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Stability analysis and controller synthesis

for hybrid dynamical systems†

By W.P.M.H. Heemels, B. De Schutter, J. Lunze, and M. Lazar‡

Wherever continuous and discrete dynamics interact, hybrid systems arise. This is
especially profound in many technological systems in which logic decision making
and embedded control actions are combined with continuous physical processes.
Also for many mechanical, biological, electrical, and economical systems the usage
of hybrid models is indispensable to adequately describe their behavior. To capture
the evolution of these systems, mathematical models are needed that combine in
one way or another the dynamics of the continuous parts of the system with the
dynamics of the logic and discrete parts. These mathematical models come in all
kinds of variations, but basically consist of some form of differential or difference
equations on the one hand and automata or other discrete-event models on the
other hand. The collection of analysis and synthesis techniques based on these
models forms the research area of hybrid systems theory, which plays an important
role in the multi-disciplinary design of many technological systems that surround
us. This paper presents an overview from the perspective of the control community
on modeling, analysis, and control design for hybrid dynamical systems and surveys
the major research lines in this appealing and lively research area.

Keywords: Hybrid systems, piecewise affine systems, stability, control design

1. Introduction

Basically, hybrid systems theory studies the behavior of dynamical systems that
are modeled through mathematical formalisms that involve both continuous models
such as differential or difference equations, and discrete models such as finite state
machines or automata. The term “hybrid systems” expresses that the dynamical
systems at hand describe a mixture of heterogeneous modeling formalisms, namely
continuous models as adopted in mathematical control theory and discrete models
as used in computer science. In this particular context, the term was used for the
first time in (Witsenhausen, 1966).

A textbook example of a hybrid system considers the regulation of the temper-
ature in a house. In a simplified description, the heating system is assumed either
to work at its maximum power or to be turned off. This system can operate in
two modes: “on” and “off”. In each mode of operation (given by the discrete state
q ∈ {on, off}) the evolution of the temperature T can be described by a different

† The authors are grateful for the permission of Cambridge University Press to use parts of
their chapters in (Lunze and Lamnabhi-Lagarrigue, 2009) in this overview paper.
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2 W.P.M.H. Heemels et al.
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q(t) = on

Ṫ (t) = 30− T (t)
T (t) ≤ Tmax

q(t) = off

Ṫ (t) = 10− T (t)
T (t) ≥ Tmin

T (t) ≥ Tmax

T (t) ≤ Tmin

Figure 1. Model of a temperature control system.

differential equation. This is illustrated in Fig. 1 in which each mode corresponds
to a node of a directed graph, while the edges indicate the possible discrete state
transitions. As such, this system has a hybrid state (q, T ) consisting of a discrete
state q taking the discrete values “on” and “off” and a continuous state T taking
values in the real numbers.

Clearly, the value of the discrete state q affects the evolution of the continuous
state T as a different vector field is active in each mode. Vice versa, the switching
between the two modes of operation is controlled by a logical device (the embedded
controller) called the thermostat and depends on the value of the continuous state
T . The mode is changed from “on” to “off” whenever the temperature T reaches the
value Tmax = 21 (determined by the desired temperature, which is, say, 20 degrees
Celcius). Vice versa, when the temperature T reaches a minimum value Tmin = 19,
the heating is switched “on.”

This example already shows some of the main features of hybrid systems:

• The system has a hybrid state consisting of a discrete state q (taking a finite
number of values only) and a continuous state T .

• The continuous behavior of the system depends on the discrete state, i.e., de-
pending whether the mode is “on” or “off” a different dynamics Ṫ (t) =
30 − T (t) or Ṫ (t) = 10 − T (t), respectively, governs the evolution of the
temperature T .

• The changes of the discrete state q are determined by the continuous state T

and different conditions on T might trigger the change of the discrete state
(e.g., when the discrete state is “on,” T = Tmax = 21 triggers the mode
change, while T = Tmin = 19 triggers the change when the discrete state is
“off.”)

Although the above example is extremely simple, it reflects already the interac-
tions between embedded controllers with a discrete character on the one hand and
physical processes with a continuous character on the other as are omnipresent in
technological systems such as wafer scanners, electron microscopes, copiers, robotic
systems, automobiles, and many more. The growing complexity of technological
systems urged for a deeper understanding of the complicated interaction between
the discrete and continuous dynamics in the early nineties. As a result, the academic
world started investigating the rich behavior that is produced by these hybrid sys-
tems in the mid 90s. This is evidenced by the start of a workshop series (Henzinger
and Sastry, 1998) and many special issues being published in that period (Antsaklis
and Nerode, 1998; Morse et al., 1999; Pnueli and Sifakis, 1995).
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Stability and control for hybrid systems 3

In technological (man-made) systems the digital and logic (embedded control)
aspects are typically brought in by design in order to control the physics and me-
chanics of the system. However, hybrid modeling and systems theory is not only
useful within the technological domain. Many physical processes exhibiting both
fast and slow changing behaviors can often be well described by using (simple) hy-
brid models. For instance, in non-smooth mechanics (Brogliato, 1996), the evolution
of impacting rigid bodies can be captured by hybrid models. Indeed, as the impacts
occur at a much smaller time scale than the unconstrained motion, the behavior
can be described well by introducing discrete events (corresponding to impacts) and
discrete (reset) actions in a smooth model. Also the vector fields defining the behav-
ior of the system might be different over time as they depend crucially on the fact
whether a contact is active or not. The dynamics of a robot arm moving freely in
space is completely different from the situation in which it is striking the surface of
an object. Other hybrid examples in mechanics include motion systems with friction
models that distinguish between stick and slip modes, backlash in gears, dead zones
in cog wheels, etc. Clearly, examples are not only found in the mechanical domain.
Nowadays switches such as thyristors and diodes are used in electrical networks
for a wide variety of applications in both power engineering and signal processing.
Examples include switched-capacitor filters, modulators, analog-to-digital convert-
ers, power converters, and choppers. As an example, consider diodes, which in the
ideal case behave as elements with two (discrete) modes: the blocking mode and
the conducting mode. Mode transitions for diodes are governed by state events,
where currents or voltages change their sign. This indicates that hybrid modeling
and analysis techniques offer an attractive perspective on these switched circuits as
well. Also many biological and chemical systems can often be efficiently described
by hybrid models, as is clear from various papers in this special issue.

Given the wealth of applications and the urgent need for more systematic design
methods for technological systems, the enormous interest in the field of hybrid
systems does not come as a surprise. Various interesting results are obtained over
the years, although many problems remain to be unsolved at present. In this paper
we intend to provide an introduction to hybrid dynamical systems and review the
main research lines from the perspective of the control community. For more details
on these research lines we will present various references for further reading. In this
manner this paper can be used as a starting point for research in the hybrid systems
area.

2. A selection of hybrid modeling formats

The thermostat example has already shown some of the basic ingredients that are
needed to properly model hybrid systems. A proper modeling format must involve
(at least) the description of the evolution of both continuous-valued signals (tem-
peratures, positions, velocities, currents, voltages, etc.) and discrete-valued signals
(operation mode, position of a switch, alarm on or off, etc.) over time and their
mutual influence. Below we will discuss various hybrid models that indeed include
these characteristics.
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4 W.P.M.H. Heemels et al.

(a) Hybrid automata

A widely used model for hybrid systems, is the hybrid automaton model that
combines finite state machines / automata as adopted in computer science, and
differential equations as used in mathematical control theory. This model was for-
malized for the first time by (Alur et al., 1995) and in the meantime many variations
and ramifications have been proposed in the literature, see, e.g., (Alur and Hen-
zinger, 1997; Cassandras and Lafortune, 1999; Lynch et al., 1996; Lygeros et al.,
1998; Branicky et al., 1998). There are also stochastic versions of hybrid automata,
see, e.g., (Cassandras and Lygeros, 2007) and the references therein. Here we present
a basic deterministic version without external inputs for brevity.

Definition A hybrid automaton H is an 8-tuple H = (Q,X, f, Init, Inv, E,G,R)
with

• Q = {q1, . . . , qN} is a finite set of discrete states;

• X = R
n is a set of continuous states;

• f : Q×X → X is a vector field;

• Init ⊆ Q×X is a set of initial states;

• Inv : Q → P (X) describes the invariants;

• E ⊆ Q×Q is a set of edges;

• G : E → P (X) is a guard condition;

• R : E → P (X ×X) is a reset map.

Note that P (X) is the power set of X, i.e., the collection of all subsets of X. Hence,
the guard condition G specifies for each mode transition or edge a subset of X. The
(hybrid) state variable of the system H is given by (q, x) ∈ Q×X.

Just to indicate briefly how this dynamical system behaves, we give a short,
rather informal description. The initial hybrid state (q0, x0) of “trajectories” of a
hybrid automaton must be contained in the initial set Init. From this hybrid state
the continuous state x evolves according to the differential equation

ẋ = f(q0, x) with x(0) = x0

while the discrete state q remains constant: q(t) = q0. The continuous evolution
can go on as long as x stays in Inv(q0). If at some point the continuous state
x reaches the guard G(q0, q1), we say that the transition is enabled. The discrete
state may then change to q1, and the continuous state jumps from the current value
x− to a new value x+ that satisfies (x−, x+) ∈ R(q0, q1) †. After this transition, the
continuous evolution resumes and the whole process is repeated.

† Sometimes the resets are given as x+ = r(q0,q1)(x
−), which can be incorporated in the reset

map by taking R(q0, q1) = {(x, r(q0,q1)(x)) | x ∈ X}.
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Stability and control for hybrid systems 5

(q0, x0) ∈ Init

q0

ẋ = f(q0, x)

x ∈ Inv(q0)

q1

ẋ = f(q1, x)

x ∈ Inv(q1)

q2

ẋ = f(q2, x)

x ∈ Inv(q2)

G(q0, q1)

G(q1, q0)

G(q1, q2)

G(q2, q1)

G(q0, q2)

G(q2, q0)

R(q0, q1)

R(q1, q0)

R(q1, q2)

R(q2, q1)

R(q0, q2)

R(q2, q0)

Figure 2. Schematic representation of a hybrid automaton with 3 discrete states. Each node
of the directed graph represents a mode (operating point) given by a set of differential
equations. The arrows indicate the possible discrete transitions that correspond to a change
of the mode, which can be accompanied by resets of the continuous state variable.

(b) Switched systems

A quite general class of hybrid systems, although less general than hybrid au-
tomata, concerns switched systems given by

ẋ(t) = fq(t)(x(t)) (2.1)

where x ∈ R
n denotes the state and q : R+ → {1, . . . , N} is the switching signal

that determines which vector field fq with q ∈ {1, . . . , N} is active at time t ∈ R+.
For a fixed q, (2.1) describes a non-switched system, which is sometimes called a
subsystem of the switched system. In case fq(x) = Aqx with Aq ∈ R

n×n, we speak
about a switched linear system. The switching can depend on time only, but it can
also be a function of the state x(t) at time t or of an external input, and it can even
have memory in it. In particular, when the switching only depends on the state
variable x(t) at the present time t, one speaks of discontinuous dynamical systems
or piecewise smooth systems.

(c) Discontinuous dynamical systems and piecewise affine systems

A typical example of a discontinuous dynamical system is the system below,
which switches between two (smooth) vector fields as a result of inequalities in the
state variable:

ẋ(t) = f(x(t)) =

{

f−(x(t)), if φ(x(t)) ≤ 0

f+(x(t)), if φ(x(t)) ≥ 0
(2.2)
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6 W.P.M.H. Heemels et al.

For this system the state space is separated into two parts by a hyper-surface defined
by φ(x) = 0. On one side of the surface C+ := {x ∈ R

n | φ(x) > 0} the dynamics
ẋ = f+(x) holds, on the opposite side C− := {x ∈ R

n | φ(x) < 0} the dynamics
ẋ = f−(x) is valid. Hence, one can also consider this system as a differential equation
with a discontinuous right-hand side (Filippov, 1988). A distinctive difference with
hybrid automata is that the state variable x(t) does not have any discontinuities.

If the discontinuous dynamical system has affine dynamics in each region and the
regions are polytopic (i.e., given by a finite number of linear or affine inequalities),
we obtain the well-studied class of piecewise affine (PWA) systems (Sontag, 1981,
1996), which can be considered both in a discrete or continuous-time formulation.
Continuous-time PWA systems are described by

ẋ(t) = Aqx(t) +Bqu(t) + fq when

[

x(t)

u(t)

]

∈ Cq (2.3)

for the operation modes q ∈ {1, . . . , N}, where C1, . . . , CN are convex polyhedra in
the input/state space R

n+m with non-overlapping interiors. The variables u(t) ∈
R

m and x(t) ∈ R
n denote the input and state respectively, at time t ∈ R+. Aq ∈

R
n×n, Bq ∈ R

n×m and fq ∈ R
n are constant matrices for q ∈ {1, . . . , N}.

PWA systems have been studied extensively as they form the “simplest” ex-
tension of linear systems that can still approximate nonlinear (smooth and some
non-smooth) models with arbitrary accuracy and are capable of handling some hy-
brid phenomena, as is shown in the discrete-time setting in (Heemels et al., 2001).

For other classes of hybrid models such as mixed logical dynamical (MLD)
models (Bemporad and Morari, 1999), complementarity systems (van der Schaft
and Schumacher, 1996, 1998), hybrid inclusions or impulsive systems (Goebel et al.,
2004; Goebel and Teel, 2006; Haddad et al., 2006), timed automata (special case
of hybrid automata) (Alur and Dill, 1994), and many others, see e.g. (Lunze and
Lamnabhi-Lagarrigue, 2009; van der Schaft and Schumacher, 2000).

3. Stability analysis

The analysis of the stability property for hybrid systems received ample attention
over the years, see, e.g., the book (Liberzon, 2003) or one of the surveys (Lin and
Antsaklis, 2009; Shorten et al., 2007; Liberzon and Morse, 1999; DeCarlo et al.,
2000). We will focus here mostly on the stability and stabilization of switched
and discontinuous dynamical systems, but we will also indicate some results for
other classes of hybrid models towards the end of this section. Loosely speaking,
global asymptotic stability (GAS) (of the origin 0) of switched systems as in (2.1)
or discontinuous dynamical systems as in (2.2) means that for each initial state
x(0) the corresponding solution trajectories x(t) satisfy limt→∞ x(t) = 0 (so-called
attractivity) and that solutions starting close to the origin 0 (i.e., x(0) is close to
0) remain close to 0 (so-called Lyapunov stability). See the textbook (Khalil, 1996)
for more details on stability concepts.

Before we start surveying stability results for switched systems one should first
formally define what is meant by the solution trajectories of the models under
study, as is also reflected by the (loose) definition of GAS just given as it requires
certain properties of the solutions of the system. In addition, some well-posedness
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Figure 3. Behavior of the stable linear submodels ẋ1 = A1x (left) and ẋ2 = A2x (right),
where the initial state is denoted by the circle ◦.

properties in the sense of existence (and maybe also uniqueness) of solutions given
an initial condition might be convenient to make the stability property meaningful.
Clearly, the adopted solution concept will have an influence on the stability notion.
In particular, one has to be careful with certain hybrid phenomena such as Zenoness
and sliding modes that do not appear in smooth systems. Zenoness indicates that
there are an infinite number of discrete events (switching of discrete mode or resets
of state variables) in a finite length time interval, while sliding modes occur in
discontinuous dynamical systems such as (2.2) when the vector fields on both sides
of the switching surface point towards each other (Filippov, 1988). In the latter
case, infinitely fast chattering between both dynamics might occur resulting in a
motion (“sliding”) along the switching surface. Clearly, if Zenoness and/or sliding
modes occur one has to be careful with the analysis, see, e.g., (Liberzon, 2003)
and (Heemels and Weiland, 2008) in which this is demonstrated for the stability
problem in case sliding modes are present. For overviews on solution concepts and
well-posedness the reader might consult (Heemels et al., 2003; Cortes, 2008; Lunze
and Lamnabhi-Lagarrigue, 2009).

Interestingly, stability of hybrid or switched systems cannot be tackled by just
investigating stability of the subsystems only. This is illustrated by the following
example taken from (Branicky et al., 1998). Consider

ẋ =

{

A1x if x1x2 ≤ 0

A2x if x1x2 > 0
with A1 =

(

−1 10

−100 −1

)

and A2 =

(

−1 100

−10 −1

)

(3.1)
By inspection of the eigenvalues of A1 and A2, which for both matrices are λ1,2 ≈
−1 ± 31.62 i, one can see that both of the dynamics are globally asymptotically
stable (cf. the phase portraits in Fig. 3), but the piecewise linear system (3.1) is
not (see Fig. 4).

This example shows that stability is a real “hybrid problem,” which requires
novel stability analysis techniques beyond the large body of work on stability for
continuous systems. In this survey, we will discuss two interesting questions with
respect to stability of the switched system (2.1). First, we consider the case of
stability under arbitrary switching and then stability for a given class of switching
strategies.
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8 W.P.M.H. Heemels et al.
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Figure 4. Unstable piecewise linear system (3.1).

(a) Stability under arbitrary switching

(i) General switched systems

We will say that the system (2.1) is globally uniformly asymptotically stable
(GUAS), if there exists a KL function β† such that for all switching signals q and
any initial state x(0) the corresponding solutions x of (2.1) satisfy the inequality

‖x(t)‖ ≤ β(‖x(0)‖, t) for all t ≥ 0 (3.2)

where ‖x(t)‖ :=
√

∑n
i=1 x

2
i (t). Note that this implies that a switched system that

is GUAS, has the properties limt→∞ x(t) = 0 for all solutions of the system (at-
tractivity) and ‖x(t)‖ ≤ β(‖x(0)‖, 0) for all t ≥ 0 and thus for any arbitrary small
neighborhood of 0 all trajectories can be guaranteed to stay in this neighborhood
by taking ‖x(0)‖ sufficiently small (Lyapunov stability). The terminology uniform
is employed here to indicate the uniformity with respect to the switching signals:
The bound (3.2) is independent of the particular choice of q.

Given a continuously differentiable (C1) function V : Rn → R, we will say that
it is a common Lyapunov function for the switched system (2.1), if V is positive
definite (i.e., V (0) = 0 and V (x) > 0 when x 6= 0) and

LfiV (x) :=
∂V

∂x
fi(x) < 0, for all x 6= 0 and all i = 1, . . . , N (3.3)

It is well established (Liberzon and Morse, 1999; Molchanov and Pyatnitskiy, 1989;
Dayawansa and Martin, 1999) that if a common Lyapunov function exists for the
switched system, then the switched system is GUAS as formalized in the next
theorem.

Theorem 3.1. If the switched system (2.1) has a common Lyapunov function that
is radially unbounded (i.e., V (x) → ∞ when ‖x‖ → ∞), then the switched system
is GUAS.

As is the case for smooth systems also a converse Lyapunov result exists for
switched systems under arbitrary switching. We assume that the functions fi in
(2.1) are locally Lipschitz continuous.

† A function ϕ : R+ → R+ belongs to class K if it is continuous, strictly increasing and
ϕ(0) = 0. A function β : R+ ×R+ → R+ belongs to class KL if for each fixed k ∈ R+, β(·, k) ∈ K
and for each fixed s ∈ R+, β(s, ·) is decreasing and limk→∞ β(s, k) = 0.
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Stability and control for hybrid systems 9

Theorem 3.2. (Mancilla-Aguilar and Garcia, 2000) If the switched system (2.1)
is GUAS, then it has a radially unbounded common Lyapunov function.

Hence, GUAS (under arbitrary switching) of a switched systems is equivalent
to the existence of a radially unbounded common Lyapunov function. However, in
general it may be hard to construct such common Lyapunov functions. Nevertheless,
for switched linear systems a particular class of common Lyapunov functions can
be easily computed - provided there exists one.

(ii) Switched linear systems

Stability of switched linear systems of the form

ẋ(t) = Aq(t)x(t) (3.4)

with q(t) ∈ {1, . . . , N} for all t ∈ R+ and Ai ∈ R
n×n, i ∈ {1, . . . , N} can also be

approached by the common Lyapunov approach and in imitation of linear systems
one can aim to use a quadratic Lyapunov function of the form V (x) = x⊤Px with
P a positive definite matrix†. If the condition (3.3) is applied for a switched linear
system using a quadratic Lyapunov function V (x) = x⊤Px, the following result is
readily obtained.

Theorem 3.3. Suppose the set of linear matrix inequalities (LMIs)

A⊤
i P + PAi ≺ 0 for all i = 1, . . . , N (3.5)

has a solution P ≻ 0. Then the switched linear system (3.4) is GUAS.

It is important to note that the above LMI conditions are only sufficient for
GUAS, but not necessary. Examples of switched linear systems exist that are
GUAS, but do not allow a common quadratic Lyapunov function, see (Dayawansa
and Martin, 1999). However, one can always show that if the switched linear
system (3.4) is GUAS, then there is a common Lyapunov function of the form
V (x) = maxi=1,2,...,k(l

⊤
i x)

2 for certain constant vectors li, i = 1, . . . , k (Meilakhs,
1978; Molchanov and Pyatnitskiy, 1989).

Under certain additional assumptions such as pairwise commutation of A1,. . .,
AN (Narendra and Balakrishnan, 1994) or all matrices A1, . . . , AN being upper
(or lower) triangularizable (Mori et al., 1997; Liberzon et al., 1999; Agrachev and
Liberzon, 2001), one can actually show that a switched linear system is GUAS if
and only if there exists a common quadratic Lyapunov function. Actually, under
these additional assumptions, the switched linear systems is GUAS if and only if
all matrices Ai, i = 1, . . . , N are Hurwitz (all eigenvalues having strictly negative
real parts).

(b) Stability for classes of switching signals

In various situations the switching strategy is already given. As such, the switch-
ing is not arbitrary, but belongs to a specific class. Of course, one can still apply

† We write H ≻ 0 when x⊤Hx > 0 for all x 6= 0 (i.e., H is positive definite) and H ≺ 0 when
x⊤Hx < 0 for all x 6= 0 (i.e., H is negative definite.)
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10 W.P.M.H. Heemels et al.
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Figure 5. Multiple Lyapunov functions.

the results based on a common Lyapunov function as it shows stability for any
switching signal, but one has to realize that such a test is conservative. In this
section less conservative results will be presented for switched systems with either
state-dependent or time-dependent switching. However, we will start with a general
approach as proposed by (Branicky, 1998).

(i) General approach based on multiple Lyapunov functions

A general idea for the stability analysis of switched systems (2.1) is based on
multiple Lyapunov functions (Branicky, 1998). The idea hinges on the fact that the
underlying subsystems given by ẋ = fi(x), i = 1, . . . , N , are globally asymptoti-
cally stable (GAS). Let Vi, i = 1, . . . , N , be their respective Lyapunov functions.
Since we assume that no common Lyapunov function exists, this means that the
switched system is not GUAS and (asymptotic) stability only holds for particular
classes of switching signals q (cf. Theorem 3.2). Let the switching times be given
by tk, k = 0, 1, 2, . . . Note that the switching times are given by the times at which
the switching signal q is discontinuous. The question that arises now is for which
switching signals / times global asymptotic stability (GAS) of the switched system
can be proven.

In general the function t 7→ Vq(t)(x(t)) will be discontinuous. Since Vi is a
Lyapunov function when submodel i (ẋ = fi(x)) is active, Vi may increase when
submodel i is not active (See Figure 5). Without additional conditions this can still
cause Vq(t)(x(t)) to go to infinity when t → ∞ as in the piecewise linear (PWL)
system (3.1). Hence, additional conditions are needed if we would like to guarantee
GAS. In (Branicky, 1998), one proposed to put conditions on the values of the ith
Lyapunov function at the beginning of each time interval on which the ith submodel
becomes active as formulated in the next theorem.

Theorem 3.4. Consider the switched system (2.1) with all submodels ẋ = fi(x),
i = 1, . . . , N , being GAS and let Vi, i = 1, . . . , N , be corresponding Lyapunov
functions. Suppose that there is a class K function ρ with the property that for every
pair of switching times (tk, tl), k < l such that q(tk) = q(tl) = i and q(tm) 6= i

for any switching time tm with tk < tm < tl, we have Vi(x(tk)) − Vi(x(tl)) ≤
−ρ(‖x(tl)‖), then the switched system is GAS for these sets of switching times.

Preprint for Royal Society



Stability and control for hybrid systems 11

See (Branicky, 1998) for a proof. Note that in the formulation of the theorem
we assume q to be right continuous, i.e., limt↓t0 q(t) = q(t0) for all t0.

In general this theorem is difficult to apply as we need to have information on
the trajectories of the system at switching time instants. However, in the special
case that the switching is induced in particular ways, life can become easier. For
instance, when the switching is determined on the basis of the state variable only
(e.g., as in (2.2)), one can try to impose continuity of the Lyapunov functions across
the switching surfaces, as will be shown in the next section.

(ii) State-dependent switching: the case of piecewise linear systems

Consider piecewise linear systems given by

ẋ = Aix, when Eix ≥ 0, i ∈ {1, . . . , N} (3.6)

where x ∈ R
n, Ai ∈ R

n×n, and Ei ∈ R
ki×n, i = 1, . . . , N . The inequality Eix ≥ 0

has to be interpreted componentwise and this defines a region Xi = {x ∈ R
n |

Eix ≥ 0} in the state space R
n in which ẋ = Aix is active. We assume that the

cells Xi, i ∈ {1, . . . , N} form a partitioning of the state space in the sense that
⋃N

i=1 Xi = R
n and the cells Xi, i ∈ {1, . . . , N} have pairwise disjoint interiors.

Trajectories are assumed not to have sliding modes. Hence, we do only consider
solutions to the system that satisfy for almost all times t > 0 ẋ(t) = Aix(t) for
some i ∈ {1, . . . , N} for which x(t) ∈ Xi holds. Moreover, we assume that there
exist matrices Fi, Fj such that Fix = Fjx for all x ∈ Xi ∩Xj . In (Johansson, 2003)
the construction of Fi, i = 1, . . . , N , is discussed. These matrices play an essential
role in guaranteeing continuity of the overall Lyapunov function.

There are several relaxations possible to the construction of a common quadratic
Lyapunov function that would imply GUAS for arbitrary switching. First of all,
one can require that the derivative LfiV (x) := ∂V

∂x
fi(x) of V (x) = x⊤Px along

ẋ = fi(x) is only negative in the region where the subsystem is active. Secondly,
one can use multiple Lyapunov functions, say Vi(x) = x⊤Pix for each submodel as
in Theorem 3.4. Finally, one can require that the Lyapunov function Vi(x) = x⊤Pix

is only positive definite in its active region Xi. These relaxations lead to the following
theorem as given in (Johansson and Rantzer, 1998).

Theorem 3.5. If one can find symmetric matrices T , Wi and Ui with Ui and Wi

having nonnegative entries and such that Pi := F⊤
i TFi, i = 1, . . . , N satisfy the

LMIs
A⊤

i Pi + PiAi + E⊤
i UiEi ≺ 0, i = 1, . . . , N (3.7)

Pi − E⊤
i WiEi ≻ 0, i = 1, . . . , N (3.8)

then every continuous piecewise continuously differentiable trajectory (without slid-
ing modes) of (3.6) tends to zero exponentially.

As indicated at the end of Section 3(i) the goal was to obtain a continuous
Lyapunov function. Here, the Lyapunov function is chosen as V (x) = x⊤Pix =
x⊤F⊤

i TFix when x ∈ Xi. Due to the property that was imposed on the matrices
Fi, i = 1, . . . , N , we have that on the boundaries of the cells, e.g., x ∈ Xi ∩ Xj , it
holds that

x⊤Pix = x⊤F⊤
i TFix = x⊤F⊤

j TFjx = x⊤Pjx
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12 W.P.M.H. Heemels et al.

thereby proving continuity of the Lyapunov function V . Since in each region strict
decrease of V is imposed by (3.7) and positive definiteness of V is guaranteed
by (3.8), global exponential stability and thus GAS can be proven for (3.6). The
obtained conditions are only sufficient for GAS of (3.6), not necessary. Note that,
in contrast with Theorem 3.1 and Theorem 3.4, the hypotheses of Theorem 3.5 do
not require stability of the dynamics ẋ = Aix, i = 1, . . . , N ,

These basic ideas can be extended in various directions. For instance, piecewise
affine systems were studied by Johansson (2003); Rantzer and Johansson (2000).
The direct inclusion of the sliding modes in the LMI-based stability analysis was
considered by Heemels and Weiland (2008). For discrete-time switched linear sys-
tems and piecewise affine systems the reader may consult (Ferrari-Trecate et al.,
2002a; Daafouz et al., 2002; Johansson, 2003), where stability analysis methods
based on multiple or piecewise quadratic (PWQ) Lyapunov functions are presented.
Important subtleties in the (robust) stability analysis for discrete-time discontinu-
ous and hybrid systems were recently exposed in (Lazar et al., 2009). Stability of
piecewise polynomial systems and “polynomial hybrid systems” (including resets
of the states) using a convex programming framework for the numerical compu-
tation of Lyapunov functions (based on sum-of-squares techniques) was given in
(Papachristodoulou and Prajna, 2009). Other approaches that allow some memory
in the switching (e.g., hybrid automata with affine dynamics in each modes and
without resets) are studied in, e.g., (Johansson, 2003) and (Langerak et al., 2003).

(iii) Time-dependent switching: Restricted dwell times

Other classes of switching strategies can be characterized by dwell time restric-
tions on the switching signal q in (2.1). The dwell time restrictions impose limita-
tions on how long the switched system will be in a particular mode, see (Hespanha
and Morse, 1999; Solo, 1994). For instance, one can adopt the minimal dwell time
condition that imposes that two subsequent switching times are separated by at
least τd > 0 time units. Of course, if the system is switching between GAS subsys-
tems and τd is sufficiently large (for instance, to guarantee that the norm of the
state vector at a switching time is strictly smaller than the norm of the state at the
previous switching time as in line with the rationale of Theorem 3.4), GAS of (2.1)
is obtained. In other words, if the switching between GAS subsystems is sufficiently
slow, then the switched system is GAS as well. Here, we will actually consider a
more general result based on average dwell time restrictions, which contains minimal
dwell time conditions as a special case.

The concept of average dwell time was introduced by Hespanha and Morse
(1999). To introduce this concept formally, let a switching signal q : R+ → {1, . . . , N}
be given. The number of discontinuities of q (switchings) on an interval (t, T ) is de-
noted by Nq(t, T ). We say that q has the average dwell time τa if there exists a
positive number N0 such that

Nq(t, T ) ≤ N0 +
T − t

τa
for all T ≥ t ≥ 0 (3.9)

Note that when N0 = 0 this implies that q has no discontinuities at all and
hence, there is no switching. When N0 = 1 we have that q cannot switch twice
on an interval of length smaller than τa. Hence, in the latter case we recover the
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case of minimal dwell time τd = τa. Generally speaking, if we discard the first N0

switchings, then the average time between consecutive switches is at least τa.
Based on average dwell time restrictions, stability conditions of switched systems

(2.1) are available:

Theorem 3.6. Consider the switched system (2.1). Suppose that there exist con-
tinuously differentiable (C1) functions Vi : R

n → R+, i = 1, . . . , N and constants
0 < a < b, p ∈ N, µ ≥ 1, and λ0 > 0 such that for all i = 1, . . . , N

• a‖x‖p ≤ Vi(x) ≤ b‖x‖p for all x ∈ R
n;

• ∂Vi

∂x
fi(x) ≤ −λ0Vi(x) for all x ∈ R

n;

• Vi(x) ≤ µVj(x) for all i, j ∈ {1, . . . , N} and all x ∈ R
n.

Then the switched system (2.1) is globally asymptotically stable for every switching
signal q with average dwell time τa > lnµ

λ0

(and N0 arbitrary).

See the book by (Liberzon, 2003) for the proof and more discussion on this
interesting topic. The second condition in the above theorem states that Vi is a
Lyapunov function for the ith subsystem ẋ = fi(x) and hence, all subsystems are
necessarily GAS. Stability under dwell time conditions of switched systems with
unstable subsystems was studied by Liu et al. (2009).

(iv) Further stability results

In case one is interested in systems with resets of the continuous state variable
one might consider, next to the earlier mentioned work in (Papachristodoulou and
Prajna, 2009), the results for hybrid inclusions (sometimes also called jump-flow
systems) with flows ẋ ∈ F (x) if x ∈ C and resets x+ ∈ G(x) if x ∈ D. The survey
(Goebel et al., 2009) on hybrid inclusions is a good entry point to some (robust)
stability theorems for such systems. Also the book by Haddad et al. (2006) on
impulsive systems contains various interesting results on stability, dissipativity and
beyond. For more information on stability analysis of hybrid systems one can also
consult one of the surveys (Lin and Antsaklis, 2009; Shorten et al., 2007; Liberzon
and Morse, 1999; DeCarlo et al., 2000).

4. Control design

In the previous section we have presented stability characterizations for various
classes of hybrid systems. In this section we consider the stabilization problem that
considers the issue of how to adapt or design a given hybrid system such that it
becomes stable (given the design freedom). For instance, if there are free control
inputs, one could pose the question of how to choose a controller for the hybrid
system, which results in a stable closed-loop system.

(a) LMI-based control

Consider the switched linear system with added control inputs u(t) ∈ R
m, t ∈ R,

ẋ(t) = Aq(t)x(t) +Bq(t)u(t), q(t) ∈ I = {1, . . . , N} (4.1)
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14 W.P.M.H. Heemels et al.

Suppose we would like to construct a feedback controller u(t) = Kq(t)x(t) that
renders the switched linear system GUAS (under arbitrary switching). This means
that we have to find K1, . . . ,KN such that

ẋ(t) = (Aq(t) +Bq(t)Kq(t))x(t) (4.2)

is GUAS. Note that this setup requires that we know the mode that is currently
active as we schedule the feedback gains Ki accordingly. Based on the previously
mentioned characterizations for GUAS, a sufficient condition is to find a common
quadratic Lyapunov function V (x) = x⊤Px for some positive definite matrix P

such that

(Ai +BiKi)
⊤P + P (Ai +BiKi) ≺ 0 for all i = 1, . . . , N and P ≻ 0 (4.3)

These equations can be transformed into LMIs by pre-multiplying and post-
multiplying by P−1 yielding

P−1(Ai +BiKi)
⊤ + (Ai +BiKi)P

−1 ≺ 0 for all i = 1, . . . , N and P−1 ≻ 0

which gives rise to the LMIs

ZAi
⊤ +AiZ + Yi

⊤B⊤
i +BiYi ≺ 0 for all i = 1, . . . , N and Z ≻ 0

after the change of variables Z := P−1 and Yi := KiP
−1. Once we have solved

these LMIs P can be recovered as Z−1 and the stabilizing feedback gains are given
by Ki = YiZ

−1, i = 1, . . . , N . In case the mode is not known, one can try to design
a mode-independent stabilizing feedback u(t) = Kx(t) instead (by taking Ki = K,
i = 1, . . . , N and using Yi = Y , i = 1, . . . , N in the above procedure).

In the same spirit one might be interested in the stabilization of piecewise linear
systems (3.6), with the control input u added just as in (4.1), using the ideas of
Theorem 3.5 together with the above transformations to obtain LMIs for the design
of a PWL feedback stabilizing the system. Unfortunately, this approach results in
design conditions formulated as bilinear matrix inequalities (BMIs), which are much
harder to solve than LMIs. It is generally believed that these conditions cannot be
transformed into LMIs.

(b) Model predictive control

One of the few general approaches to the design of controllers for hybrid systems
in the discrete-time setting is model predictive control (MPC), which is based on
solving optimal control problems. One of the nice features of MPC is that it can
easily include control and state constraints. The only concerns, in particular in
the hybrid context, are to guarantee that the resulting control law has favorable
properties such as stability and robustness and to efficiently solve and implement
the optimal control problems. Below we provide a brief introduction to the general
setup of MPC and we refer the reader for more extensive information on MPC to,
e.g., (Mayne et al., 2000; Maciejowski, 2002; Findeisen et al., 2003; Rawlings and
Mayne, 2009).

Preprint for Royal Society



Stability and control for hybrid systems 15

(i) MPC setup

Although MPC can be based on many model types, let us focus for the sake of
simplicity on discrete-time PWA systems of the form

xk+1 = Aqxk +Bquk + fq when xk ∈ Xq (4.4)

with the operation modes q ∈ {1, . . . , N}. Aq ∈ R
n×n, Bq ∈ R

n×m, and fq ∈ R
n

are constant matrices and vectors for q ∈ {1, . . . , N} and X1, . . . ,XN are convex
polyhedra forming a partitioning of the set X ⊆ R

n (i.e., X =
⋃

q Xq and the regions
Xq, q ∈ {1, . . . , N} do not overlap). The variable xk ∈ X ⊆ R

n is the state and
uk ∈ U ⊆ R

m is the control action at the discrete-time instant k ∈ N. Note that
(4.4) is a discrete-time variant of (2.3). The sets X and U specify possible state
and input constraints and it is assumed that they are compact polyhedral sets that
contain the origin in their interiors. We assume for simplicity that fq = 0 for all
q ∈ {1, . . . , N} for which the closure of Xq contains the origin 0, which implies
that the origin is an equilibrium state for (4.4) with uk = 0. The control goal is to
stabilize this equilibrium by suitable selection of the control input uk at each time
k ∈ N exploiting information on the state variable xk.

MPC is based on using the model (4.4) and the current information of the state
xk to predict the future behavior of the state x over a prediction horizon N ≥ 1,
N ∈ N, for choices of the future input sequence, and to select a future input sequence
that minimizes some cost criterion J . In particular, let xk(xk,uk) , (x1|k, . . . , xN |k)

denote the state sequence generated by system (4.4) from initial state x0|k , xk

and by applying the input sequence uk := (u0|k, . . . , uN−1|k) ∈ U
N to (4.4), where

U
N , U × . . . × U. The class of admissible input sequences defined with respect

to XT and state xk ∈ X is UN (xk) , {uk ∈ U
N | xk(xk,uk) ∈ X

N , xN |k ∈ XT },
where we added a terminal constraint xN |k ∈ XT to guarantee favorable properties
of the controlled system. XT ⊆ X is a desired target set that contains the origin in
its interior, which has to be chosen in the design.

Problem 4.1. Let the target set XT ⊆ X and N ∈ N be given and let F : Rn → R+

with F (0) = 0 and L : Rn × R
m → R+ with L(0, 0) = 0 be mappings. At time

k ∈ N let xk ∈ X be given. Find uk that minimizes the cost function J(xk,uk) :=

F (xN |k)+
∑N−1

i=0 L(xi|k, ui|k), with prediction model (4.4), over all input sequences
uk ∈ UN (xk).

In the MPC literature, F , L and N are called the terminal cost, the stage cost
and the prediction horizon, respectively. We call an initial state x0 ∈ X feasible if
UN (x0) 6= ∅. Let Xf (N) ⊆ X denote the set of feasible initial states. We assume

that there exists a unique optimal sequence of controls u∗
k , (u∗

0|k, u
∗
1|k, . . . , u

∗
N−1|k)

for Problem 4.1 and any state xk ∈ Xf (N). Then, the MPC control law is defined
as

uMPC(xk) , u∗
0|k; k ∈ N (4.5)

Basically, the system (4.4) is controlled by the MPC law as in (4.5), which operates
in a receding horizon fashion in the sense that at each time k ∈ N a new optimal
control problem as in Problem 4.1 (depending on xk) is solved providing an optimal
control sequence. Only the first control move in this sequence is selected and actually
implemented on the plant (4.4). At the next time k + 1 xk+1 is measured and the
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optimal control problem is solved again, but now for xk+1. Interestingly, the above
framework is quite flexible as it can be based on practically any model (as long as
the solutions to the optimization problem can be computed fast enough) and can
easily incorporate constraints on states and control inputs.

(ii) Stability

It is not always guaranteed that an MPC controller, although optimizing a
performance criterion involving the state variable, indeed stabilizes the plant. For
linear systems and smooth nonlinear systems several approaches are known that
assure that particular MPC set-ups are globally† asymptotically stable (GAS), see,
e.g., (Mayne et al., 2000). These are based on, for instance, putting an explicit
condition such as xN |k ∈ XT and a weight F in the cost criterion on the termi-
nal state at the end of the prediction horizon. One such example is the use of an
end-point equality constraint of the form xN |k = 0, i.e., XT is taken to be {0}.
Using such a condition in the MPC setup, a result on attractivity (all trajectories
converging to the equilibrium state) was shown in (Bemporad and Morari, 1999)
for the case where the plant (4.4) is replaced by a so-called mixed logical dynamical
(MLD) model, which is given by linear equations and inequalities involving real
and boolean variables. As proven in (Heemels et al., 2001) there exist strong re-
lationships between MLD models and PWA models as in (4.4) (and other model
classes). Although this attractivity result is of interest and one of the first within
hybrid MPC, it is rather conservative in two ways. First of all, it relies on a terminal
equality constraint, which is a severe condition as it requires the property that one
can regulate any initial state of interest in finite time to 0 (this property is called
(null) controllability), while weaker conditions (called stabilizability in control the-
ory) should be sufficient. Secondly, the theorem only provides attractivity and not
Lyapunov stability. As such, results that relax the terminal equality constraint to
milder conditions such as, for instance, xN |k ∈ XT , and guarantee Lyapunov sta-
bility are of interest. In (Lazar et al., 2006) conditions are provided for asymptotic
stability (including Lyapunov stability) of discrete-time PWA systems in closed
loop with MPC. However, due to the discontinuity of the corresponding closed-loop
system and candidate Lyapunov function, such stability certificates may be fragile
in the presence of arbitrarily small perturbations, as shown in (Lazar et al., 2009).
Therefore, guarantees of robust stability, i.e., stability in the presence of perturba-
tions, are of importance as well and these are studied in, e.g., (Lazar and Heemels,
2009).

(iii) Implementation issues

MPC is based on solving, in principle, an optimization problem as in Prob-
lem 4.1 at each time k ∈ N. Due to the presence of the discrete modes this requires
the solution of optimization problems involving both integers and real variables. In
particular, in case of a discrete-time PWA system as in (4.4) and a cost criterion
that consists of quadratic terms this results in mixed integer quadratic program-
ming (MIQP) problems. If a linear cost criterion is used (involving for instance

† Globally indicates here that convergence to the equilibrium state 0 is guaranteed for each
trajectory starting in any feasible initial state.
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1- or ∞-norms) a mixed integer linear programming (MILP) problem has to be
solved. Particularly convenient hybrid model formats for the formulation of hybrid
MPC problems as MILP or MIQP are the earlier mentioned mixed logical dynam-
ical (MLD) systems (Bemporad and Morari, 1999). More details on the conversion
of Problem 4.1 for PWA or MLD models into MILP or MIQP problems can be
found in (Bemporad and Morari, 1999). Using the relationships between MLD and
PWA systems as in (Heemels et al., 2001) one can use the MLD modeling format
also to describe PWA systems. In (Bemporad and Morari, 1999) branch-and-bound
methods (Fletcher and Leyffer, 1998) are proposed to solve the resulting MPC opti-
mization problems on-line, although other methods to solve them are also available.
Unfortunately, MIQP and MILP problems are in general hard to solve (they are
so-called “NP-hard”) and problems with large dimensions can easily become compu-
tationally intractable for on-line implementation. Exploiting the possibly available
structure in the optimization problem at hand to reduce the computational burden
is then of interest. As an example, in (De Schutter and van den Boom, 2004) im-
plementation issues are discussed for continuous PWA systems using the continuity
of the right-hand side.

An important alternative approach to solving the optimization problems on-
line is so-called explicit MPC in which the optimal feedback law as in (4.5) is
solved explicitly as a function of xk. Indeed, if the MPC-problem 4.1 gives rise to
an MILP formulation, there exists an approach based on multi-parametric linear
programming in which the MPC input as in (4.5) can be computed explicitly as a
PWA function of xk. This function can be computed explicitly off-line and stored
in a look-up table. For the on-line control, one only then has to evaluate this PWA
function, which has clear advantages over solving the MILP on-line at each discrete-
time step. However, the number of regions of the PWA function also increases
rapidly as the size of the MPC problem increases, which also may render the explicit
MPC computationally intractable. For more information on explicit MPC we refer
the reader to (Bemporad et al., 2002a,c; Borrelli, 2003). It is of interest to mention
that in case MPC is applied to a constrained linear system with quadratic costs the
resulting explicit control law is also a PWA function (Bemporad et al., 2002b,c). In
other words, the optimal control law for a constrained discrete-time linear systems
with quadratic costs is a “hybrid” (namely PWA) state feedback. This indicates
the importance of hybrid control also in the context of smooth systems.

(c) Other control methods

Given the space constraints of this survey paper, it is of course impossible to
discuss all available hybrid control methodologies. Below we will provide a few ad-
ditional pointers to some other approaches. In (Habets et al., 2006) an approach
is given for controller synthesis of hybrid automata with affine dynamics in each
mode, polyhedral invariants, and affine reset laws. This class of hybrid automata
includes continuous-time PWA systems as a particular case. Based on computation-
ally tractable conditions affine state feedback laws can be constructed that guaran-
tee that the continuous state will leave the polyhedral invariant (region) correspond-
ing to the affine dynamics of the present mode through a specific facet (edge) of
the polyhedral region. The information of the (im)possibility is stored in a discrete-
event abstraction (an automaton) that specifies which transitions can be guaranteed
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by proper choice of affine feedback. This discrete-event abstraction is then used to
determine if one can steer the state of the system towards specific regions avoiding
possible unsafe regions. This methodology is constructive in nature and was already
used by other authors to solve (hybrid) control problems, see e.g., (Kloetzer and
Belta, 2008). Related ideas can be found in (Tabuada, 2009). Other ideas for the
design of stabilizing switching strategies for switched linear systems (although ap-
plicable only in a rather limited setting) are provided in (Wicks et al., 1998), see
also, e.g., (Liberzon, 2003). Based on a convex combination of the matrices Ai that
is Hurwitz (if it exists), state-dependent and time-dependent switching laws can
be designed, based on a quadratic Lyapunov function for the convex combination,
that render the overall switched linear system globally asymptotically stable. Re-
lated to the above mentioned MPC approaches, which predominantly are studied in
the discrete-time context, there are also optimal control approaches for continuous-
time hybrid systems, see, e.g., (Cassandras et al., 2001; Branicky et al., 1998; Xu
and Antsaklis, 2004; Rantzer and Johansson, 2000; De Schutter, 2000; Hedlund
and Rantzer, 2002) and the references therein. Also hybrid extensions are available
of the celebrated Pontryagin’s maximum principle, giving necessary conditions for
optimality in optimal control problems, see, e.g., (Sussmann, 1999; Garavello and
Piccoli, 2005).

5. Other control-related topics

In this section we briefly discuss some other interesting control theoretic topics for
hybrid systems.

Observer design and state estimation for hybrid systems is also a topic of inter-
est as the full state variable is only rarely available. In this situation it might be
convenient to obtain a good estimate of the (hybrid) state variable. Several papers
are available on observer design for hybrid systems, especially in the context of
switched and piecewise linear systems. The problem turns out to be complicated,
especially when the mode of the system is not known or cannot be directly recon-
structed on the basis of the available measurements. The situation becomes even
more complicated when resets of the continuous state variable are present in the
hybrid system at hand. Good starting points for investigating hybrid observers are,
for instance, (Alessandri and Coletta, 2001; Bara et al., 2001; Juloski et al., 2007;
Petterson, 2005; Balluchi et al., 2002; Ferrari-Trecate et al., 2002b; van de Wouw
and Pavlov, 2008) and the references therein.

As observed above, the stability analysis and controller design are all model-
based, which means that systematic identification methods to obtain appropriate
hybrid models on the basis of measured data are indispensable. Some approaches for
the identification of hybrid systems are described in (Juloski et al., 2005b; Ferrari-
Trecate et al., 2003; Roll et al., 2004; Vidal et al., 2003; Bemporad et al., 2005),
while a comparison between various identification procedures is given in (Juloski
et al., 2005a). The comparison paper also presents important problems that hybrid
identification methods have to face.

In section 3 the fundamental properties of well-posedness (existence and unique-
ness of trajectories given an initial condition and external signals) was briefly men-
tioned. More information on this challenging subject can be found in (Heemels et al.,
2003; Cortes, 2008). Other fundamental properties of hybrid systems are controlla-
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bility, stabilizability, observability and detectability, which have played a central role
throughout the history of modern control theory. The complexity of characterizing
controllability and stabilizability for hybrid systems has been studied in (Blondel
and Tsitsiklis, 1999). In these papers it was shown that even for very elementary
classes of hybrid systems there is no algorithm to decide the controllability status
of a given system. Hence, there is no hope to find complete conditions that char-
acterize these properties for general hybrid systems. The best one can aim for are
characterizations for some specific classes of hybrid systems. In this context con-
trollability problems for piecewise linear systems and various related model classes
have been studied by (Camlibel et al., 2008; Lee and Arapostathis, 1987; Bempo-
rad et al., 2000; Blondel and Tsitsiklis, 1999; Habets and van Schuppen, 2001) to
mention a few. A similar story holds for observability and detectability (Bemporad
et al., 2000; Camlibel et al., 2006; Babaali and Egerstedt, 2004; Collins and van
Schuppen, 2004).

6. Concluding remarks

The aim of this survey was to provide an overview of representative results in hybrid
systems theory as obtained by the control community. Clearly, a survey written by
computer scientists might have emphasized different aspects of hybrid systems and
we refer the interested reader to the references in this survey to get a broader and
more in-depth perspective on hybrid systems. In this way, we hope that this survey
can serve as a good starting point to learn more about the different modeling,
analysis and control design techniques that are available for hybrid systems.

It is without any dispute that the field of hybrid systems will grow in the near
future due to the rich application fields ranging from man-made (technological)
systems to naturally occurring physical systems exhibiting hybrid behavior, as is
evidenced by the many interesting papers in this special issue. In particular, the
current interest in networked control systems will spur the application and develop-
ment of hybrid systems theory even further in the years to come as communication
networks introduce additional discrete phenomena (scheduling protocols, message
loss, etc.) in the control of physical systems.
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tomata using conservative gains. In Proceedings of IFAC Conference on Analysis
and Design of Hybrid Systems, pages 337–342, Saint Malo, France, 2003.

M. Lazar and W.P.M.H. Heemels. Predictive control of hybrid systems: Input-
to-state stability results for sub-optimal solutions. Automatica, 45(1):180–185,
2009.

M. Lazar, W.P.M.H. Heemels, S. Weiland, and A. Bemporad. Stabilizing model
predictive control of hybrid systems. IEEE Trans. Autom. Control, 51(11):1813–
1818, 2006.

M. Lazar, W. P. M. H. Heemels, and A. R. Teel. Lyapunov functions, stability and
input-to-state stability subtleties for discrete-time discontinuous systems. IEEE
Trans. Autom. Control, 54:2421–2425, 2009.

K.K. Lee and A. Arapostathis. On the controllability of piecewise-linear hypersur-
face systems. Systems & Control Letters, 9:89–96, 1987.

D. Liberzon. Switching in Systems and Control. Systems & Control: Foundations
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