
Delft University of Technology
Delft Center for Systems and Control

Technical report 10-032

Performance analysis of irrigation
channels with distributed control∗

Y. Li and B. De Schutter

If you want to cite this report, please use the following reference instead:
Y. Li and B. De Schutter, “Performance analysis of irrigation channels with dis-
tributed control,” Proceedings of the 2010 IEEE International Conference on Control
Applications, Yokohama, Japan, pp. 2148–2153, Sept. 2010. doi:10.1109/CCA.2010.
5611113

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/10_032.html

https://doi.org/10.1109/CCA.2010.5611113
https://doi.org/10.1109/CCA.2010.5611113
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/10_032.html


Performance Analysis of Irrigation Channels with Distributed Control

Yuping Li and Bart De Schutter

Abstract— For a string of pools with distant-downstream
control, the internal time-delay for water transport from
upstream to downstream not only limits the local control per-
formance of regulating water-levels at setpoints and rejecting
offtake disturbances in each pool, but also impacts the global
performance of managing the water-level error propagation
and attenuating the amplification of control actions in the
upstream direction. A distributed control scheme which inherits
the interconnection structure of the plant is studied. It is shown
that the decoupling terms in the controller helps to improve
global closed-loop performance by decreasing the low-frequency
gain of the closed-loop coupling. Moreover, they compensate for
the influence of the time-delay by imposing extra phase lead-
lag compensation in the mid-frequency range on the closed-loop
coupling function.

I. INTRODUCTION

Water is becoming a scarce resource all over the world.

Irrigation accounts for 70% of water usage [1]. Fig. 1 shows

the topview of a typical irrigation network. Water is drawn
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Fig. 1. Topview of an irrigation network

from the reservoir and distributed through the main channel

and many secondary channels to farms. Along the channels,

mechanical gates are installed to regulate the flow, as shown

in Fig. 2. A stretch of water between two neighbouring gates

is called a pool. An irrigation network is largely gravity-fed

(i.e. there is no pumping); to satisfy water-demands from

farms and to decrease water wastage, the water-levels in

the pools should be regulated to certain setpoints. Since

most farms sit at the downstream ends of pools, it is more

important to control downstream water-levels. To avoid the

excessive communication load for large-scale system, decen-

tralised control is preferred to centralised control. In practice,
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Fig. 2. An irrigation channel (Source: Rubicon Systems Australia Pty. Ltd)

a distant-downstream control structure (i.e. use upstream gate

to control downstream water-level of a pool) is implemented

for good management of water service and water distribution

efficiency [2]. Further, an irrigation channel is a system

presenting strong interactions between pools, i.e. the flow

into a pool is equivalent to the flow out of the neighbouring

upstream pool. When offtakes occur at downstream pool, one

could see amplification of the control action (e.g. flow over

upstream gates) and water-level error propagation towards

upstream, see [3], [9]. Therefore, control objectives for large-

scale irrigation network involve: locally, setpoints regulation,

rejection of offtake disturbances, avoiding excitement of

dominant waves and, globally, management of the water-

level error propagation and attenuation of the amplification

of control action in the upstream direction. As shown in [9],

there exists a tradeoff between the local and the global con-

trol performance. To cope with such a tradeoff, a distributed

control scheme that inherits the interconnecting structure of

the plant is suggested in [3], [4]. Such a distributed control

scheme presents performance advantage over decentralised

feedback with feedforward control [5].

In fact, one big issue in control design for an irrigation

network comes from the time-delay in each pool, i.e. the

time for transporting water from the upstream gate to the

downstream gate. In this paper, the impact of the internal

time-delays on the local and global control performance is

analysed. Further, we discuss how the distributed control

scheme compensates for such impact. Although the paper

focuses on irrigation networks, the discussion can be ex-

tended to many practical networks that involve internal time-

delay. The paper is organised as follows. Section II briefly

introduces modelling of an irrigation channel and designing

of the distributed controller. In Section III, discussions are

made on how the distributed control scheme manages the

water-level error propagation and attenuates the amplification



of control actions in the upstream direction. Section IV

summarises the paper.

II. MODELLING OF A CHANNEL AND

DESIGNING OF DISTRIBUTED CONTROLLER

Fig. 3 shows an irrigation channel with a special struc-

tured distributed control, i.e. the information flow is uni-

directional: from controller Ki+1 to controller Ki. When wa-

ter offtakes occur in a pool, such an interconnection structure

confines the water-level error propagation and amplification

of control action in the upstream pools. Hence, such a

control scheme avoids the requirement of water storage at

the downstream end of the channel.
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Fig. 3. Distributed control of an open water channel

A. Plant model

A simple model of the water-level in pooli can be obtained

by conservation of mass [3], [6]:

αiẏi(t) = ui(t− τi)− vi(t)− di(t),

where ui is the flow over the upstream gate, vi the flow over

the downstream gate, di models the offtake load-disturbances

from pooli; τi is the transport delay of water from upstream

gate to downstream gate of the pool, and αi a measure of the

pool surface area. Note the interconnection vi = ui+1, i.e.

the flow out from pooli equals the flow into pooli+1. Taking

Laplace transform, yields

Pi : yi(s) =
1

sαi

(

e−sτiui − vi − di
)

(s). (1)

B. Designing of the distributed controller
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Fig. 4. Localised portion of distributed controller design

Fig. 4 shows a localised portion of a channel under

distributed distant-downstream control, where Pi is the nom-

inal model (1) for pooli, and Ki in Fig. 3 is split into

a loop-shaping weight Wi and a compensator K∞i
(with

yKi and uK
i , input from and output to the shaped plant,

respectively). Note the constraint on the interconnection

between controllers vKi = wK
i+1. Designing of the distributed

controller consists of the following three steps, which are

consistent with the well-known H∞ loop-shaping approach

[11].

1) Design Wi to shape Pi based on local performance.

Typical offtakes di are step disturbances; based on

the internal model principle [7], a simple selection

could be Wi = κi

s
for zero steady-state water-level

error. For robust stability, κi is selected such that

the local crossover frequency ωci ≤ 1/τi (see [8]).

Denote zi :=
(

ei, u
K
i

)T
and ni := (ri,∆ui, di)

T
,

with ri the water-level setpoint and ∆ui modelling

additional uncertainty in flow over gatei. For a channel

of N pools, Let Gs := (Gs1 , . . . , GsN ) denote the

interconnection of the shaped plant

Gsi :=
( vi

ni

uK
i

)

7→
( wi

zi
yK
i

)

=







0 ( 0 1 0 ) 1
(

1
sαi

0

) (

1 e−sτi

−sαi

1
sαi

0 0 0

) (

e−sτi

−sαi

1

)

Wi
sαi

(

Wi
e−sτiWi

−sαi

Wi
sαi

)

e−sτiWi
−sαi







with vi = wi+1 and boundary condition vN = 0. Note

that such a boundary condition is possible with distant-

downstream control.

2) Synthesise K∞i
to cope with the tradeoff between

local performance and closed-loop coupling.1 Let

K∞ := (K∞1
, . . . ,K∞N

) denote the interconnection

of

K∞i
:=

(

vK
i

yK
i

)

7→
(

wK
i

uK
i

)

with vKi = wK
i+1 and boundary condition vKN = 0;

and let H(Gs,K∞) denote the closed-loop transfer

function from (n1, . . . , nN )T to (z1, . . . , zN )T . The

synthesis problem is formulated as

min
K∞∈Ksyn

γ

subject to (2)

‖H(Gs,K∞)‖
∞

< γ

where Ksyn represents the set of stablising K∞’s. Note

that we use ‖·‖∞ to denote the H∞ norm of a transfer

function. Such a structured optimisation problem can

be solved by employing the technique in [10], see [4].

3) The final distributed controller is then given by

Ki :=
(

vK
i
ei

)

7→
(

wK
i
ui

)

= K∞i

[

1 0
0 Wi

]

.

III. CLOSED-LOOP PERFORMANCE

For distant-downstream control, the internal time-delay τi
limits the local performance. For example, the local band-

width limit of 1/τi is previously considered in the selection

1For local performance, one considers ei to be small; while closed-loop
coupling is cause by control action ui to compensate ei. As shown in [3],
[9], for purely decentralised feedback control, Tri 7→ei

+ Tdi 7→ui
e−sτi =

1.



of the weight gain, κi. In this section, the influences of τi on

the closed-loop coupling are discussed. It is shown that such

time-delays, not only make it difficult to manage the water-

level error propagation, but also cause the amplification of

control action, in the upstream direction. Further, analysis is

made on how the distributed control compensates for such

influences.

A. The impact of τi on global closed-loop performance

From (1), for a channel of N pools





y1

...
yN−1

yN



 =







G1 G̃1

. . .
. . .

GN−1 G̃N−1

GN











u1

...
uN−1

uN





+

[

G̃1

. . .
G̃N

](

d1

...
dN

)

(3)

where Gi = 1
sαi

e−sτi and G̃i = − 1
sαi

. As previously

mentioned, it is reasonable to assume vN = 0 as boundary

condition for synthesis of the distributed controller under

distant-downstream control. The distributed controller is rep-

resented by

K1 : u1 = [K21
1 K22

1 ]
(

wK
2
e1

)

Ki :
(

wK
i
ui

)

=
[

K11
i K12

i

K21
i K22

i

] (

wK
i+1

ei

)

for i = 2, . . . , N − 1

KN :
(

wK
N

uN

)

=
[

K12
N

K22
N

]

eN

This gives the general form of the distributed controller K:
(

u1

...
uN

)

=

[

K11 ··· K1N

. . .
...

KNN

](

e1

...
eN

)

; (4)

where for i = 1, . . . , N , Kii = K22
i , which takes care of

local performance, and the additional decoupling terms

Ki,i+1 = K21
i K12

i+1, (5)

Kij = K21
i

(

j−1
∏

k=i+1

K11
k

)

K12
j for j > i+ 1.

Note that ei = ri − yi. Then the closed-loop relationship

between water-level errors and offtake disturbances is:
(

e1

...
eN

)

=

[

M11 ··· M1N

. . .
...

MNN

](

d1

...
dN

)

(6)

where for i = 1, . . . , N , Mii = −G̃i (1 +GiKii)
−1

and for

j ≥ i+ 1

Mij = Mii

j
∑

k=i+1

(

Ki+1,k −Kike
−sτi

)

Mkj . (7)

We see that the closed-loop transfer matrix is upper-

triangular, hence the multivariable system inherits the local

stabilities. That is, the multivariable system is stable if and

only if all monovariable systems are stable. Since all the

lower off-diagonal entries are null, even for model mismatch,

robustness is also inherited from local systems. A perfect

decoupling is achieved if for all j > i,

Ki+1,j −Kije
−sτi = 0. (8)

This requires Kij = Ki+1,je
sτi , which is non-causal and

hence impractical.

Next, analysis of global closed-loop performance is

made on the two typical coupling properties of a (distant-

downstream) controlled irrigation channel: water-level error

propagation and amplification of control action. Assume only

dN occurs in the system, while di = 0 for i = 1, . . . , N −1.

Then from (6),

Tei+1 7→ei := Mi,NM−1
i+1,N

= Mii(Ki+1,i+1−e−sτiKi,i+1) +

Mii

N
∑

k=i+2

(Ki+1,k−Kike
−sτi)MkN

(

Mi+1,i+1

N
∑

k=i+2

(Ki+2,k−Ki+1,ke
−sτi+1)MkN

)−1

.

Small ‖Tei+1 7→ei‖∞ (e.g. ≪ 1) represents a good manage-

ment of the water-level error propagation.

Remark 1: For the case of a string of identical pools with

purely decentralised feedback control (i.e. K = diag (Kii)),
Tei+1 7→ei = MiiKi+1,i+1. If the selected Kii’s are identical

for all i = 1, . . . , N , then ‖Tei+1 7→ei‖∞ > 1 (see [3], [9]).

Such a strategy, i.e. designing Kii only based on local control

performance, creates very strong coupling between loops

(since ‖Tei+1 7→ei‖∞ occurs at the same frequency for all

i). Instead, to decouple the interaction between pools, one

can design Kii’s such that the downstream closed-loop be

slower than the upstream ones.2 However, it is nontrivial to

cope with the tradeoff between local performance and closed-

loop decoupling by simply tuning the feedback controller.

In contrast, the resulted distributed controller, by taking the

three steps in Section II, optimises a measure of the global

performance, accounting for such a tradeoff. ◦
From (4) and (6), the coupling of control actions respond-

ing to dN is

Tui+1 7→ui
:=

N
∑

k=i

KikMkN

(

N
∑

k=i+1

Ki+1,kMkN

)−1

.

The following discussion shows that ‖Tui+1 7→ui
‖∞ > 1.

For an irrigation channel with purely decentralised feed-

back control, i.e. K in (4) being diagonal, Tui+1 7→ui
=

MiiKii = −G̃iKii

(

1− G̃iKiie
−τis

)−1

. Note that G̃iKii

involves two integrators.3 Applying Lemma 9.3 of [7], it is

straightforward to prove ‖Tui+1 7→ui
‖∞ > 1.

Generally, under distant-downstream control (i.e. without

the constraints that K in (4) be diagonal), to compensate

2Such a scheme is similar as the one suggested in [12] for the control of
a platoon of vehicles, that string instability can be avoided at the expense
of successively more aggressive control laws with linearly increasing gains.

3As previously discussed, for zero steady-state water-level error, an
integrator is involved in Kii.



i τi αi ψi

1 6 min 10344 m2 0.349 rad/min

2 25 min 39352 m2 0.084 rad/min

3 15 min 26317 m2 0.140 rad/min

TABLE I

POOL MODEL PARAMETERS: DELAY (τi), SURFACE AREA (αi) AND

WAVE FREQUENCY (ψi)

the influence of the internal time-delay, the amplification of

control action in the upstream direction is unavoidable. This

is shown in Fig. 5. Initially, the system is at steady-state.

ri

yi

ui
ui+1

ts

ts

ts + τi

Aui
Aui+1

(a)

(b)

(c)

Fig. 5. Control actions for zero steady-state water-level error

At time ts, the flow out of pooli increases, see the change

of ui+1 (the dashed line in Fig. 5(a)). To compensate for

the influence of ui+1 on yi, the flow into the pool, ui, also

increases (the solid line in Fig. 5(a)). However, the influence

of ui on the downstream water-level yi will be τi(min) later

than that of ui+1 on yi (see Fig. 5(b)). For zero steady-state

error of yi from ri (see Fig. 5(c)), from (1), ui should be

greater than ui+1 for some time such that the area of Aui
is

equivalent to the area of Aui+1
. Hence, ‖Tui+1 7→ui

‖∞ > 1.

In Section III-B, the analysis focuses on the impact of the

decoupling terms in the distributed controller on the closed-

loop performance.

B. The influence of Kij (j > i) on closed-loop decoupling

As discussed in Section II-B, the synthesis of K∞ copes

with the tradeoff between the local performance and the

decoupling of the closed-loop system. To see how the dis-

tributed controller compensates for the influence of internal

time-delays, we study the time and frequency responses of

a string of three pools with distributed control.

The three pools are taken from Eastern Goulburn No

12, Victoria, Australia. Table I gives the identified model

parameters [13]. To shape the plant, we choose W1 = 87.206
s

,

W2 = 20.8865
s

, W3 = 32.6255
s

.4 A γ = 3 is achieved by

solving the structured optimisation problem (2). The final

controller is shown in Fig. 6. All the terms involve an

integrator, which comes from the shaping weight. Note that

K12 has similar phase property as K22, i.e. they both involve

phase-lead-lag-lag-lead compensation around the same mid-

frequency range; while K13, K23 have similar phase property

as K33.

4As formerly discussed, the weight gains are chosen to set the loop-gain
bandwidth just below 1/τi rad/min.
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Fig. 7 shows the open loop-gain for pool1,2,3. High gain

at low frequency is obtained, with the bandwidths 0.0408
rad/min, 0.0085 rad/min and 0.0132 rad/min respectively.

Around the wave frequencies, the loop-gains are around

−20 dB, −20 dB and −25 dB respectively. This ensures

no excitement of dominant waves in all the three pools.
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Fig. 7. Local loop-gain with the distributed controller

From (5), K12 and K23 have a similar structure, while K13

involves K11
2 for decoupling. The following analysis is made

by checking the impact of K23
5 and K13 on decoupling of

the closed-loop system.

1) Impact of K23: The gains of Td3 7→e2 and Td3 7→u2
, with

and without K23, are given in Fig. 8. With K23, a lower gain

in the mid-frequency range is achieved.

Fig. 9 shows that K23 helps in decreasing |Te3 7→e2 | and

|Tu3 7→u2
| at the low and middle-frequency range, where

d3 is significant. One can thus expect a good management

of the water-level error propagation and attenuation of the

amplification of control action with K23.

The time response of the close-loop system is shown in

Fig. 10 and 11. In the simulation, the water-level setpoints are

set as ri = 10 m, for i = 1, 2, 3. Note that τ2 is much bigger

than τ3; such a combination, i.e. a long upstream pool with a

5Similar impact of K12 as that of K23 on the closed-loop decoupling
can be expected and hence the analysis is omitted here.
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short downstream pool, is difficult for managing the tradeoff

between the local water-level error and the amplification of

control action.6 When an offtake of 98.6 Ml/day starts in
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Fig. 10. Water-level error propagation: with and without K23

pool3 at 30 min till the end of the simulation scenario,

the water-level error in pool2 is better managed with K23

operating in the system than without K23. Indeed, with K23,

max
t

|e2(t)| decreases about 0.08 m (compare the red solid

6As previously discussed, to decouple the closed-loop system, one should
try to make the downstream loop slower than the upstream loop.

line with the red dashed line). This is important since, as

discussed in Section I, in gravity-fed irrigation networks,

water-levels represent the capacity to serve water-demands

at the offtake points. Fig. 11 shows the upstream control

actions in pool2,3 to compensate the influence of d3 on

e2 and e3.7 With K23, u2 responds to the change of u3

faster than without K23 operating on the closed-loop. Note

max
t

|u2(t)| is smaller with K23, i.e. a better attenuation of

the amplification of control action is obtained.

0 200 400 600 800 1000

100

120

140

160

180

200

220

Time (min)

F
lo

w
 o

v
e
r 

u
p
s
tr

e
a
m

 g
a
te

s
 (

M
L
/d

a
y
)

pool
2
 (with K

23
)

pool
2
 (without K

23

pool
3

Fig. 11. Amplification of control actions: with and without K23

2) Impact of K13: Fig. 12 shows |Td3 7→e1 | and |Td3 7→u1
|,

with and without K13.8 With K13, a lower gain in the low

and mid-frequency range is achieved, hence better decou-

pling of the closed-loop system can be expected. This is

confirmed by the time responses shown in Fig. 13 and 14.

When d3 starts at 30 min, the water-level error in pool1
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Fig. 12. |Td3 7→e1
| (top) and |Td3 7→u1

| (bottom), with and without K13

is smaller with K13 (see the green solid line in Fig. 13)

operating in the system than without K13 (the green dash-dot

line). Fig. 14 shows the change of control actions in pool1,2,3
in response to d3. We see that with K13, u1 reacts faster

to the change in u2 than the case without K13. Moreover,

‖u1‖∞ is smaller with K13.

7For clarity, we zoomed in to the first 1000 mins to show the changes of
the control actions when d3 starts. Note we did the similar in Fig. 14.

8For the case of K13 = 0, it is assumed that K11

2
= 0, while K12 and

K23 still operate on the closed-loop.
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Fig. 13. Water-level error propagation: with and without K13
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3) Some remarks: The closed-loop coupling

term Mij (see (7)) is composed of Mk
ij :=

Mii (Ki+1,k −Kike
−sτi)Mkj for k = i + 1, . . . , j.

Fig. 15 shows the impact of Kik on Mk
ij in the above

three-pool example. It is observed that
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Fig. 15. The decoupling function of Kik for k = i+ 1, . . . , j

1) Kik decreases the gain of Mk
ij at low frequencies

where typical offtake disturbances are significant;

2) Kik operates on Mk
ij by imposing on MiiKi+1,kMkj

an additional phase lead-lag compensation around the

frequency of 1/τi.

The first observation explains why with Kij operating on the

closed-loop, a better management of water-level error propa-

gation is achieved (see Fig. 10 and 13). Although it is difficult

to directly make conclusions of global performance from the

second observation, time-responses of control actions (see

Fig. 11 and 14) show that with the Kij’s the closed-loop

predicts the influence of the internal time-delays and that

the control action in response to offtake disturbance is faster

than that without the Kij’s.

IV. SUMMARY

An irrigation channel is a system presenting strong

interactions between pools. This paper considers distant-

downstream control of irrigation channels. It is shown that

the internal time-delay for transportation of water from

upstream to downstream of each pool not only limits the local

performance, but also impacts the coupling between pools,

i.e. the water-level error propagation and the amplification of

control actions in the upstream direction. More specifically,

we have discussed a distributed control that inherits the

interaction structure of the plant. The controller is designed

in a structured H∞ loopshaping approach. The involved

optimisation problem manages the tradeoff between local

and global performance. Analysis shows that the distributed

controller compensates the time-delay influence by decreas-

ing the low-frequency gain of the close-loop coupling term

and imposing extra phase lead-lag compensation in the mid-

frequency range on the closed-loop coupling term.

Based on the above observations of the function of the

decoupling terms of the distributed controller, it is of interest

in future research to investigate the involvement of similar

components, e.g. phase lead-lag in decentralised feedforward

compensators, in addition to the purely decentralised feed-

back controller, for a better global closed-loop performance.
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