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Abstract:
We present a class of gait generation and control algorithms based on the Switching Max-
Plus modeling framework that allow for the synchronization of multiple legs of walking robots.
Transitions between stance and swing phases of each leg are modeled as discrete events in
a system described by max-plus-linear state equations. Different gaits can be systematically
generated and interleaved during motion by switching between different system matrices. We
show that such gait switching can be done in an optimal way, minimizing the tip leg velocity
variation for all legs simultaneously touching the ground.

Keywords: Max-Plus Algebra, Discrete Event Systems, Robotics, Legged Locomotion, Motion
Control

1. INTRODUCTION

Due to their cyclic nature, legged locomotion systems can
be modeled by limit cycles in cross products of circles
in the phase space of the set of continuous time gaits.
Such an abstraction, often denoted as “networks of phase
oscillators” or “central pattern generators” (CPG), were
introduced in the earlier works of Grillner (1985) and
Cohen et al. (1988) and are now accepted by both Bi-
ology and Robotics communities as standard modeling
tools (see Holmes et al. (2006) for an extensive review on
the elements of dynamic legged locomotion). The biology
community has explored these concepts to classify different
gaits of various animals, such as horses (Hildebrand, 1965),
insects (Wilson, 1966), and many other species (Alexan-
der, 1984). In the robotics community different motion
generation methods have been developed for legged robots:
Klavins and Koditschek (2002) show how to systemati-
cally generate vector fields that reach piecewise constant
velocity limit cycles, Erden and Leblebicioğlu (2008) use
reinforcement learning tools on a hexapod robot, and
Zhao et al. (2009) use CPG models for the control of
a biomimetic fish. Recently Haynes et al. (2009) take a
combinatorial approach to classify different gaits for multi-
pedal robots.

An interesting analogy can be made between enforcing
phase differences in continuous cycles and synchronization
in timed discrete event processes. In a typical (continuous)
walking motion of a biped robot, the left leg should only
lift off the ground after the right leg has touched down, to
make sure the robot does not fall from lack of support 1 .

1 In this paper we intentionally leave out locomotion gaits with aerial
phases where robots/animals can spend most of their time with no

This synchronization requirement can be modeled by the
evolution of a discrete event system (DES) by abstracting
each limit cycle in the circle into two sequential events in
a closed circuit: lift-off and touchdown. Each leg is then
modeled by an event cycle and synchronization between
legs is enforced by connections between each leg cycle.
Synchronization of multiple legs is especially important
for climbing robots (Guo et al., 1994; Autumn et al., 2005)
where lack of support can have catastrophic consequences.

In this paper we continue our previous work (Lopes et al.,
2009) to show how the max-plus framework can be nat-
urally utilized to implement gaits for legged locomotion
with synchronization guaranteed by design. This paper
complements the previous work by showing that gaits can
be generated systematically, and that gait switching can
be done in an optimal way. Max-plus-linear discrete event
systems (MPL-DES) are a subclass of timed DES (classes
of discrete event systems where there exists an underlying
time structure) that can be framed in sets of linear equa-
tions in the max-plus algebra (Cuninghame-Green, 1979;
Baccelli et al., 1992; Heidergott et al., 2006). Systems that
enforce synchronization and have no concurrency can be
modeled in this framework. Systems that can be modeled
as MPL-DES inherit a large set of analysis and control
synthesis tools thanks to many parallels between the max-
plus-linear systems theory and the traditional linear sys-
tems theory.

Some work has already been done on low-level walking
gait generation from a discrete event systems point of
view (Antoniotti and Mishra, 1995; Suzuki et al., 2002),

ground support. We acknowledge their importance but defer their
study to later publications.



and by using Petri nets (Guangtao et al., 2003). In
those implementations the focus is put on generating
each individual gait. In this paper we take advantage of
the properties of switching max-plus-linear models (van
den Boom and De Schutter, 2006) to not only generate
locomotion gaits but more importantly to deal with the
transitions between different gaits and recovering from
large perturbations. In a switching max-plus-linear system
one can interchange different modes of operation. In each
mode the discrete event system is described by a max-plus-
linear state space model with different system matrices. In
the application to legged locomotion, a mode corresponds
to a specific gait.

Gait transition has been studied in biology from an ener-
getic point of view by Hoyt and Taylor (1981) and in the
robotics field was approached informally by Raibert et al.
(1989), and more recently by Haynes and Rizzi (2006);
Haynes et al. (2009). Using the max-plus framework as
presented in this paper, safe gait transitions occur natu-
rally.

In Section 2 we review the tools behind switching max-plus
systems, and we show in Section 3 how these can be used
to model locomotion gaits for legged robots. In Section 4
we present a class of parameterizations for the gait space,
and show how to optimally switch between various gaits
in Section 5. We end in Section 6 by analyzing the eigen-
structure of the system matrices to gain insight into the
resulting robot velocity.

2. MAX-PLUS ALGEBRA

We start by revising the structure of the max-plus algebra.
Let ε := −∞, e := 0, and Rmax := R ∪ {ε}. Define the
operations ⊕,⊗ : Rmax × Rmax → Rmax by:

x⊕ y :=max(x, y)

x⊗ y := x+ y

Definition 1. The set Rmax with the operations ⊕ and
⊗ is called the max-plus algebra, denoted by Rmax :=
(Rmax,⊕,⊗, ε, e).

Theorem 2. (Baccelli et al. 1992). The max-plus algebra
Rmax has the algebraic structure of a commutative idem-
potent semiring.

The max-plus algebra can be interpreted as the traditional
linear algebra with the operations ‘+’ and ‘×’ replaced
by the operators ‘max’ and ‘+’, respectively, with the
supplemental difference that the additive inverse does not
exist, thus resulting in a semiring. Matrices can be defined
by taking Cartesian products of Rmax. Define the matrix
sum ⊕, matrix product ⊗, and matrix power operations
by:

[A⊕B]ij = aij ⊕ bij := max(aij , bij)

[A⊗ C]ij =
m⊕

k=1

aik ⊗ ckj := max
k=1,...,m

(aik + ckj)

D⊗k :=D ⊗D ⊗ . . .⊗D
︸ ︷︷ ︸

k-times

,
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Fig. 1. Hexapod robot inspired by RHex (Saranli et al.,
2001). The numbers represent the leg enumeration
used throughout this paper.

where A,B ∈ R
n×m
max , C ∈ R

m×p
max , and D ∈ R

n×n
max .The i, j

element of A is denoted by aij = [A]ij . In this context, the
max-plus zero and identity matrices are defined by:

[E ]ij := ε

[E]ij :=

{
e if i = j
ε otherwise

Let

A∗ :=
∞⊕

k=0

A⊗k.

If A∗ exists then the vector x = A∗ ⊗ b solves the system
of max-plus linear equations

x = A⊗ x⊕ b, (1)

with A ∈ R
n×n
max and b ∈ R

n
max (Baccelli et al. (1992),

Theorem 3.17).

For the remainder of this paper we will consider implicit
switching max-plus linear systems of the form:

x(k) = Gm(k) ⊗ x(k)⊕Hm(k) ⊗ x(k − 1), (2)

where the event index dependent function m(k) parame-
terizes the system matricesG andH (effectively acting as a
gait switching mechanism). We will show that by carefully
constructing G and H the system (2) can be rewritten as
an explicit set of switching max-plus linear systems of the
form

x(k) = Am(k) ⊗ x(k − 1) (3)

3. MODELING OF LEGGED LOCOMOTION

We model legged locomotion by abstracting the continuous
time motion of the legs into discrete event cycles. Let li(k)
be the time instant leg i lifts off the ground and ti(k) be the
time instant it touches the ground, both for the k-th event
index. Here, k is considered to be a global event count.
Figure 1 illustrates the leg numbering convention that
we utilize for the examples. For a traditional alternating
swing/stance 2 gait one can impose that the time instant
when the leg touches the ground must equal the time
2 The biology and robotics communities use the terms leg “swing”
and “stance” to denote when a leg is in flight or is touching the



instant it lifted off the ground for the last time plus the
time it stays in flight (denoted by τf ):

ti(k) = li(k) + τf (4)

Analogously, we get a similar relation for the lift-off time:

li(k) = ti(k − 1) + τg, (5)

where τg is the stance time and ti uses the previous
event index such that equations (4) and (5) can be used
iteratively. Suppose now that one aims to synchronize leg
i with leg j in such a way that leg i can only lift off
τ∆ seconds after leg j has touched the ground (τ∆ is the
double stance time). One can then write the relation:

li(k) =max (ti(k − 1) + τg, tj(k − 1) + τ∆)

= [ τg τ∆ ]⊗

[
ti(k − 1)
tj(k − 1)

]

. (6)

Equation (6) enforces simultaneously that both the leg i
stays at least τg seconds in stance and will only lift off
at least τ∆ seconds after leg j has touched down. When
both conditions are satisfied, lift-off takes place. Following
this reasoning, one can efficiently represent motion gaits in
terms of synchronization of timed events. For an n-legged
robot, let the full discrete event state vector be defined by:

x(k) = [t1(k) · · · tn(k)
︸ ︷︷ ︸

t(k)

l1(k) · · · ln(k)
︸ ︷︷ ︸

l(k)

]T .

The 2n-dimensional system equations for the cycles repre-
sented by equations (4),(5) take the form:

[
t(k)
l(k)

]

=

[
E τf ⊗ E
E E

]

⊗

[
t(k)
l(k)

]

⊕

[
E E

τg ⊗ E E

]

⊗

[
t(k − 1)
l(k − 1)

]

(7)

According to system (7) all legs follow the same rhythm,
i.e. all legs rotate with the same period of at least τf +
τg seconds. We assume that all leg synchronizations are
achieved by enforcing a relation between the next lift-
off time of a leg with the touchdown time of other legs
(as in equation (6)). This assumption is expressed by
the additional matrices P and Q (that we define in the
next section) added to equation (7), resulting in the
synchronized system:

[
t(k)
l(k)

]

=

[
E τf ⊗ E
P E

]

⊗

[
t(k)
l(k)

]

⊕

[
E E

τg ⊗ E ⊕Q E

]

⊗

[
t(k − 1)
l(k − 1)

]

, (8)

which we can write using simplified notation as:

x(k) = G⊗ x(k)⊕H ⊗ x(k − 1).

This poses the question whether equation (8) can be solved
explicitly or not. We address this by looking at the solution
of equation (1) to obtain:

ground supporting the body, respectively. “Double stance” represents
two legs touching the ground. In this paper we use the term double
stance to denote when more than one leg is in stance.

x(k) = G∗ ⊗H ⊗ x(k − 1) (9)

Lemma 3. A sufficient condition for G∗ to exist is that the
matrix P is nilpotent in the max-plus sense.

Proof. By direct computation, the repetitive products of
G can be found to be

G⊗k =







[

E τ⊗k
f ⊗ P⊗(k−1)

τ
⊗(k−1)
f ⊗ P⊗k E

]

if k is odd

[

τ⊗k
f ⊗ P⊗k E

E τ⊗k
f ⊗ P⊗k

]

if k is even

If P is nilpotent, then there exists a finite p > 0 such that
∀k > p : P⊗k = E ⇒ G⊗k = E , and therefore the sum for
the computation of G∗ is finite:

G∗ =

∞⊕

k=0

G⊗k =

p
⊕

k=0

G⊗k

Remark 4. Note that in general P being nilpotent is not a
necessary condition for the existence of G∗. According to
Baccelli et al. (1992), Theorem 3.17, (please see notation
within) if there are only circuits of non-positive weight in
the graph of G then a solution for G∗ can be found. This
implies however, that some of the entries of G are negative,
which we do not consider in this paper. Additionally, if all
circuits have zero weight and G is not nilpotent, then G∗

will also exist. Again, this “pathological” case cannot exist
in our parameterization of G.

We conclude that in practice a necessary and sufficient
requirement for achieving feasible leg synchronizations is
that the matrix P be nilpotent.

4. PARAMETERIZATION OF THE GAIT SPACE

The matrices P and Q are used to encode all gaits, but
nothing is said yet about how to fill such matrices. That
process can be done systematically by introducing a new
set of notation. For an n-legged system let

{Li} ≺ {Lj}

represent an ordering relation that enforces that leg
Lj ∈ {1, . . . , n} is only allowed to lift-off after leg Li ∈
{1, . . . , n}/{Lj} has touched down. This notation can be
expanded to multiple ordered synchronizations between
multiple legs by writing

{L1,1, . . . , L1,j , } ≺ · · · ≺ {Lr,1, . . . , Lr,p, } (10)

Equation (10) states that legs L1,1, . . . , L1,j will swing
simultaneously and will precede the (eventual) swing of
legs Lr,1, . . . , Lr,p. Using this notation, a tripod gait on a
hexapod robot is written as

{1, 4, 5} ≺ {2, 3, 6}, (11)

and a quintuple-stance gait can be written as

{1} ≺ {2} ≺ {3} ≺ {4} ≺ {5} ≺ {6}.



This notation 3 translates directly into a systematic way
of generating the matrices P and Q. Consider the sequence
of ordered pairs

{L1} ≺ {L2} ≺ · · · ≺ {Ln},

and assume that a double stance time τ∆ is required be-
tween each leg touchdown and subsequent lift-off. Starting
with the matrices P = E and Q = E , for each pair
{Li} ≺ {Li+1} with i = 1, . . . , n − 1 add an entry to the
matrix P in row Li+1, column Li:

[P ]Li+1,Li
= τ∆.

To enforce the synchronization of the full cycle, the
“boundary” pair of legs L1 and Ln are added to the matrix
Q such that

[Q]L1,Ln
= τ∆.

When multiple legs are required to be synchronized simul-
taneously, as in equation (10), entries must be added to
any combination of parameters of the pairs. The same is
true for the boundary pairs and matrix Q:

[P ]L2,1,L1,1
= τ∆ [Q]L1,1,Lr,1

= τ∆

[P ]L2,1,L1,2
= τ∆ [Q]L1,1,Lr,2

= τ∆

...
...

Figure 2 illustrates various examples of gaits generated by
the leg ordering relations. Note that the present notation
precludes gaits where legs have different cyclic periods.
Such gaits can be obtained using a modified version of
equation (8), but that goes beyond the scope of this paper.

5. QUASI-OPTIMAL GAIT SWITCHING

The notation presented in the previous section exposes the
combinatorial nature of the gait space. Ordered pairs such
as {1} ≺ {2} ≺ {3} ≺ {4} ≺ {5} ≺ {6} and {4} ≺ {5} ≺
{6} ≺ {1} ≺ {2} ≺ {3} result in different synchronization
matrices P and Q but are in fact equal up to an “event
shift” in the state variables. For these quintuple gaits for
an hexapod, one can find 5! = 120 different gaits and a
total of 6! = 720 different parameterizations of P and Q.
When switching from different “structural” classes of gaits,
e.g. tripod to quadruped, different transitions can occur
depending on which particular elements from each classes
are chosen. This can result in different stance times for
each of the legs that translates into different velocities at
the leg’s ground contact point. From a practical point of
view, different leg velocities induce turning moments that
can take the legged platform off balance. This is specially
true for climbing robots, such as in Autumn et al. (2005),
where improper gait switching can result in a catastrophic
failure by fall. It is then important to know how to opti-
mally switch gaits in the sense of minimizing the stance
velocity variation of all legs. One can solve this by exten-
sively searching the gait space, since only a finite number
of gaits can be generated using the notation presented in

3 Note that exotic gaits such as e.g. {3} ≺ {1, 4, 5} ≺ {2, 6} are still
valid in this framework.

the beginning of Section 4. However, this can be avoided
by observing that the leg stance velocity variation can be
(informally) minimized by picking the gait whose event
timings in steady state have the “biggest resemblance”
with the final touchdown event times of the previous gait.
For example, when switching from a quadruped gait that
has reached a steady state represented by

{1, 4} ≺ {3, 6} ≺ {2, 5},

to a quintuple gait, the “optimal” transition will be

{1} ≺ {4} ≺ {3} ≺ {6} ≺ {2} ≺ {5}, or

{4} ≺ {1} ≺ {6} ≺ {3} ≺ {2} ≺ {5}, etc.

The term “optimal” is utilized here in an informal way
since we present no formal proof that the proposed choice
does indeed minimize the leg stance velocity variation.
However, extensive simulation results corroborate this
hypothesis. Figure 3 illustrates two sample simulations
that use optimal and non-optimal transitions. The results
suggest that classes of gaits should not be fixed a priory
such as in the non-optimal case.

6. EIGEN-STRUCTURE OF THE SYSTEM MATRIX

The above parameterization of the system matrices gives
additional insight into the resulting steady state behavior
of the system. For each class of gaits, the parameter τg does
not represent the exact resulting stance time, but rather
encodes the minimum possible time the legs spend on the
ground. The true stance time is obtained by looking at the
eigenvalues (in the max-plus sense) of the explicit system
matrix A = G∗ ⊗ H defined in equation (9). Due to the
particular structure of A, one can find its (non-unique) 4

eigenvector, computed by

v = A⊗ 0, with 0 = [0 0 . . . 0]T (12)

and its associated (non-unique) eigenvalue:

λ = max(A⊗ v − v).

Since the eigenvalue λ encodes the total cycle time, the
true stance τ̄g time can be computed by τ̄g = λ− τf , and
an approximation for the robot’s true velocity V can be
computed by

V ∼= L
θl − θt
τ̄g

where θt, θl are the touchdown and lift-off angles respec-
tively, and L is the leg length, assuming recirculating legs
as in the morphology of RHex (Saranli et al., 2001) or the
DCSC Quadruped (Lopes et al., 2009). For the classes of
gaits presented in Figure 2 one can find the true stance
times:

Quintuple gait: τ̄g = max(6τ∆ + 5τf , τg)

Quadruped gait: τ̄g = max(3τ∆ + 2τf , τg)

Tripod gait: τ̄g = max(2τ∆ + τf , τg)

4 Due to the reducible structure of A = [A1 E] it additionally has
a trivial eigenvalue λ = ε and associated eigenvectors of the form
v = [ε . . . ε vi . . . vk]. The computation of equation (12) was verified
to be true by exhaustive search over all of the gait space up to 9 legs.



1. Quintuple gait

{1} ≺ {2} ≺ {3} ≺ {4} ≺ {5} ≺ {6} results into:

P =










ε ε ε ε ε ε
τ∆ ε ε ε ε ε
ε τ∆ ε ε ε ε
ε ε τ∆ ε ε ε
ε ε ε τ∆ ε ε
ε ε ε ε τ∆ ε










Q =










ε ε ε ε ε τ∆
ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε










P =










ε ε ε ε ε ε
ε ε τ∆ ε ε τ∆
τ∆ ε ε τ∆ ε ε
ε ε ε ε ε ε
ε ε τ∆ ε ε τ∆
τ∆ ε ε τ∆ ε ε










Q =










ε τ∆ ε ε τ∆ ε
ε ε ε ε ε ε
ε ε ε ε ε ε
ε τ∆ ε ε τ∆ ε
ε ε ε ε ε ε
ε ε ε ε ε ε










2. Quadruped gait

{1, 4} ≺ {3, 6} ≺ {2, 5} results into:

3. Tripod gait

{1, 4, 5} ≺ {2, 3, 6} results into:

P =










ε ε ε ε ε ε
τ∆ ε ε τ∆ τ∆ ε
τ∆ ε ε τ∆ τ∆ ε
ε ε ε ε ε ε
ε ε ε ε ε ε
τ∆ ε ε τ∆ τ∆ ε










Q =










ε τ∆ τ∆ ε ε τ∆
ε ε ε ε ε ε
ε ε ε ε ε ε
ε τ∆ τ∆ ε ε τ∆
ε τ∆ τ∆ ε ε τ∆
ε ε ε ε ε ε









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Fig. 2. Various examples of gaits for an hexapod robot, including the leg ordering relations, the synchronization matrices
P , Q, and simulations of the evolution of the gaits in time. Solid bars represent leg stance, and white bars represent
leg swing. For the presented simulations we use τg = 0.4s, τf = 0.3s, and τ∆ = 0.1s.

7. CONCLUSIONS AND FUTURE WORK

We have presented a modeling tool for locomotion of multi-
legged robots based on the max-plus algebra. Gait design
and implementation can be efficiently accomplished by
connecting circuits of discrete events. Leg synchronization
is guaranteed by design when the max-plus framework
is used. We have shown how to systematically generate
gaits via a simple parameterization of a set of max-
plus matrices. Gait switching is efficiently implemented
by simply switching system matrices in the evolution of
a max-plus-linear system. We have also shown how to
effectively choose which gaits to pick in order to minimize
the velocity variation of all the legs touching the ground.
We aim to proceed this research by exploiting the rich
set of tools available for the max-plus framework, and by
establishing parallels with the combinatorial view of the
recent work of Haynes et al. (2009).
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{1,4}≺{3,6}≺{2,5}
︷ ︸︸ ︷

{1}≺{2}≺{3}≺{4}≺{5}≺{6}
︷ ︸︸ ︷

{1,4}≺{3,6}≺{2,5}
︷ ︸︸ ︷

{2,3,6}≺{1,4,5}
︷ ︸︸ ︷

{1}≺{2}≺{3}≺{4}≺{5}≺{6}
︷ ︸︸ ︷

Fig. 3. Examples of sequences of gaits with and without optimal transitions. Only two tripod gaits are considered:
{2, 3, 6} ≺ {1, 4, 5} and its “reverse” {1, 4, 5} ≺ {2, 3, 6}, since in real robots these are typically the only stable
tripod gaits. For the presented simulations we use τg = 0.4s, τf = 0.3s, and τ∆ = 0.1s.
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