and applies an action, according to a control (behavior)

policy. As a result of this action, the process transits into a new state. A scalar

reward is sent to the controller to indicate the quality of this transition. The controller

measures the new state, and the whole cycle repeats. State transitions can generally

be nonlinear and stochastic. This pattern of interaction is represented in Figure 1.

The goal is to find a policy that maximizes the cumulative reward (the return) over

the course of interaction [9, 11, 74].

Controller

(agent)

Process

(environment)

Reward function

(performance
evaluation)

state

action

reward

Fig. 1 The basic elements of DP and RL, and their flow of interaction.

As a conceptual example, consider a garbage-collecting robot. This robot mea-

sures its own position, and the positions of the surrounding objects; these positions

are the state variables. The software of the robot is the controller (the agent). Note

that in DP and RL , the process (environment) also includes the physical body of the

robot. The controller receives the position measurements, and sends motion com-

mands to the motors; these commands are the actions. The dynamics describe the

rule according to which positions (states) change as a result of the commands (ac-
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tions). The reward signal can, e.g., be positive at every time step in which the robot

picks up trash, and zero otherwise. In this case, the goal is to pick up as much trash

as possible, because this corresponds to accumulating as much reward as possible.

DP algorithms are model-based: they require a model of the MDP , in the form

of the transition dynamics and the reward function [9, 11]. DP algorithms typically

work offline, producing a policy which is then used to control the process. Usually,

analytical expressions for the dynamics and the reward function are not required.

Instead, given a state and an action, the model is only required to generate a next

state and the corresponding reward. RL algorithms are model-free [74], and use

transition and reward data obtained from the process. RL is useful when a model

is difficult or costly to derive. So, RL can be seen as model-free, sample-based or

trajectory-based DP , and DP can be seen as model-based RL . Some RL algorithms

work offline, using data collected in advance. Other RL algorithms work online:

they compute a solution while simultaneously controlling the process. Online RL is

useful when it is difficult or costly to obtain data in advance. Online RL algorithms

must balance the need to collect informative data with the need to control the process

well.

DP and RL algorithms can be classified by the path they take to search for an op-

timal policy. Value iteration algorithms search for the optimal value function, i.e.,

the maximal returns as a function of the state and possibly of the control action.

The optimal value function is then used to compute an optimal policy. Policy iter-

ation algorithms iteratively improve policies. In each iteration, the value function

of the current policy is found (instead of the optimal value function), and this value

function is used to computed a new, improved policy. Policy search algorithms use

optimization techniques to directly search for an optimal policy.1

Classical DP and RL algorithms require exact representations of the value func-

tions and policies. When some of the variables have a very large or infinite num-

ber of possible values (e.g., when they are continuous), exact representations are

no longer possible. Instead, value functions and policies need to be approximated.

Since many problems of practical interest have large or continuous state and action

spaces, approximation is essential in DP and RL . Two main types of approximators

can be identified: parametric and nonparametric approximators. Parametric approxi-

mators are functions of a set of parameters; the form of the function is given a priori,

and does not depend on the data. The parameters are tuned using data about the tar-

get value function or policy. A representative example is a linear combination of a

fixed set of basis functions (BFs) . In contrast, the form and number of parameters

of a nonparametric approximator are derived from the available data. For instance,

kernel-based approximators can also be seen as representing the target function with

a linear combination of BF s, but, unlike parametric approximation, they define one

BF for each data point.

This chapter provides an in-depth review of the literature on approximate DP

and RL in large or continuous-space, infinite-horizon problems. Approximate value

iteration, policy iteration, and policy search are presented in detail and compared.

1 A fourth category of (model-based) algorithms is model predictive control [8, 22], which we do

not discuss in this chapter.
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Model-based (DP ), as well as online and batch model-free (RL ) algorithms are

discussed. Algorithm descriptions are complemented by theoretical guarantees on

their performance, and by numerical examples illustrating their behavior in practice.

We focus mainly on parametric approximation, but also mention some important

nonparametric approaches. Whenever possible, we discuss the general case of non-

linearly parameterized approximators. Sometimes, we delve in more detail about

linearly parameterized approximators, e.g., because they allow to derive better the-

oretical guarantees on the resulting approximate solutions.

The remainder of this chapter is structured as follows. After a brief introduction

to classical, exact DP and RL in Section 2, the need for approximation in DP and

RL is explained in Section 3. This is followed by an in-depth discussion of approx-

imate value iteration in Section 4 and of approximate policy iteration in Section 5.

Techniques to automatically derive value function approximators are reviewed in

Section 6. Approximate policy search is discussed in Section 7. A representative

algorithm from each class (value iteration, policy iteration, and policy search) is

applied to an example involving the optimal control of a DC motor: respectively,

grid Q-iteration in Section 4, least-squares policy iteration in Section 5, and pattern

search policy optimization in Section 7. While not all of the algorithms used in the

examples are taken directly from the literature, and some of them are designed by

the authors, they are all straightforward instantiations of the class of techniques they

represent. Approximate value iteration, policy iteration, and policy search are com-

pared in Section 8. Section 9 closes the chapter with a discussion of open issues and

promising research directions in approximate DP and RL .

2 Markov decision processes. Exact dynamic programming and

reinforcement learning

This section formally describes MDP s and characterizes their optimal solution.

Then, exact algorithms for value iteration and policy iteration are described. Be-

cause policy search is not typically used in exact DP and RL , it is not described

in this section; instead, it will be presented in the context of approximation, in Sec-

tion 7.

2.1 Markov decision processes and their solution

A Markov decision process (MDP ) is defined by its state space X , its action space U ,

its transition probability function f̃ : X ×U ×X → [0,∞), which describes how the

state changes as a result of the actions, and its reward function ρ̃ : X ×U ×X → R,

which evaluates the quality of state transitions. The controller behaves according to

its control policy h : X →U .
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More formally, at each discrete time step k, given the state xk ∈ X , the con-

troller takes an action uk ∈ U according to the policy h. The probability that

the resulting next state xk+1 belongs to a region Xk+1 ⊂ X of the state space is∫
Xk+1

f̃ (xk,uk,x
′)dx′. For any x and u, f̃ (x,u, ·) is assumed to define a valid probabil-

ity density of the argument ‘·’. After the transition to xk+1, a reward rk+1 is provided

according to the reward function: rk+1 = ρ̃(xk,uk,xk+1). The reward evaluates the

immediate effect of action uk, namely the transition from xk to xk+1. We assume that

‖ρ̃‖∞ = supx,u,x′ |ρ̃(x,u,x
′)| is finite.2 Given f̃ and ρ̃ , the current state xk and action

uk are sufficient to determine the probability density of the next state xk+1 and of the

reward rk+1. This is the so-called Markov property, which is essential in providing

theoretical guarantees about DP/RL algorithms.

Note that, when the state space is countable (e.g., discrete), the transition func-

tion can also be given as f̄ : X ×U ×X → [0,1], where f̄ (xk,uk,x
′) is the probability

of reaching x′ after taking uk in xk. The function f̃ is a generalization of f̄ to un-

countable (e.g., continuous) state spaces; in such spaces, the probability of reaching

a given point x′ in the state space is generally 0, making a description of the form f̄

inappropriate. Additionally, the individual rewards themselves can be stochastic; if

they are, to simplify the notation, we take ρ̃ equal to the expected rewards.

Developing an analytical expression for the transition probability function f̃ is

generally a difficult task. Fortunately, most DP algorithms do not require such an an-

alytical expression. Instead, given any state-action pair, the model is only required to

generate a corresponding next state and reward. Constructing this generative model

is usually easier.

The expected infinite-horizon discounted return of a state x0 under a policy h

accumulates the rewards obtained by using this policy from x0:3

Rh(x0) = lim
K→∞

Exk+1∼ f̃ (xk,h(xk),·)

{
K

∑
k=0

γkρ̃(xk,h(xk),xk+1)

}
(1)

where γ ∈ [0,1) is the discount factor and the expectation is taken over the stochas-

tic transitions. The notation xk+1 ∼ f̃ (xk,h(xk), ·) means that the random variable

xk+1 is drawn from the density f̃ (xk,h(xk), ·) at each step k. The goal is to find an

optimal policy h∗ that maximizes the expected return (1) from every initial state. So,

the long-term performance (return) must be maximized using only feedback about

the immediate, one-step performance (reward). This is challenging because actions

taken in the present potentially affect rewards achieved far into the future, and the

immediate reward provides no information about these long-term effects. This is the

problem of delayed reward [74]. When the infinite-horizon discounted return is used

2 As already mentioned, control-theoretic notations are used instead of artificial intelligence nota-

tions. For instance, in the artificial intelligence literature on DP/RL , the state is usually denoted

by s, the state space by S, the action by a, the action space by A, and the policy by π .
3 We assume that the MDP and the policies h have suitable properties to ensure that the return and

the Bellman equations in the sequel are well-defined. See e.g., [10] and Appendix A of [9] for a

discussion of these properties.
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and under certain technical assumptions on the elements of the MDP , there exists

at least one stationary deterministic optimal policy [10].

The discount factor can intuitively be seen as a way to encode an increasing

uncertainty about rewards that will be received in the future. From a mathematical

point of view, discounting ensures that, given bounded rewards, the returns will

always be bounded. Choosing γ often involves a tradeoff between the quality of the

solution and the convergence rate of the DP/RL algorithm. Some important DP/RL

algorithms have a rate of convergence proportional to γ , so they converge faster

when γ is smaller (this is the case e.g., for model-based value iteration, see Sections

2.2 and 4.1). However, if γ is too small, the solution may be unsatisfactory because

it does not sufficiently take into account rewards obtained after a large number of

steps.

Instead of discounting the rewards, they can also be averaged over time, or they

can simply be added together without weighting [35]. It is also possible to use a

finite-horizon return, in which case optimal policies and the optimal value function

depend on the time step k. Only infinite-horizon discounted returns, leading to time-

invariant optimal policies and value functions, are considered in this chapter.

Policies can be conveniently characterized using their value functions. Two types

of value functions exist: state-action value functions (Q-functions) and state value

functions (V-functions). The Q-function of a policy h is the return when starting in

a given state, applying a given action, and following the policy h thereafter:

Qh(x,u) = Ex′∼ f̃ (x,u,·)

{
ρ̃(x,u,x′)+ γRh(x′)

}
(2)

The optimal Q-function is defined as the best Q-function that can be obtained by

any possible policy:4

Q∗(x,u) = maxh Qh(x,u) (3)

A policy that selects for every state an action with the largest optimal Q-value:

h∗(x) = argmax
u

Q∗(x,u) (4)

is optimal (it maximizes the return). A policy that maximizes a Q-function in this

way is said to be greedy in that Q-function. Here, as well as in the sequel, if multiple

maximizing actions are encountered when computing greedy policies for some state,

any of these actions can be chosen. So, finding an optimal policy can be done by first

finding Q∗, and then computing a greedy policy in Q∗.

A central result in DP and RL is the Bellman optimality equation:

Q∗(x,u) = Ex′∼ f̃ (x,u,·)

{
ρ̃(x,u,x′)+ γ max

u′
Q∗(x′,u′)

}
(5)

4 Note that, for the simplicity of notation, we implicitly assume that the maximum exists in (3) and

in similar equations in the sequel. When the maximum does not exist, the ‘max’ operator should

be replaced by ‘sup’, and the theory remains valid. For the computation of greedy actions in (4)

and in similar equations in the sequel, the maximum must exist in order to ensure the existence of

a greedy policy; this can be guaranteed under certain technical assumptions.
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This equation gives a recursive characterization of Q∗: the optimal value of taking

action u in state x is the expected sum of the immediate reward and of the discounted

optimal value achievable in the next state. The Q-function Qh of a policy h is also

characterized by a Bellman equation, given as follows:

Qh(x,u) = Ex′∼ f̃ (x,u,·)

{
ρ̃(x,u,x′)+ γQh(x′,h(x′))

}
(6)

which states that the value of taking action u in state x under the policy h is the

expected sum of the immediate reward and of the discounted value achieved by h

from the next state.

The V-function V h : X → R gives the return when starting from a particu-

lar state and following the policy h. It can be computed from the Q-function:

V h(x) = Qh(x,h(x)). The optimal V-function is defined as V ∗(x) = maxh V h(x)
and can be computed from the optimal Q-function: V ∗(x) = maxu Q∗(x,u). The V-

functions V ∗ and V h satisfy Bellman equations similar to (5) and (6). The optimal

policy can be computed from V ∗, but the formula to do so is more complicated than

(4): it requires a model of the MDP and computing expectations over the stochas-

tic transitions. This hampers the computation of control policies from V-functions,

which is a significant drawback in practice. Therefore, in the sequel we will prefer

using Q-functions. The disadvantage of Q-functions is that they are more costly to

represent, because in addition to x they also depend on u.

In deterministic problems, the transition probability function f̃ is replaced by

a simpler transition function, f : X ×U → X . This function is obtained from the

stochastic dynamics by using a degenerate density f̃ (x,u, ·) that assigns all the prob-

ability mass to the state f (x,u). The deterministic rewards are completely deter-

mined by the current state and action: ρ(x,u) = ρ̃(x,u, f (x,u)). All the formalism

given in this section can be specialized to the deterministic case. For instance, the

Bellman optimality equation for Q∗ becomes:

Q∗(x,u) = ρ(x,u)+ γ max
u′

Q∗( f (x,u),u′) (7)

and the Bellman equation for Qh becomes:

Qh(x,u) = ρ(x,u)+ γQh( f (x,u),h( f (x,u))) (8)

2.2 Exact value iteration

Value iteration techniques use the Bellman optimality equation to iteratively com-

pute an optimal value function, from which an optimal policy is then derived. As an

illustrative example of a DP (model-based) value iteration algorithm, we describe

Q-iteration. Let the set of all Q-functions be denoted by Q. Define the Q-iteration

mapping T : Q →Q, which computes the right-hand side of the Bellman optimality

equation (5) for an arbitrary Q-function:
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[T (Q)](x,u) = Ex′∼ f̃ (x,u,·)

{
ρ̃(x,u,x′)+ γ max

u′
Q(x′,u′)

}
(9)

In the deterministic case, the right-hand side of the deterministic Bellman optimality

equation (7) should be used instead. It can be shown that T is a contraction with

factor γ < 1 in the infinity norm, i.e., for any pair of functions Q and Q′, it is true that

‖T (Q)−T (Q′)‖∞ ≤ γ‖Q−Q′‖∞. The Q-iteration algorithm starts from an arbitrary

Q-function Q0 and in each iteration ℓ updates it using:

Qℓ+1 = T (Qℓ) (10)

Because T is a contraction, it has a unique fixed point, and from (7), this point is

Q∗. This implies that Q-iteration asymptotically converges to Q∗ as ℓ→∞. A similar

V-iteration algorithm can be given that computes the optimal V-function V ∗.

RL (model-free) techniques like Q-learning [87], and Dyna [73] either learn a

model, or do not use an explicit model at all. For instance, Q-learning starts from

an arbitrary initial Q-function Q0 and updates it online, using observed transitions

(xk,uk,xk+1,rk+1) [86, 87]. After each transition, the Q-function is updated with:

Qk+1(xk,uk) = Qk(xk,uk)+αk[rk+1 + γ max
u′

Qk(xk+1,u
′)−Qk(xk,uk)] (11)

where αk ∈ (0,1] is the learning rate. The term between square brackets is the tem-

poral difference, i.e., the difference between the current estimate Qk(xk,uk) of the

optimal Q-value of (xk,uk) and the updated estimate rk+1 + γ maxu′ Qk(xk+1,u
′).

This new estimate is actually a single sample of the expectation on the right-hand

side of the Q-iteration mapping (9), applied to Qk in the state-action pair (xk,uk). In

this sample, f̃ (xk,uk,x
′) is replaced by the observed next state xk+1, and ρ̃(xk,uk,x

′)
is replaced by the observed reward rk+1. In the discrete-variable case, Q-learning

asymptotically converges to Q∗ as the number of transitions k approaches infinity, if

∑∞
k=0 α2

k is finite, ∑∞
k=0 αk is infinite, and if all the state-action pairs are (asymptoti-

cally) visited infinitely often [29, 87].

The third condition can be satisfied if, among other things, the controller has a

non-zero probability of selecting any action in every encountered state; this is called

exploration. The controller also has to exploit its current knowledge in order to ob-

tain good performance, e.g., by selecting greedy actions in the current Q-function. A

classical way to balance exploration with exploitation is the ε-greedy policy, which

selects actions according to:

uk =

{
argmaxu Q(xk,u) with probability 1− εk

a uniformly random action in U with probability εk

(12)

where εk ∈ (0,1) is the exploration probability at step k. Usually, εk diminishes over

time, so that asymptotically, as Qk → Q∗, the policy used also converges to a greedy,

and therefore optimal, policy.
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2.3 Exact policy iteration

Policy iteration techniques iteratively evaluate and improve policies [9, 11]. Con-

sider a policy iteration algorithm that uses Q-functions. In every iteration ℓ, such an

algorithm computes the Q-function Qhℓ of the current policy hℓ; this step is called .

Then, a new policy hℓ+1 that is greedy in Qhℓ is computed; this step is called policy

improvement. Policy iteration algorithms can be either model-based or model-free;

and offline or online.

To implement policy evaluation, define analogously to (9) a policy evaluation

mapping T h : Q → Q, which applies to any Q-function the right-hand side of the

Bellman equation for Qh. In the stochastic case, the right-hand side of (6) is used,

leading to:

[T h(Q)](x,u) = Ex′∼ f̃ (x,u,·)

{
ρ̃(x,u,x′)+ γQ(x′,h(x′))

}
(13)

whereas in the deterministic case, the right-hand side of (8) should be used instead.

Like the Q-iteration mapping T , T h is a contraction with a factor γ < 1 in the infinity

norm. A model-based policy evaluation algorithm can be given that works similarly

to Q-iteration. This algorithm starts from an arbitrary Q-function Qh
0 and in each

iteration τ updates it using:5

Qh
τ+1 = T h(Qh

τ) (14)

Because T h is a contraction, this algorithm asymptotically converges to Qh. Other

ways to find Qh include online, sample-based techniques similar to Q-learning, and

directly solving the linear system of equations provided by (6) or (8), which is pos-

sible when X and U are discrete and the cardinality of X ×U is not very large [9].

Policy iteration starts with an arbitrary policy h0. In each iteration ℓ, policy eval-

uation is used to obtain the Q-function Qhℓ of the current policy. Then, an improved

policy is computed which is greedy in Qhℓ :

hℓ+1(x) = argmax
u

Qhℓ(x,u) (15)

The Q-functions computed by policy iteration asymptotically converge to Q∗ as

ℓ→ ∞. Simultaneously, the policies converge to h∗.

The main reason for which policy iteration algorithms are attractive is that the

Bellman equation for Qh is linear in the Q-values. This makes policy evaluation

easier to solve than the Bellman optimality equation (5), which is highly nonlin-

ear due to the maximization in the right-hand side. Moreover, in practice, offline

policy iteration algorithms often converge in a small number of iterations [45, 74],

possibly smaller than the number of iterations taken by offline value iteration algo-

rithms. However, this does not necessarily mean that policy iteration is less compu-

tationally costly than value iteration. Even though policy evaluation is generally less

5 A different iteration index τ is used for policy evaluation, because policy evaluation runs in the

inner loop of every policy iteration ℓ.
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costly than value iteration, every single policy iteration requires a complete policy

evaluation.

Model-free variants of policy iteration can also be given. SARSA is an online,

model-free policy iteration algorithm, proposed in [69] as an alternative to the value-

iteration based Q-learning. SARSA starts with an arbitrary initial Q-function Q0 and

updates it using tuples (xk,uk,xk+1,uk+1,rk+1), as follows:

Qk+1(xk,uk) = Qk(xk,uk)+αk[rk+1 + γQk(xk+1,uk+1)−Qk(xk,uk)] (16)

In contrast to Q-learning (11), which uses the maximal Q-value in the next state to

compute the temporal difference, SARSA uses the Q-value of the action actually

taken in the next state. This means that SARSA performs online, model-free policy

evaluation. To select actions, a greedy policy is combined with exploration, using

e.g., the ε-greedy strategy (12). Using a greedy policy means that SARSA implicitly

performs a policy improvement at every time step; hence, SARSA is a type of online

policy iteration.

Actor-critic algorithms [76] also belong to the class of online policy iteration

techniques; they will be presented in Section 5.4. The ‘actor’ is the policy and the

‘critic’ is the value function.

3 The need for approximation in dynamic programming and

reinforcement learning

When the state and action spaces of the MDP contain a large or infinite number

of elements, value functions and policies cannot be represented exactly. Instead,

approximation must be used. Consider, e.g., the algorithms for exact value iteration

of Section 2.2. They require to store distinct estimates of the return for every state

(in the case of V-functions) or for every state-action pair (Q-functions). When some

of the state variables have a very large or infinite number of possible values (e.g.,

they are continuous), exact storage is no longer possible. Large or continuous action

spaces make the representation of Q-functions additionally challenging.

Approximation in DP/RL is not only a problem of representation. Consider e.g.,

the Q-iteration algorithm of Section 2, which iteratively applies the Q-iteration map-

ping: Qℓ+1 = T (Qℓ). This mapping would have to be implemented as follows:

for every (x,u) do: Qℓ+1(x,u) = Ex′∼ f̃ (x,u,·)

{
ρ̃(x,u,x′)+ γ max

u′∈U
Qℓ(x

′,u′)

}
(17)

When the state-action space contains an infinite number of elements, it is impossible

to loop over all the state-action pairs in a finite time. Instead, an approximate update

has to be used that only considers a finite number of state-action samples. Addition-

ally, the expectation on the right-hand side of (17) cannot be computed exactly, but

has to be estimated from a finite number of samples, using Monte Carlo methods.

Note that, in many RL algorithms, the Monte Carlo approximation does not appear
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explicitly, but is performed implicitly while processing samples. Q-learning (11) is

such an algorithm.

The maximization over the action variable in (17) must be solved for every sam-

ple used in the Monte Carlo estimation. In large or continuous action spaces, this

maximization is a potentially difficult non-concave optimization problem, which can

only be solved approximately. To simplify this problem, many algorithms discretize

the action space in a small number of values, compute the value function for all the

discrete actions, and find the maximum among these values using enumeration.

Similar difficulties are encountered in policy iteration algorithms; there, the max-

imization problem has to be solved at the policy improvement step. Policy search

algorithms also need to estimate returns using a finite number of samples, and must

find the best policy in the class considered, which is a potentially difficult opti-

mization problem. However, this problem only needs to be solved once, unlike the

maximization over actions in value iteration and policy iteration, which must be

solved for every sample considered. In this sense, policy search methods are less

affected from the maximization difficulties than value iteration or policy iteration.

In deterministic MDP s, the Monte-Carlo estimation is not needed, but sample-

based updates and approximate maximization are still required.

4 Approximate value iteration

For value iteration in large or continuous-space MDP s, the value function has to be

approximated. Linearly parameterized approximators make it easier to analyze the

theoretical properties of the resulting DP/RL algorithms. Nonlinearly parameterized

approximators like neural networks have better representation power than linear

parameterizations; however, the resulting DP/RL algorithms are more difficult to

analyze.

Consider for instance a linearly parameterized approximator for the Q-function.

Such an approximator has n basis functions (BF s) φ1, . . . ,φn : X ×U → R, and is

parameterized by a vector6 of n parameters θ ∈ R
n. Given a parameter vector θ ,

approximate Q-values are computed with:

Q̂(x,u) =
n

∑
l=1

φl(x,u)θl = φ T(x,u)θ (18)

where φ(x,u) = [φ1(x,u), . . . ,φn(x,u)]
T. The parameter vector θ thus provides a

compact (but approximate) representation of a Q-function. Examples of linearly

parameterized approximators include crisp discretization [7, 80] (see Example 1),

multilinear interpolation [14], Kuhn triangulation [55], and Gaussian radial BF s

[51, 80] (see Example 2).

6 All the vectors used in this chapter are column vectors.
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In this section, we describe algorithms for model-based and model-free approx-

imate value iteration. Then, we describe convergence guarantees for approximate

value iteration, and apply a representative algorithm to an example.

4.1 Approximate model-based value iteration

This section describes the approximate Q-iteration algorithm with a general para-

metric approximator, which is an extension of exact Q-iteration algorithm in Sec-

tion 2.2. Recall that exact Q-iteration starts from an arbitrary Q-function Q0 and

in each iteration ℓ updates the Q-function using Qℓ+1 = T (Qℓ), where T is the Q-

iteration mapping (9).

Approximate Q-iteration parameterizes the Q-function using a parameter vector

θ ∈ R
n. It requires two other mappings in addition to T . The approximation map-

ping F : Rn →Q produces an approximate Q-function Q̂ = F(θ) for a given param-

eter vector θ . This Q-function is used as an input to the Q-iteration mapping T . The

projection mapping P : Q →R
n computes a parameter vector θ such that F(θ) is as

close as possible to a target Q-function Q, e.g., in a least-squares sense. Projection

is used to obtain a new parameter vector from the output of the Q-iteration mapping.

So, approximate Q-iteration starts with an arbitrary (e.g., identically 0) parameter

vector θ0, and updates this vector in every iteration ℓ using the composition of the

mappings P, T , and F :

θℓ+1 = (P◦T ◦F)(θℓ) (19)

Of course, the results of F and T cannot be fully computed and stored. Instead,

P◦T ◦F can be implemented as a single entity, or sampled versions of the F and T

mappings can be applied. Once a satisfactory parameter vector θ ∗ (ideally, a fixed

point of the composite mapping P◦T ◦F) has been found, the following policy can

be used:

ĥ∗(x) = argmax
u

[F(θ ∗)](x,u) (20)

Figure 2 illustrates approximate Q-iteration and the relations between the various

mappings, parameter vectors, and Q-functions considered by the algorithm.

We use the notation [F(θ)](x,u) to refer to the Q-function F(θ) evaluated at

the state-action pair (x,u). For instance, a linearly parameterized approximator (18)

would lead to [F(θ)](x,u) = φ T(x,u)θ . The notation [P(Q)]l refers to the lth com-

ponent in the parameter vector P(Q).
A similar formalism can be given for approximate V-iteration, which is more

popular in the literature [19, 25–27, 55, 80]. Many results from the literature deal

with the discretization of continuous-variable problems [19, 25, 27, 55]. Such dis-

cretizations are not necessarily crisp, but can use interpolation procedures, which

lead to linearly parameterized approximators of the form (18).
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P

parameter space

space of Q-functions

T

F

θ0 θ1=P F( )○ ○ θ0T

F(θ )0

T○F(θ )0

.....θ2 θ*

F(θ*)

Fig. 2 A conceptual illustration of approximate Q-iteration. In every iteration, F is applied to the

current parameter vector to obtain an approximate Q-function, which is then passed through T .

The result of T is projected back onto the parameter space with P. Ideally the algorithm converges

to a fixed point θ ∗, which leads back to itself when passed through P ◦ T ◦F . The solution of

approximate Q-iteration is the Q-function F(θ ∗).

4.2 Approximate model-free value iteration

Approximate model-free value iteration has also been extensively studied [21, 23,

28,30,52,60,71,77,79]. The Q-learning algorithm is the most popular, and has been

combined with a variety of approximators, among which:

• linearly parameterized approximators, encountered under several names such as

interpolative representations [77] and soft state aggregation [71];

• fuzzy rule-bases [23, 28, 30], which can also be linear in the parameters;

• nonlinearly parameterized approximators such as neural networks [43] and self-

organizing maps [79].

The most straightforward way to integrate approximation in Q-learning is by

using gradient updates of the parameter vector [74]:

θk+1 = θk +αk

[
rk+1 + γ max

u′
Q̂k(xk+1,u

′)− Q̂k(xk,uk)

]
∂

∂θk

Q̂k(xk,uk)

where the Q-function is parameterized by θ and the term in square brackets is an ap-

proximation of the temporal difference (see again (11)). With linearly parameterized

approximation (18), this update simplifies to:

θk+1 = θk +αk

[
rk+1 + γ max

u′

(
φ T(xk+1,u

′)θk

)
−φ T(xk,uk)θk

]
φ(xk,uk)

Some algorithms for approximate model-free value iteration work offline and re-

quire a batch of samples collected in advance. A good example is fitted Q-iteration,

which uses ensembles of regression trees (a nonparametric approximator) to rep-

resent the Q-function [21]. Fitted Q-iteration belongs to the class of approximate

Q-iteration algorithms. It replaces the exact Q-iteration mapping T in (19) by an

approximation derived from the available samples, and the projection mapping P

by a process that derives a new ensemble of regression trees in every iteration, in
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order to best approximate the current Q-function. Neural fitted Q-iteration is a sim-

ilar algorithm, but it approximates the Q-function using neural networks instead of

ensembles of regression trees [67].

4.3 Convergence and the role of non-expansive approximators

An important question in approximate DP/RL is whether the approximate solution

computed by the algorithm converges, and, if it does converge, how far the conver-

gence point is from the optimal solution. Convergence is important because it makes

the algorithm is more amenable to analysis and meaningful performance guarantees.

The convergence proofs for approximate value iteration often rely on contraction

mapping arguments. Consider for instance approximate Q-iteration, given by (19).

The Q-iteration mapping T is a contraction in the infinity norm with factor γ < 1, as

already mentioned in Section 2.2. If the composite mapping P◦T ◦F of approximate

Q-iteration is also a contraction, i.e., ‖(P◦T ◦F)(θ)− (P◦T ◦F)(θ ′)‖∞ ≤ γ ′‖θ −
θ ′‖∞ for all θ ,θ ′ and for a γ ′ < 1, then approximate Q-iteration asymptotically

converges to a unique fixed point, which we denote by θ ∗.

One way to make P ◦ T ◦ F a contraction is to ensure that F and P are non-

expansions, i.e., that ‖F(θ)−F(θ ′)‖∞ ≤ ‖θ −θ ′‖∞ for all θ ,θ ′ and that ‖P(Q)−
P(Q′)‖∞ ≤‖Q−Q′‖∞ for all Q,Q′ [26]. In this case, the contraction factor of P◦T ◦
F is the same as that of T : γ ′ = γ < 1. Under these conditions, as we will describe

next, suboptimality bounds can be derived on the solution obtained.

Denote by FF◦P ⊂ Q the set of fixed points of the composite mapping F ◦P

(this set is assumed non-empty). Define σQI
∗ = minQ′∈FF◦P

‖Q∗−Q′‖∞, the mini-

mum distance between Q∗ and any fixed point of F ◦P.7 This distance characterizes

the representation power of the approximator; the better the representation power,

the closer the nearest fixed point of F ◦P will be to Q∗, and the smaller σQI
∗ will be.

The convergence point θ ∗ of approximate Q-iteration satisfies the following subop-

timality bounds [26, 80]:

‖Q∗−F(θ ∗)‖∞ ≤
2σQI

∗

1− γ
(21)

‖Q∗−Qĥ∗‖∞ ≤
4γσQI

∗

(1− γ)2
(22)

where Qĥ∗ is the Q-function of a policy ĥ∗ that is greedy in F(θ ∗) (20). Equa-

tion (21) gives the suboptimality bound of the approximately optimal Q-function,

whereas (22) gives the suboptimality bound of the resulting, approximately optimal

policy. The latter may be more relevant in practice. The following relationship be-

tween the policy suboptimality and the Q-function suboptimality was used to obtain

7 If the minimum does not exist, then σQI
∗ should be taken as small as possible so that there still

exists a Q′ ∈ FF◦P with ‖Q∗−Q′‖∞ ≤ σQI
∗.
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(22), and is also valid in general:

‖Q∗−Qh‖∞ ≤
2γ

(1− γ)
‖Q∗−Q‖∞ (23)

where the policy h is greedy in the (arbitrary) Q-function Q.

In order to take advantage of these theoretical guarantees, P and F should be

non-expansions. When F is linearly parameterized (18), it is fairly easy to ensure

its non-expansiveness by normalizing the BF s φl , so that for every x and u, we have

∑n
l=1 φl(x,u) = 1. Ensuring that P is non-expansive is more difficult. For instance,

the most natural choice for P is a least-squares projection:

P(Q) = argmin
θ

ns

∑
ls=1

|Q(xls ,uls)− [F(θ)](xls ,uls)|
2

(24)

for some set of samples {(xls ,uls) | ls = 1, . . . ,ns }, where ties in the ‘argmin’ can be

broken arbitrarily. Unfortunately, such a projection can in general be an expansion,

and examples of divergence when using it have been given [80, 88]. One way to

make P non-expansive is to choose exactly ns = n samples (for instance, the cen-

ters of the BF s), and require that φls(xls ,uls) = 1 and φls
′(xls ,uls) = 0 for ls 6= ls

′.

Then, the projection mapping (24) simplifies to an assignment that associates each

parameter with the Q-value of the corresponding sample:

[P(Q)]ls = Q(xls ,uls) (25)

This mapping is clearly non-expansive. More general (but still restrictive) conditions

on the BF s under which convergence and near-optimality are guaranteed are given

in [80].

In the area of approximate model-free value iteration (which belongs to ap-

proximate RL ), many approaches are heuristic and do not guarantee convergence

[23, 28, 30, 52, 79]. Those that do guarantee convergence use linearly parameter-

ized approximators [21, 60, 71, 77], and often employ conditions related to the non-

expansiveness properties above, e.g., for Q-learning [71, 77], or for sample-based

batch V-iteration [60].

Another important theoretical property of algorithms for approximate DP and RL

is consistency. In model-based value iteration, and more generally in DP , an algo-

rithm is consistent if the approximate value function converges to the optimal one

as the approximation accuracy increases [19, 25, 70]. In model-free value iteration,

and more generally in RL , consistency is usually understood as the convergence to

a well-defined solution as the number of samples increases. The stronger result of

convergence to an optimal solution as the approximation accuracy also increases is

proven in [60, 77].

Example 1 (Grid Q-iteration for a DC motor). Consider a second-order discrete-

time model of a DC motor:
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xk+1 = f (xk,uk) = Axk +Buk

A =

[
1 0.0049

0 0.9540

]
, B =

[
0.0021

0.8505

]
(26)

This model is obtained by discretizing a continuous-time model of the DC motor,

which was determined by first-principles modeling of the real DC motor. The dis-

cretization is performed with the zero-order-hold method, using a sampling time

of Ts = 0.005 s. Using saturation, the position x1,k = α is bounded to [−π,π] rad,

the velocity x2,k = α̇ to [−16π,16π] rad/s. The control input uk is constrained to

[−10,10]V. A quadratic regulation problem has to be solved, which is described by

the following reward function:

rk+1 = ρ(xk,uk) =−xT
k Qrewxk −Rrewu2

k

Qrew =

[
5 0

0 0.01

]
, Rrew = 0.01

(27)

With this reward function, a good policy will drive the state (close) to 0, while also

minimizing the magnitude of the states along the trajectory and the control effort.

The discount factor is chosen γ = 0.95, which is sufficient to produce a good control

policy. Figure 3 presents a near-optimal solution to this problem, computed using

the convergent and consistent fuzzy Q-iteration algorithm [14] with an accurate ap-

proximator.
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(a) A near-optimal policy.
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(b) Slice through a near-optimal Q-function, for

u = 0.

Fig. 3 A near-optimal solution for the DC motor.

As an example of approximate value iteration, we develop a Q-iteration algorithm

that relies on a gridding of the state space and on a discretization of the action space

into a set of finitely many values, Ud = {u1, . . . ,uM}. For this problem, three discrete

actions are sufficient to find an acceptable stabilizing policy, Ud = {−10,0,10}.

The state space is gridded (partitioned) into a set of N disjoint rectangles. Let Xi be

the surface of the ith rectangle in this partition, with i = 1, . . . ,N. The Q-function

approximator represents distinct slices through the Q-function, one for each of the

discrete actions. For a given action, the approximator assigns the same Q-values for
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all the states in Xi. This corresponds to a linearly parameterized approximator with

binary-valued (0 or 1) BF s over the state-discrete action space X ×Ud:

φ[i, j](x,u) =

{
1 if x ∈ Xi and u = u j

0 otherwise
(28)

where [i, j] denotes the single-dimensional index corresponding to i and j, and can

be computed with [i, j] = i+( j−1)N. Note that because the rectangles are disjoint,

exactly one BF is active at any point of X ×Ud.

To derive the projection mapping P, the least-squares projection (24) is used, tak-

ing as state-action samples the cross product of the sets {x1, . . . ,xN} and Ud, where

xi denotes the center of the ithe rectangle Xi. These samples satisfy the conditions

to simplify P to an assignment of the form (25):

[P(Q)][i, j] = Q(xi,u j) (29)

Using the linearly parameterized approximator (18) with the BF s (28) and the

projection (29) yields the grid Q-iteration algorithm. Because F and P are non-

expansions, this algorithm is convergent.

To apply grid Q-iteration to the DC motor problem, two different grids over the

state space are used: a coarse grid, with 20 equidistant bins on each axis (leading to

202 = 400 rectangles); and a fine grid, with 100 equidistant bins on each axis (lead-

ing to 1002 = 10000 rectangles). The algorithm is considered convergent when the

maximum amount by which any parameter changes between two consecutive itera-

tions does not exceed εQI = 0.001. For the coarse grid, convergence occurs after 160

iterations, and for the fine grid, after 118. This shows that the number of iterations

to convergence is not monotonously increasing with the number of parameters. The

finer grid may help convergence because it can achieve a better accuracy. Represen-

tative state-dependent slices through the resulting Q-functions (obtained by setting

the action argument u to 0), together with the corresponding policies computed with

(20), are given in Figure 4. The accuracy in representing the Q-function is worse for

the coarse grid, in Figure 4(b), than for the fine grid, in Figure 4(d). The structure of

the policy is more clearly visible in Figure 4(c). Axis-oriented artifacts appear for

both grid sizes, due to the limitations of the chosen approximator. For instance, the

piecewise-constant nature of the approximator is clearly visible in Figure 4(b).

5 Approximate policy iteration

Recall that policy iteration techniques compute in each iteration the value function

of the current policy. Then, they compute a new, improved policy, which is greedy

in the current value function, and repeat the cycle (see Section 2.3). Approximating

the value function is always necessary to apply policy iteration in large and contin-

uous spaces. Sometimes, an explicit representation of the policy can be avoided, by
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(c) Fine-grid policy.
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(d) Slice through fine-grid Q-function, for u = 0.

Fig. 4 Grid Q-iteration solutions for the DC motor.

computing improved actions on demand from the current value function. Alterna-

tively, the policy can be represented explicitly, in which case policy approximation

is generally required. In this case, solving a classical supervised learning problem is

necessary to perform policy improvement.

Like in approximate value iteration, the convergence of approximate policy eval-

uation can be guaranteed more easily with linearly parameterized approximators

of the value function. Nonlinearly parameterized approximators, especially neural

networks, are also used often in actor-critic algorithms, an important subclass of

approximate policy iteration.

Policy evaluation algorithms are discussed first, followed by policy improvement

and the resulting policy iteration algorithms. Theoretical guarantees on the solutions

obtained are given and a representative algorithm is applied to the DC motor prob-

lem of Example 1. Finally, actor-critic techniques are presented.

5.1 Approximate policy evaluation

Some of the most powerful algorithms for approximate policy evaluation combine

linearly parameterized approximators of the value function with model-free, least-

squares techniques to compute the parameters [9]. We therefore focus on model-
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free, least-squares policy evaluation in this section. In particular, we discuss the

least-squares temporal difference for Q-functions (LSTD-Q) [40] and the least-

squares policy evaluation for Q-functions (LSPE-Q) [57]. Model-based, approxi-

mate policy evaluation can be derived along the same lines as model-based, approx-

imate value iteration, see Section 4.1.

Assume for now that X and U have a finite number of elements. LSTD-Q and

LSPE-Q solve a projected form of the Bellman equation (6): 8

Q̂h = Pw(T h(Q̂h)) (30)

where Pw performs a weighted least-squares projection onto the space of repre-

sentable Q-functions, i.e., the space
{

φ T(x,u)θ |θ ∈ R
n
}

spanned by the BF s.

Here, w : X ×U → [0,1] is the weight function, which is always interpreted as

a probability distribution over the state-action space and must therefore satisfy

∑x,u w(x,u) = 1. Figure 5 illustrates the projected Bellman equation.
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Fig. 5 A conceptual illustration of the projected Bellman equation. Applying T h and then Pw to an

ordinary approximate Q-function leads to a different point in the space of approximate Q-functions

(left). In contrast, applying T h and then Pw to the fixed point Q̂h of the projected Bellman equation

leads back into the same point (right).

The projection Pw is defined by:

[Pw(Q)](x,u) = φ T(x,u)θ ‡, where

θ ‡ = argmin
θ

∑
(x,u)∈X×U

w(x,u)
∣∣φ T(x,u)θ −Q(x,u)

∣∣2

The function w controls the distribution of the error between a Q-function and its

projection, and therefore indirectly controls the accuracy of the solution Q̂h of the

projected Bellman equation, via (30).

By writing the projected Bellman equation (30) in a matrix form, it can eventually

be transformed into a linear equation in the parameter vector (see [9,40] for details):

8 A multi-step version of this equation can also be given. In this chapter, we only consider the

single-step case.
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Γ θ h = γΛθ h + z (31)

where Γ ,Λ ∈ R
n×n and z ∈ R

n. The original, high-dimensional Bellman equation

(6) has thus been replaced by the low-dimensional linear system (31). A solution θ h

of this system can be used to find an approximate Q-function with (18).

The matrices Γ , Λ and the vector z can be estimated from transition sam-

ples. Consider a set of samples {(xls ,uls ,x
′
ls
∼ f (xls ,uls , ·),rls = ρ(xls ,uls ,x

′
ls
)) | ls =

1, . . . ,ns}, constructed by drawing state-action samples (x,u) and then computing

corresponding next states and rewards. The probability distribution of the state-

action samples is given by the weight function w. The estimates of Γ , Λ , and z

are updated with:

Γ0 = 0, Λ0 = 0, z0 = 0

Γls = Γls−1 +φ(xls ,uls)φ
T(xls ,uls)

Λls = Λls−1 +φ(xls ,uls)φ
T(x′ls ,h(x

′
ls
))

zls = zls−1 +φ(xls ,uls)rls

(32)

LSTD-Q processes the entire batch of samples using (32) and then solves the

equation:
1

ns
Γns θ̂

h = γ
1

ns
Λns θ̂

h +
1

ns
zns (33)

to find an approximate parameter vector θ̂ h. Asymptotically, as ns → ∞, it is true

that 1
ns

Γns → Γ , 1
ns

Λns → Λ , and 1
ns

zns → z. Therefore, θ̂ h → θ h when ns → ∞. The

parameter vector θ̂ h obtained by LSTD-Q gives an approximate Q-function via (18),

which can then be used to perform policy improvement. Note that the division by ns,

although not necessary from a formal point of view, helps to increase the numerical

stability of the algorithm.

An alternative to LSTD-Q is LSPE-Q , which starts with an arbitrary initial pa-

rameter vector θ0 and updates it with:

θls = θls−1 +α(θ ‡
ls
−θls−1), where:

1

ls
Γlsθ

‡
ls
= γ

1

ls
Λlsθls−1 +

1

ls
zls

(34)

and where α is a step size parameter. To ensure its invertibility, Γ can be initialized

to a small multiple of the identity matrix.

The linear systems in (33) and (34) can be solved in several ways, e.g., (i) by

matrix inversion, (ii) by Gaussian elimination, or, (iii) by incrementally computing

the inverse with the Sherman-Morrison formula. Although for the derivation above

it was assumed that X and U are countable, the updates (32), together with LSTD-Q

and LSPE-Q , can be applied also in uncountable (e.g., continuous) state-action
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spaces. Note also that, when the BF vector φ(x,u) is sparse,9 the computational

efficiency of the updates (32) can be improved by exploiting this sparsity.

In order to guarantee the asymptotic convergence of LSPE-Q to θ h, the weight

(probability of being sampled) of each state-action pair, w(x,u), must be identical to

the steady-state probability of this pair along an infinitely-long trajectory generated

with the policy h [9]. In contrast, LSTD-Q (33) may have meaningful solutions for

many weight functions w, which can make it more robust in practice. An advantage

of LSPE-Q over LSTD-Q stems from the incremental nature of LSPE-Q , which

means it can benefit from a good initial value of the parameters.

Analogous least-squares algorithms can be given to compute linearly parameter-

ized, approximate V-functions [9]. Recall however that, as explained in Section 2.1,

when V-functions are used it is more difficult to compute greedy policies, and there-

fore to perform policy improvements.

Gradient-based versions of policy evaluation can also be given, using linearly

parameterized approximators [72, 81] or nonlinearly parameterized approximators

such as neural networks [1, 20]. When combined with linearly parameterized ap-

proximators, gradient-based algorithms usually require more samples than least-

squares algorithms to achieve a similar accuracy [36, 91].

Note that the only requirement imposed on the approximator by the convergence

guarantees of approximate policy evaluation is its linearity in the parameters. In

contrast, approximate value iteration imposes additional requirements to ensure that

the approximate value iteration mapping is a contraction (Section 4.3).

5.2 Policy improvement. Approximate policy iteration

To obtain a policy iteration algorithm, a method to perform policy improvement

is required in addition to approximate policy evaluation. Consider first the case in

which the policy is not explicitly represented. Instead, greedy actions are computed

on demand from the value function, for every state where a control action is re-

quired, using e.g., in the case of Q-functions:

hℓ+1(x) = argmax
u

Q̂hℓ(x,u) (35)

where ℓ is the iteration index. The policy is then implicitly defined by the value

function. If only a small, discrete set of actions is considered, the maximization in

the policy improvement step can be solved by enumeration. In this case, policy im-

provement is exact. For instance, the algorithm obtained by combining exact policy

improvement with policy evaluation by LSTD-Q is least-squares policy iteration

(LSPI) [39, 40].

9 The BF vector is sparse, e.g., when the discrete-action approximator described in the upcoming

Example 2 is used. This is because the BF vector contains zeros for all the discrete actions that are

different from the current discrete action.
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Policies can also be approximated, e.g., using a parametric approximator with a

parameter vector ϑ ∈ R
N . For instance, a linearly parameterized policy approxi-

mator uses a set of state-dependent BF s ϕ1, . . . ,ϕN : X → R and approximates the

policy with:10

ĥ(x) =
N

∑
i=1

ϕi(x)ϑi = ϕT(x)ϑ (36)

where ϕ(x) = [ϕ1(x), . . . ,ϕN (x)]T. For simplicity, the parameterization (36) is only

given for scalar actions, but it can easily be extended to the case of multiple action

variables. For this policy parameterization, approximate policy improvement can be

performed by solving the linear least-squares problem:

ϑℓ+1 = argmin
ϑ

Ns

∑
is=1

∥∥∥∥ϕT(xis)ϑ − argmax
u

φ T(xis ,u)θℓ

∥∥∥∥
2

2

(37)

to find an improved policy parameter vector ϑℓ+1, where {x1, . . . ,xNs
} is a set of

samples for policy improvement. In this formula, argmaxu φ T(xis ,u)θℓ = argmaxu

Q̂ĥℓ(xis ,u) is an improved, greedy action for the sample xis ; notice that the policy ĥℓ
is now also an approximation.

In sample-based policy iteration, instead of waiting with policy improvement un-

til a large number of samples have been processed and an accurate approximation

of the Q-function for the current policy has been obtained, policy improvements

can also be performed after a small number of samples. Such a variant is some-

times called optimistic policy iteration [9,11]. In the extreme, fully optimistic case,

a policy that is greedy in the current value function is applied at every step. If the

policy is only improved once every several steps, the method is partially optimistic.

One instance in which optimistic updates are useful is when approximate policy

iteration is applied online, since in that case the policy should be improved of-

ten. Optimistic variants of approximate policy iteration can be derived e.g., using

gradient-based policy evaluation [20], least-squares policy evaluation [31, 32]. For

instance, approximate SARSA is in fact a type of optimistic policy iteration [33]

(see also Section 2.3).

Instead of using the Bellman equation to compute the value function of a policy,

this value function can also be estimated by Monte Carlo simulations. This is the ap-

proach taken in [41], where Q-functions obtained by Monte Carlo policy evaluation

are used to obtain improved policies represented as support vector classifiers.

10 Calligraphic notation is used to differentiate variables related to policy approximation from

variables related to value function approximation. So, the policy parameter is ϑ and the policy BF

s are denoted by ϕ , whereas the value function parameter is θ and the value function BF s are

denoted by φ . Furthermore, the number of policy parameters and BF s is N , and the number of

samples for policy approximation is Ns.
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5.3 Theoretical guarantees

As long as the policy evaluation and improvement errors are bounded, approxi-

mate PI algorithms eventually produce policies with a bounded suboptimality. We

formalize these convergence results, which apply to general (possibly nonlinearly

parameterized) approximators.

Consider the general case in which both the value functions and the policies are

approximated for non-optimistic policy iteration. Consider also the case in which Q-

functions are used. Assume that the error in every policy evaluation step is bounded

by εQ:

‖Q̂ĥℓ −Qĥℓ‖∞ ≤ εQ, for any ℓ≥ 0

and the error in every policy improvement step is bounded by εh, in the following

sense:

‖T ĥℓ+1(Q̂ĥℓ)−T (Q̂ĥℓ)‖∞ ≤ εh, for any ℓ≥ 0

where T ĥℓ+1 is the policy evaluation mapping for the improved (approximate) policy,

and T is the Q-iteration mapping (9). Then, approximate policy iteration eventually

produces policies with performances that lie within a bounded distance from the

optimal performance [40]:

limsup
ℓ→∞

∥∥∥Q̂ĥℓ −Q∗
∥∥∥

∞
≤

εh +2γεQ

(1− γ)2
(38)

For an algorithm that performs exact policy improvements, such as LSPI , εh = 0

and the bound is tightened to:

limsup
ℓ→∞

‖Q̂hℓ −Q∗‖∞ ≤
2γεQ

(1− γ)2
(39)

where ‖Q̂hℓ −Qhℓ‖∞ ≤ εQ, for any ℓ ≥ 0. Note that computing εQ (and, when ap-

proximate policies are used, computing εh) may be difficult in practice, and the

existence of these bounds may require additional assumptions on the MDP .

These guarantees do not imply the convergence to a fixed policy. For instance,

both the value function and policy parameters might converge to limit cycles, so

that every point on the cycle yields a policy that satisfies the bound. Similarly, when

exact policy improvements are used, the value function parameter may oscillate,

implicitly leading to an oscillating policy. This is a disadvantage with respect to

approximate value iteration, which can be guaranteed to converge monotonically to

its fixed point Section 4.3.

Similar results hold when V-functions are used instead of Q-functions [11].

Optimistic policy iteration improves the policy before an accurate value function

is available. Because the policy evaluation error can be large, the performance guar-

antees given above are not useful in the optimistic case. The behavior of optimistic

policy iteration has not been properly understood yet, and can be very complicated.

It can e.g., exhibit a phenomenon called chattering, whereby the value function con-
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verges to a stationary function, while the policy sequence oscillates, because the

limit of the value function parameter corresponds to multiple policies [9, 11].

Example 2 (LSPI for the DC motor). In this example, LSPI will be applied to the

DC motor problem of Example 1. The action space is again discretized into the set

Ud = {−10,0,10}, which contains M = 3 actions. Only these discrete actions are

allowed into the set of samples. A number of N normalized Gaussian radial basis

functions (RBFs) φ̄i : X → R, i = 1, . . . ,N, are used to approximate over the state

space. The RBF s are defined as follows:

φ̄i(x) =
φ ′

i (x)

∑N
i′=1 φ ′

i′
(x)

, φ ′
i (x) = exp

[
−
(x1 − ci,1)

2

b2
i,1

−
(x2 − ci,2)

2

b2
i,2

]
(40)

where φ ′
i are (non-normalized) Gaussian axis-parallel RBF s, (ci,1,ci,2) is the center

of the ith RBF , and (bi,1,bi,2) is its radius. The centers of the RBF s are arranged on

an equidistant 9×9 grid in the state space. The radii of the RBF s along each dimen-

sion are taken identical to the distance along that dimension between two adjacent

RBF s; this yields a smooth interpolation of the Q-function over the state space. The

RBF s are replicated for every discrete action, and to compute the state-discrete ac-

tion BF s, all the RBF s that do not correspond to the current discrete action are taken

equal to 0. Approximate Q-values can then be computed with Q̂(x,u j)= φ T(x,u j)θ ,

for the state-action BF vector:

φ(x,u j) = [0, . . . ,0︸ ︷︷ ︸
u1

, . . . ,0, φ̄1(x), . . . , φ̄N(x)︸ ︷︷ ︸
u j

,0, . . . ,0, . . . ,0︸ ︷︷ ︸
uM

]T ∈ R
NM

and a parameter vector θ ∈ R
n with n = NM = 3N.

First, LSPI with exact policy improvements is applied, starting from an initial

policy h0 that is identically equal to −10 throughout the state space. The same set

of ns = 7500 samples is used in every LSTD-Q policy evaluation. The samples

are random, uniformly distributed over the state-discrete action space X ×Ud. To

illustrate the results of LSTD-Q , Figure 6 presents the first improved policy found

by LSPI , h1, and its approximate Q-function, computed with LSTD-Q .

The complete LSPI algorithm converged in 11 iterations. Figure 7 shows the

resulting policy and Q-function, which are good approximations of the near-optimal

solution in Figure 3. Compared to the results of grid Q-iteration in Figure 4, LSPI

needed fewer BF s (9× 9 rather than 400 or 10000) and was able to find a better

approximation of the policy. This is mainly because the Q-function is largely smooth

(see Figure 3(b)), which means it can be represented well using the wide RBF s

considered. In contrast, the grid BF s give a discontinuous approximate Q-function,

which is less appropriate for this problem. Although certain types of continuous BF

s can be used with Q-iteration, using wide RBF s such as these is unfortunately not

possible, because they do not satisfy the assumptions for convergence, and indeed

lead to divergence when they are too wide. A disadvantage of these wide RBF s is

that they fail to properly identify the policy nonlinearities in the top-left and bottom-

right corners of Figure 3(a), and the corresponding changes in the Q-function.
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(b) Slice through the Q-function, for u = 0.

Fig. 6 An early policy and its approximate Q-function, for LSPI with exact policy improvements.
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(b) Slice through the Q-function, for u = 0.

Fig. 7 Results of LSPI with exact policy improvements on the DC motor.

Another observation is that LSPI converges in a significantly fewer iterations

than grid Q-iteration did in Example 1 (namely, 11 iterations for LSPI , instead of

the 160 iterations taken by grid Q-iteration with the coarse grid, and of the 118

iterations taken with the fine grid). Such a convergence rate advantage of policy

iteration over value iteration is often observed in practice. Note however that, while

LSPI did converge faster, it was actually more computationally intensive than grid

Q-iteration: it required approximately 105 s to run, whereas grid Q-iteration only

required 0.5 s for the coarse grid and 6 s for the fine grid.11 This is mainly because

the cost of policy evaluation with LSTD-Q is at least quadratic in the number n =
NM of state-action BF s (see the updates (32)). In contrast, the cost of every grid

Q-iteration is only O(n log(N)), when binary search is used to locate the position of

a state on the grid.

Next, LSPI with approximate policies and approximate policy improvements is

applied. The policy approximator is (36) and uses the same RBF s as the Q-function

approximator (ϕi = φ̄i). As before, Ns = 7500 samples are used for policy evalua-

tion. Note that the approximate policy produces continuous actions, which must be

quantized (into discrete actions belonging to Ud) before performing policy evalua-

11 For all the experiments in this chapter, the algorithms are run in MATLAB 7, on a PC with an

Intel T2400 CPU and 2GB of RAM.
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tion, because the Q-function approximator only works for discrete actions. Approx-

imate policy improvement is performed with (37), using a set of Ns = 2500 random,

uniformly distributed state samples. The same set is used in every iteration.

In this experiment, both the Q-functions and the policies oscillate in the steady

state of the algorithm, with a period of 2 iterations. The execution time until the os-

cillation was detected was 104 s. The differences between the two distinct policies

and Q-functions on the limit cycle are too small to be noticed in a figure. Instead,

Figure 8 shows the evolution of the policy parameter that changes the most in steady

state. Its oscillation is clearly visible. The appearance of oscillations may be related

to the fact that the weaker suboptimality bound (38) applies when approximate poli-

cies are used, rather than the stronger bound (39), which applied to the experiment

with exact policy improvements.

4 6 8 10
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−26

−25.8

−25.6

Iteration

ϑ

Fig. 8 The variation of one of the policy parameters, starting with the 4th iteration and until the

oscillation was detected.

Figure 9 presents one of the two policies from the limit cycle, and one of the

Q-functions. The policy and Q-function have a similar accuracy to those computed

with exact policy improvements, even though in this experiment the solution oscil-

lated instead of converging to a stationary value. The approximate policy has the

added advantage that it produces continuous actions.
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Fig. 9 Results of LSPI with approximate policy improvement on the DC motor.
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5.4 Actor-critic algorithms

Actor-critic algorithms are a special case of online approximate policy iteration.

They were introduced in [3] and have been investigated often since then [5, 6, 12,

38, 56, 76]. In typical actor-critic methods, both the policy and the value function

are approximated using differentiable approximators (often neural networks [44,61,

64]), and updated using gradient rules. The critic is the approximate value function

(typically a V-function), and the actor is the approximate policy.

Next, a typical actor-critic algorithm is formalized. Denote by V̂ (x;θ) the ap-

proximate V-function, parameterized by θ ∈ R
N , and by ĥ(x;ϑ) the approximate

policy, parameterized by ϑ ∈ R
N . We use the notation V̂ (x;θ) (and respectively,

ĥ(x;ϑ)) to make explicit the dependence of the parameter vector θ (and respec-

tively, ϑ ). Because the algorithm does not distinguish between the value func-

tions of the different policies, the value function notation is not superscripted by

the policy. After each transition from xk to xk+1, the temporal difference δTD,k =

rk+1 + γV̂ (xk+1;θk)− V̂ (xk;θk) is computed. This temporal difference is analogous

to the temporal difference for Q-functions, used e.g., in Q-learning (11). It is a sam-

ple of the difference between the right-hand and left-hand sides of the Bellman

equation for the policy V-function:

V (x) = Ex′∼ f̃ (x,h(x),·)

{
ρ(x,h(x),x′)+V (x′)

}
(41)

Since the exact values of the current state, V (xk), and of the next state, V (xk+1) are

not available, they are replaced by their approximations.

Once the temporal difference δTD,k is available, the policy and V-function param-

eters are updated with:

θk+1 = θk +αC
∂ V̂ (xk;θk)

∂θ
δTD,k (42)

ϑk+1 = ϑk +αA
∂ ĥ(xk;ϑk)

∂ϑ
[uk − ĥ(xk;ϑk)]δTD,k (43)

where αC and αA are learning rates (step sizes) for the critic and the actor, respec-

tively, and the notation
∂ V̂ (xk;θk)

∂θ means that the derivative
∂ V̂ (x;θ)

∂θ is evaluated for the

state xk and the parameter θk (and analogously in (43)). In the critic update (42), the

temporal difference takes the place of the prediction error V (xk)− V̂ (xk;θk), where

V (xk) is the exact value of xk given the current policy. Since this exact value is not

available, it is replaced by the estimate rk+1 + γV̂ (xk+1;θk) offered by the Bellman

equation (41), thus leading to the temporal difference. In the actor update (43), the

actual action uk applied at step k can be different from the action ĥ(xk;ϑk) indicated

by the policy. This change of the action indicated by the policy is the form taken by

exploration in the actor-critic algorithm. When the exploratory action uk leads to a

positive temporal difference, the policy is adjusted towards this action. Conversely,

when δTD,k is negative, the policy is adjusted away from uk. This is because, like
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in the critic update, the temporal difference is interpreted as a correction of the pre-

dicted performance, so that e.g., if the temporal difference is positive, the obtained

performance is considered better than the predicted one.

An important advantage of actor-critic algorithms stems from the fact that their

policy updates are incremental and do not require the computation of greedy actions.

This means that it is not necessary to solve a difficult optimization problem over

the action variable, and continuous actions are easy to handle. The convergence

of actor-critic methods is not guaranteed in general. Some actor-critic algorithms

employing a value function approximator that is related in a specific way to the

policy approximator are provably convergent [6, 37, 38]. Note that, because they

use gradient-based updates, all actor-critic algorithms can remain stuck in locally

optimal solutions.

6 Finding value function approximators automatically

Parametric approximators of the value function play an important role in approx-

imate value iteration and approximate policy iteration, as seen in Sections 4 and

5. Given the functional form of such an approximator, the DP/RL algorithm com-

putes its parameters. There still remains the problem of finding a good functional

form, well suited to the problem at hand. In this section, we consider linearly pa-

rameterized approximators such as (18), in which case a good set of BF s has to

be found. This focus is motivated by the fact that, in the literature, most methods

to find value function approximators are given in this linear setting. Also note that

many approaches require a discrete and not too large action space, and focus their

effort on finding good state-dependent BF s.

The BF s can be designed in advance, in which case two approaches are possi-

ble. The first approach is to design the BF s so that a uniform resolution is obtained

over the entire state space (for V-functions) or over the entire state-action space

(for Q-functions). Unfortunately, such an approach suffers from the curse of dimen-

sionality: the complexity of a uniform-resolution approximator grows exponentially

with the number of state (and possibly action) variables. The second approach is

to focus the resolution in certain parts of the state(-action) space, where the value

function has a more complex shape, or where it is more important to approximate

it accurately. Prior knowledge about the shape of the value function or about the

importance of certain areas of the state(-action) space is necessary in this case. Un-

fortunately, such prior knowledge is often non-intuitive and very difficult to obtain

without actually computing the value function.

A more general alternative is to find BF s automatically, rather than designing

them. Such an approach should provide BF s suited to each particular problem. BF

s can be either constructed offline [47,51], or adapted while the DP/RL algorithm is

running [55,65]. Since convergence guarantees typically rely on a fixed set of BF s,

adapting the BF s while running the DP/RL algorithm leads to a loss of these guar-

antees. Convergence guarantees can be recovered by ensuring that BF adaptation
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is stopped after a finite number of updates; fixed-BF proofs can then be applied to

guarantee asymptotic convergence [21].

In the remainder of this section, we give a brief overview of available techniques

to find BF s automatically. Resolution refinement techniques are discussed first,

followed by BF optimization, and by other techniques for automatic BF discovery.

6.1 Resolution refinement

Resolution refinement techniques start with a few BF s (a coarse resolution) and

then refine the BF s as the need arises. These techniques can be further classified in

two categories:

• Local refinement (splitting) techniques evaluate whether a particular area of the

state space (corresponding to one or several neighboring BF s) has a sufficient

accuracy, and add new BF s when the accuracy is deemed insufficient. Such

techniques have been proposed e.g., for Q-learning [65, 66, 84], for V-iteration

[55], for Q-iteration [53, 82], and for policy evaluation [27].

• Global refinement techniques evaluate the global accuracy of the representation,

and refine the BF s if the accuracy is deemed insufficient. All the BF s can be re-

fined uniformly [19], or the algorithm can decide which areas of the state space

require more resolution [55]. For instance, in [19, 55], global refinement is ap-

plied to V-iteration, while in [77] it is used for Q-learning.

A variety of criteria are used to decide when the BF s should be refined. In [55],

an overview of typical criteria is given, together with a comparison between them

in the context of V-iteration. For instance, local refinement in a certain area can be

performed:

• when the value function is not (approximately) constant in that area [55];

• when the value function is not (approximately) linear in that area [53, 55];

• when the Bellman error (the error between the left-hand and right-hand sides of

the Bellman equation, see the upcoming Section 6.2) is large in that area [27];

• or using various other heuristics [65, 82, 84].

Global refinement can be performed e.g., until a desired solution accuracy is

met [19]. The approach in [55] works in discrete-action problems, and refines the

areas where the V-function is poorly approximated and that affect other areas where

the actions dictated by the policy change. This approach globally identifies the areas

of the state space that must be approximated more accurately in order to find a good

policy.

Resolution refinement techniques increase the memory and computational ex-

penses of the DP/RL algorithm whenever they increase the resolution. Care must

be taken to prevent the memory and computation expenses from becoming pro-

hibitive. This is an important concern both in approximate DP and in approximate

RL . Equally important in approximate RL are the restrictions imposed on resolution
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refinement by the limited amount of data available. Increasing the power of the ap-

proximator means that more data will be required to compute an accurate solution,

so the resolution cannot be refined to arbitrary levels for a given amount of data.

6.2 Basis function optimization

Basis function optimization techniques search for the best placement and shape of

a (usually fixed) number of BF s. Consider e.g., the linear parameterization (18)

of the Q-function. To optimize the n BF s, they can be parameterized by a vec-

tor of BF parameters ξ that encodes their locations and shapes. For instance, a ra-

dial BF is characterized by its center and width. Denote the parameterized BF s by

ϕl(x;ξ ) : X ×U → R, l = 1, . . . ,n, to highlight their dependence on ξ . The BF op-

timization algorithm searches for an optimal parameter vector ξ ∗ that optimizes a

certain criterion related to the accuracy of the value function representation.

Many optimization techniques can be applied to compute the BF parameters. For

instance, gradient-based optimization has been used for temporal difference [71] and

least-squares temporal difference algorithms [51]. The cross-entropy method has

been applied to least-squares temporal difference [51] and Q-iteration algorithms

[15].

The most widely used optimization criterion is the Bellman error, also called

Bellman residual [51, 71]. This is a measure of the extent to which the approximate

value function violates the Bellman equation, which would be precisely satisfied by

the exact value function. For instance, the Bellman error for an estimate Q̂ of the

optimal Q-function Q∗ is derived from the Bellman optimality equation, namely (5)

in the stochastic case and (7) in the deterministic case. So, for a deterministic MDP

, this Bellman error is:

∫

X

∫

U

∣∣∣∣Q̂(x,u)−ρ(x,u)− γ max
u′

Q̂( f (x,u),u′)

∣∣∣∣
2

dudx (44)

In practice, an approximation of the Bellman error is computed using a finite set of

samples. The suboptimality ‖Q̂−Q∗‖∞ of an approximate Q-function Q̂ is bounded

by a constant multiple of the infinity norm of its Bellman error ‖Q̂−T Q̂‖∞ [11,89].

Furthermore, the Q-function suboptimality is related to the policy suboptimality by

(23), which means that minimizing the Bellman error is useful in principle. Unfor-

tunately, minimizing the quadratic Bellman error (44) may lead to a large infinity

norm of the Bellman error, so it is unclear whether minimizing (44) leads to a near-

optimal approximate Q-function and policy.

Another possible criterion for optimizing the BF s is the performance (returns)

of the policy obtained by the DP/RL algorithm [15].
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6.3 Other methods for basis function construction

It is possible to construct BF s using various other techniques that are different from

resolution refinement and optimization. For instance, in [46, 47], a spectral analysis

of the MDP transition dynamics is performed to find the BF s. These BF s are then

used in LSPI . Because the BF s represent the underlying topology of the state

transitions, they provide a good accuracy in representing the value function.

Many nonparametric approximators can be seen as generating a set of BF s au-

tomatically. The number, location, and possibly also the shape of the BF s are not

established in advance, but are determined by the nonparametric regression algo-

rithm. For instance, in [21], regression trees are used to represent the Q-function in

every iteration of the fitted Q-iteration algorithm. The method to build the regression

trees implicitly determines a set of BF s that represent well the Q-function at the cur-

rent iteration. In [32, 90], kernel-based approximators are used in LSPI . Originally,

kernel-based approximation uses a BF for each sample, but in [90] a kernel sparsi-

fication procedure automatically determines a reduced number of BF s, and in [32]

BF s are added online only when they improve the accuracy. In [60], kernel-based

approximators are combined with value iteration. Least-squares support vector ma-

chines are applied to policy evaluation by least-squares temporal difference in [31],

and to Q-learning in [85]. Support vector regression is used with SARSA in [33].

Self-organizing maps are combined with Q-learning in [79].

Example 3 (Finding RBF s for LSPI in the DC motor problem). Consider again the

DC motor problem of Example 1, and its solution found with LSPI in Example 2.

As already discussed, the LSPI solution of Figure 7(a) does not properly take into

account the nonlinearities of the policy seen in the top-left and bottom-right corners

of Figure 3(a). This is because the corresponding variations in the Q-function, seen

in Figure 3(b), are not represented well by the wide RBF s employed. To improve the

resolution in the corners where the Q-function is not well approximated, a resolution

refinement technique could be applied.

An alternative is to parameterize the RBF s (40), and optimize their locations and

shapes. In this case, the RBF parameter vector, denoted by ξ , would contain the two-

dimensional centers and radii of all the RBF s: ξ = [c1,1,c1,2,b1,1,b1,2, . . . ,cN,1,cN,2,
bN,1,bN,2]

T. Such an approach is proposed in [51], where the Bellman error is min-

imized using gradient descent and cross-entropy optimization.

7 Approximate policy search

Algorithms for approximate policy search represent the policy approximately, most

often using a parametric approximator. An optimal parameter vector is then sought

using optimization techniques. In certain special cases (e.g., when the state space

is finite and not too large), the parameterization might exactly represent an optimal

policy. However, in general, optimal policies can only be represented approximately.
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We consider in this section policy search techniques that do not employ value func-

tions. Such techniques are useful when it is undesirable to compute value functions,

e.g., because value-function based techniques fail to obtain a good solution.

Denote by ĥ(x;ϑ) the approximate policy, parameterized by ϑ ∈ R
N . Policy

search algorithms search for an optimal parameter vector that maximizes the re-

turn Rĥ(x;ϑ) for all x ∈ X . Three additional types of approximation are necessary to

implement a general policy search algorithm (see also Section 3):

1. When X is large or continuous, computing the return for every state is not pos-

sible. A practical procedure to circumvent this difficulty requires choosing a fi-

nite set X0 of representative initial states. Returns are estimated only for states

in X0, and the optimization criterion (score) is the weighted average return over

X0 [49, 54]:

s(ϑ) = ∑
x0∈X0

w(x0)R
ĥ(x;ϑ)(x0) (45)

The representative states are weighted by w : X0 → (0,1]. The set X0, together

with the weight function w, will determine the performance of the resulting pol-

icy. For instance, initial states that are deemed more important can be assigned

larger weights. Note that maximizing the returns from states in X0 only results in

an approximately optimal policy, because it cannot guarantee that returns from

other states in X are maximal.

2. In the computation of the returns, the infinite sum in (1) has to be replaced by

a finite sum over K steps. For discounted returns, a value of K that guarantees a

maximum absolute error εMC > 0 in estimating the returns is [48]:

K =

⌈
logγ

εMC(1− γ)

‖ρ̃‖∞

⌉
(46)

where ⌈·⌉ produces the smallest integer larger than or equal to the argument (ceil-

ing).

3. Finally, in stochastic MDP s, Monte Carlo simulations are required to estimate

the expected returns. This procedure is consistent, i.e., as the number of sim-

ulations approaches infinity, the estimate converges to the correct expectation.

Results from Monte Carlo simulation can be applied to bound the approximation

error for a finite number of simulations.

If prior knowledge about a (near-)optimal policy is available, an ad-hoc policy

parameterization can be designed. For instance, parameterizations that are linear in

the state variables can be used, if it is known that a (near-)optimal policy is a lin-

ear state feedback. Ad-hoc parameterizations are typically combined with gradient-

based optimization [49, 54, 68].

When prior knowledge about the policy is not available, a richer policy param-

eterization has to be used. In this case, the optimization criterion is likely to have

many local optima, and may also be non-differentiable. This means that gradient-

based algorithms are unsuitable, and global, gradient-free optimization algorithms

are required. Examples of such techniques include evolutionary optimization (ge-
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netic algorithms in particular), tabu search, pattern search, and the cross-entropy

method. For instance, evolutionary computation has been applied to policy search

in [2, 18, 24], Chapter 3 of [17], and cross-entropy optimization in [16, 48]. Chap-

ter 4 of [17] describes a method to find a policy with the model-reference adaptive

search, which is closely related to the cross-entropy method.

Example 4 (Approximate policy search for the DC motor). Consider again the DC

motor problem of Example 1. First, we derive a policy parameterization based on

prior knowledge, and apply policy search to this parameterization. Then, a policy

parameterization that does not rely on prior knowledge is given, and the results ob-

tained with these two parameterizations are compared. To optimize the parameters,

we use the global, gradient-free pattern search optimization [42, 78].12

Because the system is linear and the reward function is quadratic, the optimal

policy would be a linear state feedback if the constraints on the state and action

variables were disregarded [9]. Taking now into account the constraints on the ac-

tion, we assume that a good approximation of an optimal policy is linear in the state

variables, up to the constraints on the action:

ĥ(x) = sat{ϑ1x1 +ϑ2x2,−10,10} (47)

where ‘sat’ denotes saturation. In fact, an examination of the near-optimal policy

in Figure 3(a) reveals that this assumption is largely correct: the only nonlinearities

appear in the top-left and bottom-right corners of the figure, and they are probably

due to the constraints on the state variables. We use the parameterization (47) and

search for an optimal parameter vector ϑ ∗ = [ϑ ∗
1 ,ϑ

∗
2 ]

T.

A set X0 of representative states must be selected. To obtain a uniform per-

formance across the state space, we select a regular grid of representative states:

X0 = {−π,−2π/3,−π/3..., . . . ,π}×{−16π,−12π,−8π, . . . ,16π}, weighted uni-

formly by w(x0) =
1

|X0|
. We impose a maximum error εMC = 0.01 in the estimation

of the return. A bound on the reward function (27) can be computed with:

‖ρ‖∞ = sup
x,u

∣∣−xTQrewx−Rrewu2
∣∣

=

∣∣∣∣−[π 16π]

[
5 0

0 0.01

][
π

16π

]
−0.01 ·102

∣∣∣∣
≈ 75.61

To find the trajectory length K required to achieve the precision εMC, we substitute

the values of εMC, ‖ρ‖∞, and γ = 0.95 in (46); this yields K = 233. Because the

problem is deterministic, simulating multiple trajectories from every initial state is

not necessary; instead, a single trajectory from every initial state suffices.

Pattern search is applied to optimize the parameters ϑ , starting with a zero initial

value of these parameters. The algorithm is considered convergent when the vari-

ation of best score decreases below the threshold εPS = 0.01 (equal to εMC). The

12 We use the pattern search algorithm from the Genetic Algorithm and Direct Search Toolbox of

MATLAB 7.
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resulting policy is shown in Figure 10. As expected, it closely resembles the near-

optimal policy of Figure 3(a), with the exception of the nonlinearities in the corners.
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Fig. 10 Results of policy search on the DC motor with the policy parameterization (47). The policy

parameter is ϑ̂ ∗ ≈ [−16.69,−1]T.

The execution time of pattern search was approximately 152 s. This is larger

than the execution time of fuzzy Q-iteration in Example 1, which was 6 s for the

fine grid and 0.5 s for the coarse grid. It is comparable to the execution time of

LSPI in Example 2, which was 105 s when using exact policy improvements, and

104 s with approximate policy improvements. Policy search spends the majority of

its execution time estimating the score function (45), which is a computationally

expensive operation. For this experiment, the score of 74 different parameter vectors

had to be computed until convergence. The complexity can be decreased by taking

a smaller number of representative states or larger values for εMC and εPS, at the

expense of a possible decrease in the control performance.

Consider now the case in which no prior knowledge about the optimal policy is

available. In this case, a general policy parameterization must be used. We choose

the linear policy parameterization (36), repeated here for easy reference:

ĥ(x) =
N

∑
i=1

ϕi(x)ϑi = ϕT(x)ϑ

Normalized RBF s (40) are defined, with their centers arranged on an equidistant

7×7 grid in the state space. The radii of the RBF s along each dimension are taken

identical to the distance along that dimension between two adjacent RBF s. A num-

ber of 49 parameters (for 7×7 RBF s) have to be optimized. This number is larger

than for the parameterization (47) derived from prior knowledge, which only had 2

parameters. The same X0, εMC, and εPS = 0.01 are used as for the simple parameter-

ization.

The solution obtained by pattern search optimization is shown in Figure 11. Com-

pared to Figure 10, the policy varies more slowly in the linear portion; this is because

the wide RBF s used lead to a smooth interpolation. The score obtained by the RBF

policy of Figure 11 is −230.69, slightly worse than the score obtained by the policy

of Figure 10, which is −229.25.
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Fig. 11 Results of policy search on the DC motor with the policy parameterization (36).

The algorithm required 30487 s to converge, and had to compute the score of

11440 parameter vectors. As expected, the computational cost is much larger than

for the simple parameterization, because many more parameters have to be opti-

mized. This illustrates the benefits of using a policy parameterization that is appro-

priate for the problem considered. Unfortunately, deriving an appropriate parame-

terization requires prior knowledge, which is not always available.

8 Comparison of approximate value iteration, policy iteration,

and policy search

While a definitive comparison between approximate value iteration, approximate

policy iteration, and approximate policy search will depend on the particular algo-

rithms considered, some general remarks can be made.

Algorithms for approximate policy iteration often converge in a smaller number

of iterations than algorithms for approximate value iteration, as illustrated in Ex-

amples 1 and 2. However, approximate policy evaluation is a difficult problem in

itself, which must be solved at each single policy iteration. Since the cost of a pol-

icy evaluation may be comparable to the cost of value iteration, it is unclear how the

entire policy iteration algorithm compares to value iteration from the point of view

of computational cost.

The convergence guarantees for approximate policy evaluation impose less re-

strictive requirements on the approximator than the guarantees of approximate value

iteration; this is an advantage for approximate policy iteration. Namely, for policy

evaluation it suffices if the approximator is linearly parameterized (Section 5.3),

whereas for value iteration additional properties are required to ensure that the ap-

proximate value iteration mapping is a contraction (Section 4.3). Moreover, efficient

least-squares algorithms such as LSTD-Q can be used to compute a ‘one-shot’ solu-

tion to the policy evaluation problem. These advantages stem from the linearity of

the Bellman equation for the value function of a given policy, e.g., (8); whereas the

Bellman optimality equation, which characterizes the optimal value function, e.g.,

(7), is highly nonlinear due to the maximization in the right-hand side. Note how-

ever that for value iteration, monotonous convergence to a unique solution is usu-
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ally guaranteed, whereas policy iteration is generally only guaranteed to converge

to a sequence of policies that all provide at least a guaranteed level of performance

(see Section 5.3).

Approximate policy search is useful in two cases. The first case is when the form

of a (near-)optimal policy is known, and only a few parameters need to be deter-

mined. In this case, optimization can be used to find a good parameter vector with

moderate computational costs. The second case is when, even though prior knowl-

edge is not available, it is undesirable to compute value functions, e.g., because

value-function based techniques fail to obtain a good solution or require too restric-

tive assumptions. In this case, a general policy parameterization can be defined, and

a policy search technique that does not rely on value functions can be used to opti-

mize the parameters. Such techniques are usually free from numerical problems –

such as divergence to infinity – even when used with general nonlinear parameteri-

zations, which is not the case for value and policy iteration. However, because of its

generality, this approach typically incurs large computational costs.

9 Summary and outlook

This chapter has described DP and RL for large or continuous-space, infinite-

horizon problems. After introducing the necessary background in exact DP and RL ,

the need for approximation in DP and RL has been explained, and approximate ver-

sions for the three main categories of DP/RL algorithms have been discussed: value

iteration, policy iteration, and policy search. Theoretical guarantees have been given

and practical algorithms have been illustrated using numerical examples. Addition-

ally, techniques to automatically determine value function approximators have been

reviewed, and the three categories of algorithms have been compared.

Approximate DP/RL is a young, but active and rapidly expanding field of re-

search. Many issues in this field remain open. Some of these issues are specific to

approximate DP/RL , while others also apply to exact DP and RL .

Next, we discuss some open issues that are specific to approximate DP and RL .

• Automatically finding good approximators is essential in high-dimensional prob-

lems, because approximators that provide a uniform accuracy would require too

much memory and computation. Adaptive value-function approximators are be-

ing extensively studied (Section 6). In policy search, finding approximators auto-

matically is a comparatively under-explored, but promising idea. Nonparametric

approximation is an elegant and powerful framework to derive a good approxi-

mator from the data [21, 32, 90].

• Continuous-action MDP s are less often studied than discrete-action MDP s,

among others because value iteration and policy improvement are significantly

more difficult when continuous actions are considered (Section 3). However, for

some problems continuous actions are important. For instance, stabilizing a sys-

tem around an unstable equilibrium requires continuous actions to avoid chat-

tering of the control action, which would otherwise damage the system in the
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long run. Continuous actions are easier to handle in actor-critic and policy search

algorithms [38, 54, 62].

• Owing to their sample efficiency and relaxed convergence requirements, least-

squares techniques for policy evaluation are extremely promising in approximate

policy iteration. However, they typically work offline and assume that a large

number of samples is used for every policy evaluation. From a learning perspec-

tive, it would be interesting to study these techniques in the online case, where

the policy must be improved once every few samples, before each policy evalua-

tion has converged. Such optimistic, least-squares policy iteration algorithms are

rarely studied in the literature.

Finally, we present several important open issues that apply to both the exact and

approximate cases.

• In practice, it is essential to provide guaranteed performance during online RL

. Online RL algorithms should ideally guarantee a monotonous increase in their

expected performance. Unfortunately, this is generally impossible, because all

the online RL algorithms need to explore, i.e., try out actions that may be subop-

timal, in order to make sure their performance does not remain stuck in a local

optimum. Therefore, weaker requirements could be used, where an overall trend

of increased performance is guaranteed, while still allowing for bounded and

temporary decreases in performance due to exploration.

• Designing a good reward function is an important and nontrivial step of applying

DP and RL . Classical texts on RL recommend to keep the reward function as

simple as possible; it should only reward the achievement of the final goal [74].

Unfortunately, a simple reward function often makes online learning very slow,

and more information may need to be included in the reward function. Such

informative rewards are sometimes called shaping rewards [58]. Moreover, ad-

ditional, higher-level requirements often have to be considered in addition to the

final goal. For instance, in automatic control the controlled state trajectories of-

ten have to satisfy requirements on overshoot and the rate of convergence to an

equilibrium, etc. Translating such requirements into the ‘language’ of rewards

can be very challenging.

• It is important to address problems in which the state signal cannot be measured

directly, because such problems often arise in practice. These problems are called

partially observable in the DP/RL literature. Algorithms for this type of problem

are being extensively researched [4, 34, 50, 59, 63].

• RL has become one of the dominating paradigms for learning in distributed,

multi-agent systems [13]. New challenges arise in multi-agent RL , as opposed

to the single-agent case. Two major new challenges are that the curse of dimen-

sionality is made worse by the multiple agents present in the system, and that the

control actions of the agents must be coordinated in order to reach their intended

result. Approximation is an essential, though largely unexplored open issue also

in multi-agent RL . This means that a good understanding of single-agent ap-

proximate RL is required to develop effective multi-agent RL algorithms.
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43. Lin, L.J.: Self-improving reactive agents based on reinforcement learning, planning and teach-

ing. Machine Learning 8(3/4), 293–321 (1992). Special Issue on Reinforcement Learning.

44. Liu, D., Javaherian, H., Kovalenko, O., Huang, T.: Adaptive critic learning techniques for en-

gine torque and air-fuel ratio control. IEEE Transactions on Systems, Man, and Cybernetics—

Part B: Cybernetics 38(4), 988–993 (2008)

45. Madani, O.: On policy iteration as a newton s method and polynomial policy iteration algo-

rithms. In: Proceedings 18th National Conference on Artificial Intelligence and 14th Con-

ference on Innovative Applications of Artificial Intelligence AAAI/IAAI-02, pp. 273–278.

Edmonton, Canada (2002)

46. Mahadevan, S.: Samuel meets Amarel: Automating value function approximation using global

state space analysis. In: Proceedings 20th National Conference on Artificial Intelligence and

the 17th Innovative Applications of Artificial Intelligence Conference (AAAI-05), pp. 1000–

1005. Pittsburgh, US (2005)

47. Mahadevan, S., Maggioni, M.: Proto-value functions: A Laplacian framework for learning rep-

resentation and control in Markov decision processes. Journal of Machine Learning Research

8, 2169–2231 (2007)

48. Mannor, S., Rubinstein, R.Y., Gat, Y.: The cross-entropy method for fast policy search. In:

Proceedings 20th International Conference on Machine Learning (ICML-03), pp. 512–519.

Washington, US (2003)

49. Marbach, P., Tsitsiklis, J.N.: Approximate gradient methods in policy-space optimization of

Markov reward processes. Discrete Event Dynamic Systems: Theory and Applications 13,

111–148 (2003)

50. McCallum, A.: Overcoming incomplete perception with utile distinction memory. In: Pro-

ceedings 10th International Conference on Machine Learning (ICML-93), pp. 190–196.

Amherst, US (1993)

51. Menache, I., Mannor, S., Shimkin, N.: Basis function adaptation in temporal difference rein-

forcement learning. Annals of Operations Research 134, 215–238 (2005)

52. Millán, J.d.R., Posenato, D., Dedieu, E.: Continuous-action Q-learning. Machine Learning

49(2-3), 247–265 (2002)

53. Munos, R.: Finite-element methods with local triangulation refinement for continuous rein-

forcement learning problems. In: Proceedings 9th European Conference on Machine Learning

(ECML-97), pp. 170–182. Prague, Czech Republic (1997)

54. Munos, R.: Policy gradient in continuous time. Journal of Machine Learning Research 7,

771–791 (2006)

55. Munos, R., Moore, A.: Variable-resolution discretization in optimal control. Machine Learn-

ing 49(2-3), 291–323 (2002)

56. Nakamura, Y., Moria, T., Satoc, M., Ishiia, S.: Reinforcement learning for a biped robot based

on a CPG-actor-critic method. Neural Networks 20, 723–735 (2007)
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