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First steps towards finding a solution of a dynamic investor-bank game

Kateřina Staňková, Bart De Schutter

Abstract— The subject of this paper is a one-leader-one-
follower dynamic inverse Stackelberg game with a fixed du-
ration between a bank acting as the leader and an investor
acting as the follower. The investor makes her transaction
decisions with the bank as intermediary and the bank charges
her transaction costs that are dependent on the investor’s
transactions. The goal of both players is to maximize their
profits. The problem is to find a closed-form ε-optimal strategy
for the bank. This problem belongs to the realm of composed
functions and therefore is very difficult to solve. In this paper
we first propose general guidelines for finding such an ε-optimal
strategy for the bank and then apply these guidelines on specific
academic examples. First we present an example in which we
are able to find a closed-form ε-optimal solution, but we also
introduce an example in which it is impossible to find such a
solution and one has to proceed in a numerical way.

Keywords: game theory, (inverse) Stackelberg games, pric-

ing

I. INTRODUCTION & LITERATURE OVERVIEW

This paper deals with a continuous dynamic game between

an investor making her transaction decisions and a bank

setting transaction costs for the investor as a transaction-

decision-dependent mapping. The bank maximizes the trans-

action costs over the considered time period, while the

investor minimizes her losses, which are increasing with the

transaction costs.

As the players’ objectives are conflicting, the game is non-

cooperative [1], [2], [3], [4], as opposed to the cooperative

games [5], [6]. If the transactions costs were independent

of the investor’s decision, the problem would fit into the

framework of the so-called Stackelberg games [1], [2], [7],

[8], [9]. The investor-bank can be also simplified into a “take-

it-or-leave-it” principal-agent type of problem belonging to

the so-called theory of incentives [9], [10], [11].

With the leader’s decision being a mapping from the

followers decision space into her own decision space the

investor-bank problem fits within the framework of the so-

called inverse Stackelberg games (ISG) [9], [12].

Although the ISG structure is recognized in a wide range

of applications [9], [13], [14], only a limited amount of

theory about these games exists and this theory focuses on

exploring specific phenomena by means of examples. In this

paper we first propose general guidelines on how to proceed

in a general investor-bank game and subsequently we focus

on applying these guidelines in solving two specific academic

examples. While in the first considered example a closed-

form solution can be found, in the second example only an
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implicit formulation of the solution is found and numerical

techniques have to be adopted in order to find an approximate

solution.

This paper is composed as follows. In Section II the

general game formulation is given. In Section III the static

variant of the game is dealt with as a first step to solve

the dynamic problem. In Section IV first specific dynamic

problem is considered. In Section V a more complicated

variant of the problem is dealt with. In Section VI the

achieved results, conclusions, and possibilities for future

research are discussed.

II. THE INVESTOR-BANK GAME

A. Preliminaries: Dynamic Inverse Stackelberg Games

Let us consider a continuous dynamic game with pre-

specified duration T (0 < T < +∞) between two players.

We will refer to these players as the leader (L) and the

follower (F). The leader and the follower have decision

variables uL(·) ∈UL and uF(·) ∈UF, respectively, where UL

and UF are decision spaces for the leader and for the follower,

respectively, defined on the interval [0,T ] with a prespecified

structure and known to both players. Moreover, there exist

functions PL : UL ×UF → R and PF : UL ×UF → R so that

integrals

∫ T

0
PL (uL(t),uF(t))dt,

∫ T

0
PF (uL(t),uF(t))dt, (1)

representing the leader’s and the follower’s profits, respec-

tively, are feasible for all uL(·) ∈ UL and uF(·) ∈ UF.

Additionally, the system dynamics may evolve according

to certain dynamics. If the so-called inverse Stackelberg

game is played, the leader announces her decision uL as

a mapping from the follower’s decision space into her own

decision space, i.e., uL(·) = γL (uF(·)) with γL : UF → UL.

Subsequently, the γL-mapping is made known to the follower

and the follower chooses her decision u∗F(·) so that

u∗F(·) = argmax
uF(·)

(

∫ T

0
PF (γL (uF(t)) ,uF(t))dt

)

. (2)

If the leader knows the optimal response of the follower (2)

to any choice of the γL-function, the leader’s aim can be

symbolically written as1

γ∗L(·) = argmax
γL(·)

(

∫ T

0
PF (γL (u

∗
F(γL(·))) ,u

∗
F(γL(·)))dt

)

. (3)

Even if u∗F in (2) is unique for any choice of γL and even if it

can be guaranteed that γ∗L(·) in (3) is unique, the problem (3)

1Here for the sake of simplicity u(t) is referred to as u.



is a very difficult one belonging to the realm of composed

functions [15].

Note that if the leader’s decision is a constant mapping

(i.e., independent of uF), the inverse Stackelberg game is

simplified to the Stackelberg game [9], [12].

B. The Problem

The main topic of this paper is a dynamic inverse Stack-

elberg game between a bank, acting as the leader, and

an investor, acting as the follower. The investor makes

transactions with the bank as intermediary, while the bank

tries to profit from the transaction costs that the investor pays

to her.

In the following text we will simplify the notation as

follows: The follower’s decision will be denoted by u and

the leader’s decision will be denoted by γ . We will also refer

to u(t) and x(t) by u and x, respectively, when no confusion

can be caused by this simplification. The goal of the bank

is to find a function γ : R → [0,+∞], γ(0) = 0, γ(·) ≥
0, γ(u) = γ(−u), which maximizes

JL =
∫ T

0
γ(u(t))dt, (4)

where u(t) ∈ R is the investor’s transaction density, i.e.,

during the time interval [t, t +dt] the number of transactions

equals u(t)dt. The expression γ(u) represents transaction

costs that the investor has to pay when making transaction

decision u. Possible additional restriction on γ is that γ(u)
is nondecreasing with respect to |u|. This would correspond

to the situation in which the bank wants to impose higher

transaction costs on the investor if the investor makes more

transactions.

After the bank has announced the γ-function, the investor

chooses u ∈UF, UF
def
= R in order to minimize her losses

Jc
F = q(x(T ))+

∫ T

0
g(x,u)dt +

∫ T

0
γ(u(t))dt, (5)

with x(t)∈R, q :R→R, g :R2 →R. The term q(x(T )) in (5)

represents the losses of the investor at the final time T and

the term
∫ T

0 g(x,u)dt represents her consumption during the

time interval [0,T ]. Note that the transaction costs (the third

term) are added to the costs of the investor. We assume that

the investor does not participate in the game if her profit (5)

is lower than her profit when doing nothing. Additionally,

we assume that the system dynamics evolves according to

the following state equation:

ẋ = f (x,u,γ(u)), (6)

where t ∈ [0,T ], the initial state x(0) = x0 is known a priori,

ẋ denotes derivative
dx(t)

dt
, and f is the state function, given

a priori. In this general formulation we assume that u, x, q,

g, γ , f satisfy all properties needed to allow (4)–(6) to be

feasible.

As it is not intuitively clear how the leader should choose

an optimal γ-function in a dynamic setting, we will start our

analysis with a static variant of the problem and will try to

extend the results of the static problem into the dynamic one.

III. THE STATIC VARIANT OF THE PROBLEM

Let us consider the following game, which is a static

variant of the problem (4)–(6):

min
u
( f (u)+ γ(u)), max

γ(·)
γ(u),

subject to γ(·)≥ 0 and γ(0) = 0. With the same interpretation

as before, the investor is secured of a maximum cost f (0)
by playing u = 0. Therefore she will consider only u-values

for which f (u) ≤ f (0). This admissible set of u-values is

denoted by U .

Example 3.1: As a specific f take f (u) = (u− 1)2 + 1,

then U = [0,2] and an upper bound for the investor’s criterion

is f (0) = 2. This corresponds to the situation in which

the investor does not make any transactions. However, the

investor will participate in the game if she has a nonnegative

profit, even if this profit equals to a very small positive

number. Suppose that the bank chooses

γ(u) =

{

( f (0)− f (u))(1− ε), if 0 ≤ u ≤ 2;

nonnegative elsewhere,
(7)

with ε ↓ 0. With such choice of the transaction costs the

optimal choice of the investor is u∗ = 1, the investor’s costs

are 2−ε and the bank’s profit is (1−ε). The strategy of the

bank leading to this outcome is referred to as an ε-optimal

strategy for the bank, because the outcome of the game is the

best possible outcome minus ε . The bank takes essentially all

the investor’s profits (The latter would have been minu f (u)=
1 if the transaction costs would have been identically zero

and the investor’s profit would be equal to 2 is she does

not invest). Note that the ‘optimal’ γ-function of the bank is

nonunique; another choice would be

γ(u) =

{

1− ε , if u 6= 0;

0, if u = 0,

where ε ↓ 0. If one wants to γ to be nondecreasing, (7) could

be replaced by

γ(u) =

{

( f (0)− f (u))(1− ε), if 0 ≤ u ≤ 1;

1− ε +(1−u)2, if u ≥ 1,

and for negative u: γ(u)= γ(−u), without altering the results.

Proposition 3.1: An upper bound for the profit of the bank

is JF(u = u∗)−JF(u = 0), where u∗ is the optimal control of

the investor in absence of transaction costs.

Remark 3.1: Although Proposition 3.1 can be easily

proven, it establishes only an upper bound of the profit of

the bank. This upper bound cannot be often reached (see [9]

for examples of this).

Let us now formulate the guidelines which we propose in

order to find an ε-optimal solution for the bank in the original

dynamic investor-bank game.

The general guidelines on finding an ε-optimal solution for

the bank:

1) Find an upper bound of the profit of the bank according

to Proposition 3.1. We talk about an ε-optimal strategy

of the bank if this strategy implies the profit of the bank

equal to this upper bound minus some ε-value.



2) Find a set of strategies Γ that are likely candidates for

an ε-optimal strategy.

3) Check which of these candidates are indeed ε-optimal

strategies for the bank.

Point 2. of this procedure is critical. There is no clear way

of picking the candidates for an ε-optimal strategy. In the

following examples these candidates are chosen depending

on a structure of Hamiltonian of the investor’s losses function

without the transaction costs.

Remark 3.2: In the rest of the paper we may also use the

term ε-optimal strategy if this strategy leads to the upper

bound value minus multiple ε-terms. Because we assume that

ε ↓ 0, this simplification is acceptable.

IV. THE FIRST DYNAMIC EXAMPLE

This example is a dynamic extension of the static example

introduced in Section III. The dynamics of the system is

described as

ẋ = u, x(0) = 1.

In order to compute an upper bound of the profit of the bank

according to Proposition 3.1 we need to know what are the

minimum losses for the investor. They can be computed as

the outcome of the minimization of the investor’s objective

function when the transaction costs are set to zero, i.e., as

minimization of JF given by

JF =
1

2

∫ 1

0
u2(t)dt +

1

2
x2(1).

We use the Pontryagin minimum principle [16], [17], [18]

with the Hamiltonian

H = λu+
1

2
u2
. (8)

It can be seen that

u∗ =−λ , λ̇ = 0, λ (1) = x(1), u(t) =−x(1), t ∈ [0,1],

and hence

u∗ =−
1

2
, x∗ = 1−

1

2
t, JF(u = u∗) =

1

4
, JF(u = 0) =

1

2
.

The above optimal control problem is now extended to a

game theoretic problem by adding transaction costs. The

criterion is changed into minu Jc
F, where

Jc
F =

1

2

∫ 1

0
u2(t)dt +

1

2
x2(1)+

∫ 1

0
γ(u(t))dt.

The function γ satisfies restrictions γ(·)≥ 0, γ(0) = 0. There

is another criterion for the second player: maxγ(·) JL, with

JL =
∫ 1

0 γ(u(t))dt.

A. An ad hoc Approach

A likely candidate for the optimal γ is γ(u) = −( 1
2
−

ε)u(1+u) on the interval [0,1] and γ(u)≥ 0 elsewhere, with

ε ↓ 0. This choice of γ mimics the idea for the first choice

of γ in Example 3.1. Here γ is, if ε = 0, equal to −H from

expression (8) on the essential interval, with λ = λ ∗ = 1
2
. It

can be derived (with the new Hamiltonian H(2)) that

H(2) = λu+
1

2
u2 −

(

1

2
− ε

)

u(1+u)

and therefore

u∗ =−
λ − 1

2
+ ε

2ε
, λ̇ = 0, λ (1) = x(1),

x∗(t) = 1−
1

2
t, Jc

F =
3

8
−

1

4
ε , JL =

1

8
−

1

4
ε .

However, this choice of the γ is not optimal, because the

bank can do better, even with a quadratic γ , as it will shown

now. Let

γ(u) =
1

2
βu2 +αu,

on a certain interval to be determined. It follows that γ(0) =
0. Under the condition β >−1 it follows that

x∗(1) =
1+β −α

2+β
; u∗(t)≡−

1+α

2+β
.

Since JF(u = 0) = 1
2
, the parameters α and β must necessar-

ily satisfy Jc
F(u = u∗)≤ 1

2
. This leads to

1

2
((u∗)2 +(x∗(1))2)+ γ(u∗) =

(2+β )− (1+α)2

2(2+β )
≤

1

2
,

which is always fulfilled for β >−1. Consider

max
α ,β

γ(u∗) = max
α ,β

1

2

(

β

(

1+α

2+β

)2

−2α
1+α

2+β

)

= max
α ,β

β −4α − (4+β )α2

2(2+β )2
.

The maximization with respect to α leads to α = −2
4+β , which

leads to

max
α ,β

γ(u∗) = max
β

1

2(4+β )
.

The best value for β is β ∗=−1+ε , with ε ↓ 0. Subsequently,

α = − 2
3
+ 2

9
ε up to first order in ε , and with the same

accuracy, u∗ =− 1
3
+ 1

9
ε . This leads to

Jc
F =

4

9
−

1

27
ε , JL =

1

6
−

1

18
ε ,

which is the best result for the bank within the class of

quadratic γ-functions. Without the transaction costs for the

investor, its costs would be

JF = Jc
F − JL =

5

18
+

1

54
ε ,

which is less than what he would have obtained by playing

u = 0 and therefore, this is the outcome of the game for

the investor. Now that α and β have given values, it can be

checked that g(u∗)> 0 in a neighborhood of u∗. Further away

from u∗ the function γ can be adjusted such that γ(·) ≥ 0

everywhere.

We found the best possible transaction cost definition

in the realm of quadratic functions. In order to validate

whether the quadratic choice of γ is the optimal one, we will



discretize the problem with number of discretization steps

equal to N, starting from two time steps and proceeding to

N → ∞.

B. Two Time Steps

Here we consider a discretized version of the continuous-

time problem with two time steps. The model is

x1 = x0 +
1

2
u1 = 1+

1

2
u1, x2 = x1 +

1

2
u2 = 1+

1

2
(u1 +u2),

and the criteria are

Jc
F =

1

4

(

u2
1 +u2

2

)

+
1

2

(

1+
1

2
(u1 +u2)

)2

+
1

2
(γ(u1)+ γ(u2)) ,

JL =
1

2
(γ(u1)+ γ(u2)).

1) First Attempt: A natural assumption is that Jc
F is

minimized for the ui-values, which minimize

JF
def
=

1

4
(u2

1 +u2
2)+

1

2
(1+

1

2
(u1 +u2))

2
.

These values are u1 = u2 =− 1
2
. Since

JF(u1 =−
1

2
,u) = JF(u,u2 =−

1

2
) =

3

8
u2 +

3

8
u+

11

32
,

we consider γ-function

1

2
γ(u) =−(

3

8
u2 +

3

8
u)(1− ε), (9)

with a small positive ε . With this γ-function and with u1 =
u2 =− 1

2
it is easily shown that

Jc
F =

1

4
+2(1− ε)

3

32
< JF(u1 = 0,u2 = 0) =

1

2
,

JL = 2(1− ε)
3

32
.

Note that 1
2
(JF(u1 = 0,u2 = − 1

2
)− JF(u1 = − 1

2
,u2 = − 1

2
))

exactly equals 3
32

which is the same fraction as which

appeared in the previous formula. However, with this γ the

Hessian of JF with respect to u1 and u2 is not positive definite

at the point ui = − 1
2
, i = 1,2, and, therefore, the follower

can do better than choosing ui =− 1
2
, i = 1,2. To avoid this

deviating behavior on part of the follower, the leader will

adjust the γ-function in such a way that u1 = u2 =− 1
2

is best

for the follower as follows. On the interval − 1
2
≤ u ≤ 0 γ

remains as given by (9). For u <− 1
2

we choose a decreasing

function of u (i.e. increasing with |u|), which is continuous

at u =− 1
2
, e.g.

γ(u) =−u−
1

2
+(1− ε)

3

32
.

If we require the function γ to be even, then it is defined for

u > 0 also. With this choice of γ the best the follower can

do is to choose ui =− 1
2
, i = 1,2.

Remark 4.1: A different, discontinuous and non-

monotonous choice for the leader is:

γ(u) =







0 for u = 0,
1
4
− ε , for |u|= 1

2
,

≫ 1, elsewhere.

This choice of γ is ε-optimal, because it leads to u1 = 0, u2 =
− 1

2
, or the other way around, and JF = 15

32
− ε and JL =

1
8
− 1

2
ε .

2) Second Attempt: Inspired by the remark in the previous

subsection, we may try to find α and β values that maximize

JF(0,β )− JF(α,β ). (10)

Because of the symmetry with respect to u1 and u2, an

equivalent problem is to maximize

JF(α,0)− JF(α,β ). (11)

To simplify the expressions, it is possible to maximize the

sum of (10), (11) instead of maximizing only one of them:

JF(0,β )− JF(α,β )+ JF(α,0)− JF(α,β ). (12)

This leads to α = β = − 2
5
. Subsequently the leader

chooses γ(u) in such a way that the follower will indeed

choose α = β = − 2
5
. A different way of how to obtain

the same result is that the leader wants to maximize δ =
1
2
(γ(α)+ γ(β )), with α = β , subject to

Jc
F(α,β )≤ Jc

F(0,β )⇒ JF(α,β )+
1

2
δ ≤ JF(0,β )

⇒
1

2
δ ≤ JF(0,β )− JF(α,β ),

Jc
F(α,β )≤ Jc

F(α,0)⇒ JF(α,β )+
1

2
δ ≤ JF(α,0)

⇒
1

2
δ ≤ JF(α,0)− JF(α,β ),

Jc
F(α,β )≤ Jc

F(0,0)⇒ JF(α,β )+δ ≤ JF(0,0)

⇒ δ ≤ JF(0,0)− JF(α,β ),

for suitably chosen α = β 6= 0. The maximal δ is obtained for

α = β =− 2
5

and thus δ = 1
5
. Note that this is a better result

for the leader than the one obtained with the first attempt

with δ = 3
16

.

C. Many Time Steps and the Limit to Infinity

In this subsection we consider the model

xi = xi−1 +
1

N
ui, i = 1,2, . . . ,N, x0 = 1,

and the criteria

JF =
1

2N

N

∑
i=1

u2
i +

1

2

(

1+
1

N

N

∑
i=1

ui

)2

, JL =
1

N

N

∑
i=1

γ(ui).

The expression equivalent to (12) becomes

1

2





1

N

N

∑
k=1

(

N

∑
i=1,i 6=k

u2
i

)

+
N

∑
k=1

(

1+
1

N

N

∑
i=1,i 6=k

ui

)2




−
1

2

N

∑
i=1

u2
i −

1

2
N

(

1+
1

N

N

∑
i=1

ui

)2

.

Minimization of this expression with respect to u1 and

subsequent substitution (again using the symmetry property)

of u2 = · · ·= uN = u1 lead to

u∗i =−
N

3N −1
, i = 1,2, . . . ,N.



For N = 2 this coincides with the results of the previous

subsection. For N → +∞ we get u∗i = − 1
3
, i = 1,2, . . . ,N.

It is easily shown that the profit for the bank is N
2(3N−1) .

Note that for N → +∞ this profit converges to 1
6
, which

equals the result obtained with the best quadratic γ-function.

Let us consider JF as a function of u1 only and with u2 =
. . .= uN =− N

3N−1
; JF(u1,ω) = 1

2
[ 1

N
u2

1 +
N−1

N
( N

3N−1
)2 +(1+

1
N
(u1−

N(N−1)
3N−1

))2], where ω represents substitution u2≤i≤N =

− N
3N−1

. For this function it can be written

JF(u1 = 0,ω)− JF(u1 =−
N

3N −1
,ω)

=
1

2

[

N(N −1)+(2N)2

(3N −1)2
−

N2 +(2N −1)2

(3N −1)2

]

,

which is the N-equivalent of (11). If we calculate N(JF(u1 =
0,ω)− JF(u1 = − N

3N−1
,ω)), the result is N

2(3N−1) , which

equals the profit of the bank (as already obtained earlier).

From the point of view of the bank it is necessary that the

investor makes some transactions, i.e.,

JF(u1 =−
N

3N −1
,ω)+

1

N
γ ≤ JF(u1 = 0,ω),

or with a quadratic ε-term,

JF+
1

N
γ = JF (u1 = 0,ω)+

1

N
ε

[

(

u1 +
N

3N −1

)2

− (
N

3N −1
)2

]

.

Hence,

1

N
γ(u1) =

1

2

[

N(N −1)+(2N)2

(3N −1)2
−

1

N
u2

1 −
N −1

N
(

N

3N −1
)2

−

(

1+
1

N

(

u1 −
N (N −1)

3N −1

))2
]

+
ε

N

(

u2
1 +

2N

3N −1
u1

)

=
1

2

[

−
1

N
u2

1 −
1

N2
u2

1 −
4

3N −1
u1

]

+
ε

N

(

u2
1 +

2N

3N −1
u1

)

.

If we disregard ε-terms for N → ∞ this leads to exactly the

quadratic function obtained before. We write

Jc
F(u1, . . . ,uN) = JF(u1, . . . ,uN)+

1

2

[

N

∑
i=1

(

−
1

N
u2

i

−
1

N2
u2

i −
2

3N −1
ui

)

+
2ε

N

(

u2
i +

4N

3N −1
ui

)]

.

For N >
1

2ε all eigenvalues of the Hessian lie in the right

half plane. For N ≤ 1
2ε , however, the Hessian is not positive

definite. In the latter case, one uses the trick of subsection IV-

B.1, i.e. for − N
3N−1

≤ u ≤ 0, γ(u) is as above, and for u <

− N
3N−1

we choose it as a decreasing function.

The derivations carried out with the discretized variant

of the problem show that the quadratic γ-function proposed

in Section IV-A is a globally optimal choice. Note that its

structure is the same as the structure of the Hamiltonian for

the problem without transaction costs.

In the following section we will consider a more compli-

cated dynamic investor-bank problem.

V. THE SECOND DYNAMIC EXAMPLE

Let us consider the dynamic model

ẋ = u, x(0) = 1,

with criterion

min
u

1

2

∫ 1

0
(x2 +u2)dt +

1

2
x2(1).

An essential difference with the problem of the previous

section is that the optimal decision is not constant anymore:

u∗(t)=−e−t which leads to the minimal value Jc∗
F = 1

2
. In the

discretized problems (see the coming subsections) we cannot

expect all u∗i to be equal anymore. Consequently γ(u) will

have to be specified in the neighborhood of these different

u∗i -values.

When following the same guidelines in finding the solution

as in the previous section it was found out that the slightly

more complex nature of the problem makes it impossible to

solve the problem in the closed-form.

For finding an optimal quadratic γ one can use the

principle of optimality [1], leading to a value function

minimization. Let γ(u)
def
= 1

2
βu2 +αu. The value function,

to be minimized with respect to α and β , is (assuming that

x(0) = 1)

1

2
S(0)+ k(0)+m(0),

where S(t), k(t) and m(t) satisfy [1]

Ṡ =
S2

1+β
−1, S(1) = 1,

k̇ =
S

1+β
(k+α), k(1) = 0,

ṁ =
1

1+β
(kα +

1

2
k2), m(1) = 0.

This problem has to be solved numerically.

Another option is to solve the problem by the discretiza-

tion as it was done in the previous section. Following the

reasoning in Section IV, we can discretize the problem and

can proceed from N = 2 to N → ∞. Because of the space

restrictions in the following we will show only the case

N → ∞. Then the system dynamics can be described as

xi = xi−1 +
1

N
ui, i = 1,2, . . . ,N, x0 = 1,

and the criteria are

JF =
1

2N

N

∑
i=1

(u2
i + x2

i−1)+
1

2
x2

N =

=
1

2N

N

∑
i=1

(u2
i +(1+

1

N

i−1

∑
k=1

uk)
2)+

1

2
(1+

1

N

N

∑
i=1

ui)
2;

JL =
1

N

N

∑
i=1

γ(ui).



First we want to solve minu JF subject to the model equations.

This leads to a linear equation in u:


















d +ζ1 ζ2 . . . ζN

ζ2 d +ζ2

...

ζ3 ζ3

...
...

. . . ζN

ζN . . . ζN d +ζN

































u1

u2

u3

...

uN















=−N















ζ1

ζ2

ζ3

...

ζN















,

(13)

where

d =
1

N
, ζi =

1

N3
(N − i)+

1

N2
. (14)

Numerical computations indicate that the solution u indeed

converges towards −e−t with N → ∞. An upper bound of

the leader’s profit is

JF(0,u2,u3,u4, . . . ,uN) − JF(u1,u2,u3, . . . ,uN)+
JF(u1,0,u3,u4, . . . ,uN) − JF(u1,u2,u3, . . . ,uN)+

...

JF(u1,u2,u3, . . . ,uN−1,0) − JF(u1,u2,u3, . . . ,uN),
(15)

which can be rewritten as

−

(

1

2N
+

1

2N2

)

N

∑
l=1

u2
l −

1

2N

N

∑
l=1

N

∑
i=l+1

(

1

N2
u2

l +
2

N2
ul

i−1

∑
k=1, 6=l

uk

)

+

−
1

N2

N

∑
l=1

(

ul

N

∑
i=1, 6=l

ui

)

−
1

2N

N

∑
l=1

N

∑
i=l+1

2

N
ul −

1

N

N

∑
l=1

ul .

Then, for j = 1,2, . . . ,N,



















d +ζ1 2ζ2 . . . 2ζN

2ζ2 d +ζ2

...

2ζ3 2ζ3

...
...

. . . 2ζN

2ζN . . . 2ζN d +ζN

































u1

u2

u3

...

uN















=−N















ζ1

ζ2

ζ3

...

ζN















,

with d and ζi defined as in (14). If this linear system of equa-

tions is symbolically written as ( 1
N

I +A)u = −Nζ , I being

the identity matrix, then u =−(I −NA+(NA)2 −·· ·)N2ζ .

It is impossible to derive the closed-form solution as we

could do in the previous dynamic example and numerical

computations have to be carried out in order to find an

approximate solution.

VI. DISCUSSION & FUTURE RESEARCH

In this paper we introduced a dynamic investor-bank game.

Using results obtained when solving the static variant of the

problem, we formulated guidelines for finding an ε-optimal

strategy for the bank. We showed one example in which we

were able to find a closed-form ε-optimal strategy for the

bank, but also an example of the situation in which only

numerical solution can be found.

While it is often difficult to find a closed-form ε-optimal

solution for the bank, finding a suboptimal solution within

the prespecified class of γ-functions (e.g., quadratic func-

tions) may be much less challenging.

Discretization of the problems helped to get more insights

about the game structure as well as to validate an ε-

optimality of certain strategies.

Additional research is needed to explore more general

inverse Stackelberg problems. However, this research should

be carried out only after we have solved the problems with

a simple structure.
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