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Abstract: Model Predictive Control (MPC) is a model-based control method based on a receding
horizon approach and online optimization. In previous work we have extended MPC to a class of
discrete-event systems, namely the max-plus linear systems, i.e., models that are “linear” in the max-
plus algebra. Lately, the application of MPC for stochastic max-plus-linear systems has attracted a lot of
attention. At each event step, an optimization problem then has to be solved that is, in general, a highly
complex and computationally hard problem. Therefore, the focus of this paper is on decreasing the
computational complexity of the optimization problem. To this end, we use an approximation approach
that is based on the p-th raw moments of a random variable. This method results in a much lower
computational complexity and computation time while still guaranteeing a good performance.

Keywords: Stochastic discrete event systems, stochastic max-plus linear systems, model predictive
control, approximation, raw moments

1. INTRODUCTION

Model predictive control (MPC) (Rawlings and Mayne, 2009)
is an advanced control approach that relies on a dynamic model
of the process and is capable of handling constraints on inputs
or outputs in a systematic way. Although conventional MPC
uses linear or nonlinear discrete-time model, MPC has also
been extended to discrete-event systems (De Schutter and van
den Boom, 2001; Necoara et al., 2004).

The class of discrete-event systems essentially consists of man-
made systems that contain a finite number of resources (such
as machines, communications channels, or processors) that are
shared by several users (such as product types, information
packets, or jobs) all of which contribute to the achievement
of some common goal (the assembly of products, the end-to-
end transmission of a set of information packets, or a parallel
computation) (Baccelli et al., 1992). In this paper we consider a
special class of discrete-event systems, namely the max-plus
linear (MPL) systems. Loosely speaking, this class contains
discrete event systems with synchronization but no choice.
Models of such systems are based on two main operations,
maximization and addition. This leads to a description that is
linear in max-plus algebra (Baccelli et al., 1992; Cuninghame-
Green, 1979; Heidergott et al., 2006), and that applies to both
deterministic and stochastic discrete-event systems. Some re-
sults for the analysis of stochastic MPL discrete-event systems
can be found in (Olsder et al., 1990; Resing et al., 1990).

One of the relevant topics that has attracted much attention re-
cently, is the application of MPC for perturbed max-plus-linear
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systems in which modeling errors, noise, and/or disturbances
are present. Van den Boom and De Schutter (2004) have devel-
oped an MPC controller for such perturbed MPL systems. They
also showed that the resulting MPC optimization problem is
convex under quite general conditions. However, by increasing
the prediction horizon and the system order, the computational
complexity increases significantly. In (Van den Boom et al.,
2007) an effort is made to reduce the complexity by introducing
an approximation method, namely the variability expansion.
However, despite the resulting complexity reduction, the level
of the complexity of the main problem remains too high.

This paper focuses on another approach to reduce the com-
plexity of MPC for perturbed MPL systems by approximat-
ing the calculation of stochastic integrals using raw moments
of random variables. This method simplifies the computations
considerably and by choosing the appropriate order p of the
raw moments, the approximation error can be made sufficiently
small. Moreover, due to the special structure of the p-th raw
moments, this method also results in a convex optimization
problem that can be solved efficiently. Since we can compute
these moments analytically, this approach results in a much
faster and more efficient way to solve the stochastic MPL-MPC
problem without increasing the computational complexity.

The paper is organized as follows. Section 2 provides some
background information on max-plus algebra and stochastic
MPL systems. In Section 3 we give a concise account of the
MPC algorithm for stochastic MPL systems presented in (Van
den Boom and De Schutter, 2004). Section 4 introduces the
new approach based on p-th raw moments and describes how
it reduces the complexity of the MPC optimization problem. In
Section 5, we study the convexity of the MPC MPL problem
after applying the approximation method. Section 6 presents
a worked example in which the computation time of the ap-



proximation method is compared with the one from the analytic
computation.

2. MAX-PLUS ALGEBRA AND STOCHASTIC
MAX-PLUS LINEAR SYSTEMS

This section presents the basics of max-plus algebra and the
class of stochastic max-plus systems. More detailed informa-
tion can be found in (Baccelli et al., 1992; Cuninghame-Green,
1979; Heidergott et al., 2006).

2.1 Max-Plus Algebra

Define ε = −∞ and Rε = R∪{ε}. The max-plus addition (⊕)
and multiplication (⊗) are defined as follows:

x⊕ y = max(x,y)

x⊗ y = x+ y

for x,y ∈ Rε . Note that the zero element of the max-plus
addition is ε , i.e., x⊕ε = x, and the identity element of the max-
plus multiplication is e = 0, i.e., x⊗ e = x. The corresponding
max-plus matrix operations are defined as

(A⊕B)i j = ai j ⊕bi j = max(ai j,bi j)

(A⊗C)i j =
n
⊕

k=1

aik ⊗ ck j = max
k=1,...,n

(aik + ck j)

for A,B ∈ R
m×n
ε and C ∈ R

n×p
ε .

2.2 Max-Plus-Nonnegative-Scaling Functions

Let Smpns denote the set of max-plus-nonnegative-scaling func-
tions, i.e., functions f of the form

f (z) = max
i=1,...,m

(τi,1z1 + · · ·+ τi,nzn +ξi)

with variable z ∈ R
n
ε and constant coefficients τi, j ∈ R

+ and
ξi ∈ R, where R

+ is the set of the nonnegative real numbers.
In the sequel, we stress that f is a function of z by writing
f ∈ Smpns(z). As shown by Van den Boom and De Schutter
(2004), the set Smpns is closed under the operations ⊕,⊗, and
the scalar multiplication by a nonnegative scalar.

2.3 Stochastic MPL Systems

Discrete event systems with synchronization but no choice can
be modeled as follows (Baccelli et al., 1992; Cuninghame-
Green, 1979):

x(k) = A(k)⊗ x(k−1)⊕B(k)⊗u(k) (1)

y(k) =C(k)⊗ x(k) (2)

where x(k) is the state of the system at event step k, and u(k) and
y(k) are the input and output of the system. In fact, the vectors
u(k) and y(k) contain the time instants at which the internal
input and output events occur for the k-th time, respectively.
Since in a stochastic system noise leads to perturbations of the
system matrices, A(k), B(k), and C(k) are in general uncertain
system matrices. Following Van den Boom and De Schutter
(2004) and Van den Boom et al. (2007), these uncertainties are
presented by the vector e(k), which is a stochastic variable with
a certain probability distribution. Hence, the entries of the sys-
tem matrices belong to Smpns (Van den Boom and De Schutter,

2004), i.e., A(k) ∈ S n×n
mpns(e(k)), B(k) ∈ S

n×nu
mpns (e(k)), C(k) ∈

S
ny×n

mpns (e(k)).

3. MPC FOR STOCHASTIC MPL SYSTEMS

In (De Schutter and van den Boom, 2001; Van den Boom and
De Schutter, 2004) the MPC framework has been extended to
MPL models (1)–(2) as follows. Following the conventional
MPC methodology (Rawlings and Mayne, 2009), we define a
cost criterion J that reflects the input and output cost functions
in the event period [k,k+Np −1]:

J(k) = Jout(k)+λJin(k)

where Np is the prediction horizon and λ is a weighting factor.
Since we consider a stochastic system, the cost criterion is
actually defined as

J(k) =
Np−1

∑
j=0

ny

∑
i=1

E[κi(k+ j)]−λ
Np−1

∑
j=0

nu

∑
l=1

ul(k+ j) (3)

where E[·] denotes the expected value operator, κi(k) =
max(yi(k)− ri(k),0) is the tardiness error for the i-th output
at event step k, and r(k) is the vector of reference (due date)
signals. The aim is to compute an optimal input sequence
u(k), . . . ,u(k + Np − 1) that minimizes J(k) subject to linear
constraints on the inputs and outputs as discussed in Van den
Boom and De Schutter (2004). Since the u(k)’s correspond
to consecutive event occurrence times, we have the additional
condition ∆u(k + j) = u(k + j)− u(k + j − 1) ≥ 0 for j =
0, . . . ,Np − 1. Furthermore, in order to reduce the number of
decision variables and the corresponding computational com-
plexity we introduce a control horizon Nc (≤Np) and we impose
the additional condition that the input rate should be constant
from the point k+Nc − 1 on: ∆u(k+ j) = ∆u(k+Nc − 1) for

j = Nc, . . . ,Np − 1, or equivalently ∆2u(k + j) = ∆u(k + j)−
∆u(k + j − 1) = 0 for j = Nc, . . . ,Np − 1. MPC uses a reced-
ing horizon principle which means that after computation of
the optimal control sequence u(k), . . . ,u(k+Nc − 1), only the
first control sample u(k) will be implemented, subsequently
the horizon is shifted one event step, and the optimization is
restarted with new information of the measurements. Consider
the following vectors:

ũ(k) = [ uT (k) · · · uT (k+Np−1) ]T ,

r̃(k) = [ rT (k) · · · rT (k+Np−1) ]T ,

ỹ(k) = [ yT (k) · · · yT (k+Np−1) ]T ,

ẽ(k) = [ eT (k) · · · eT (k+Np−1) ]T .

By using successive substitution on (1)-(2), we get ỹ(k) =
C̃(ẽ(k))⊗ x(k − 1)⊕ D̃(ẽ(k))⊗ ũ(k) for appropriately defined

matrices C̃(ẽ(k)) and D̃(ẽ(k)) (Van den Boom and De Schutter,
2004). The stochastic MPL-MPC problem for event step k is
then defined as follows (Van den Boom and De Schutter, 2004):

min
ũ(k)

Jout(k)+λJin(k)

s.t.∆u(k+ j)≥ 0 for j = 0, . . . ,Np −1

∆2u(k+ j) = 0 for j = Nc, . . . ,Np −1

Acon(k)ũ(k)+Bcon(k)E[ỹ(k)]≤ ccon(k)

where the last inequality is in fact a soft constraint due to the
expected value of y(k) (so ccon(k) will in general include a
safety margin if necessary).

To solve the above optimization problem, we need to com-
pute the expected value of the signals κ̃(k) and ỹ(k). By
Lemma 2 of (Van den Boom and De Schutter, 2004), both κ̃(k)
and ỹ(k) belong to Smpns(z(k)) with z(k) = [−r̃T (k) xT (k −
1) ũT (k) ẽT (k)]T . Now, let the signal v(k) be a max-plus-



nonnegative-scaling function of ũ(k) and ẽ(k) (Van den Boom
and De Schutter, 2004):

v(k) = max
j=1,...,nv

(ξ j +β T
j ũ(k)+δ T

j w(k)+ γT
j ẽ(k))

where nv is the number of terms that appear in the maximiza-
tion, ξ j ∈ Rε , β j ∈ (R+)nu , δ j ∈ (R+)nw , γ j ∈ (R+)nẽ , w(k) =
[−r̃T (k) xT (k− 1)]T is the vector of non-stochastic variables,
and ẽ(k) ∈ R

nẽ is a stochastic variable with probability density
function f . For a shorter notation let α j(k) = ξ j + δ T

j w(k);
hence,

v(k) = max
j=1,...,nv

(α j(k)+β T
j ũ(k)+ γT

j ẽ(k)) (4)

Accordingly, the expected value of v(k), denoted by v̂ũ(k) =
E[v(k)], can be computed analytically as follows:

v̂ũ(k) =
nv

∑
j=1

∫

· · ·
∫

ẽ∈Φ j(ũ(k))

(α j(k)+β T
j ũ(k)+ γT

j ẽ) f (ẽ)dẽ (5)

where dẽ = dẽ1dẽ2 . . .dẽnẽ
and the sets Φ j(ũ(k)) for j =

1, . . . ,nv have non-overlapping interiors and are defined such
that for all ẽ∈Φ j(ũ(k)), v(k) is equal to (4) and

⋃nv
j=1 Φ j(ũ(k))=

R
nẽ . By Proposition 3 of (Van den Boom and De Schutter, 2004)

the function v̂ũ(k) is convex in ũ(k) and its subgradient gv(ũ(k))
is given by

gv(ũ(k)) =
nv

∑
j=1

β j

∫

· · ·
∫

ẽ∈Φ j(ũ(k))

f (ẽ)dẽ. (6)

Note that since the system matrices are perturbed by ẽ(k),
both ỹ(k) and κ̃(k) depend on ẽ(k). Furthermore, E[ỹ(k)] and
E[κ̃(k)] are convex in ũ(k), due to Lemma 3 of (Van den Boom
and De Schutter, 2004), which implies that Jout(k) and J(k) are
convex in ũ(k).

Remark 1. It is assumed that the reference signal, r̃(k), is fixed
and known at event step k. The state, x(k), depends on its
previous value x(k−1), which is known at event step k, and on
the optimal input ũ(k). Hence, x(k) changes due to the change
of ũ(k). Therefore, we only consider the variations of ũ(k) and
accordingly, the convexity of all functions in ũ(k).

Hence, referring to Property 4 of (Van den Boom and De Schut-
ter, 2004), if the linear output constraints are monotonically
nondecreasing, the MPL-MPC problem turns out to be a convex
problem in ũ(k). Such a problem can be solved using reliable
and efficient optimization algorithms, such as interior point
methods.

4. APPROXIMATION METHOD

Due to the numerical integration of (5) and (6), the complexity
of the direct computation of E[ỹ(k)] and E[κ̃(k)] grows fast
when the number of stochastic variables, nẽ, increases. To solve
this problem, Van den Boom et al. (2007) have introduced
an approximation method based on the variability expansion.
However, this method could not reduce the complexity of
the problem sufficiently and consequently the problem still
remains complex. In this section, we introduce an alternative
approximation method that is based on the p-th raw moment
of a random variable. Related work is presented in (Krivulin,
2000).

We are inspired by considering p-norms and related inequalities
(Golub and Van Loan, 1990). Assume that y = [y1, . . . ,yn]

T

is a vector in R
n; then ‖y‖p =

(

|y1|p + · · ·+ |yn|p
)1/p

and

‖y‖∞ = max(|y1|, . . . , |yn|) define the p-norm and ∞-norm of
y, respectively. However, for the computation of v(k) in (4), we
do not consider the absolute value of the variables but the exact
values. Obviously, y ≤ |y| where the equality holds for y ≥ 0.
Hence, to be able to take advantage of the norm relations, we
introduce a new variable L as a finite lower bound of y j, i.e.,
L ≤ y j for j = 1, . . . ,n. Hence, y j −L ≥ 0, ∀ j and we have

max(y1, . . . ,yn) = max(y1 −L, . . . ,yn −L)+L

= max(|y1 −L|, . . . , |yn −L|)+L

Note that for the case that y j, j = 1, . . . ,n, is not bounded
from below, we can define L as an offset and consequently, the
equality sign changes to inequality as follows:

max(y1, . . . ,yn) = max(y1 −L, . . . ,yn −L)+L

≤ max(|y1 −L|, . . . , |yn −L|)+L. (7)

In this case, the role of L is to decrease the error of approximat-
ing y j −L by |y j −L|.
In the sequel we will use the following theorem (Boyd and
Vandenberghe, 2004):

Theorem 2. (Jensen’s Inequality). Let x be an integrable real-
valued random variable and ϕ be an integrable, concave func-
tion. Then: ϕ (E [x])≥ E [ϕ(x)].

In this paper, we assume that each element of the error vec-
tor ẽi(k) is an i.i.d. normally distributed random variable 1

with mean µi and variance σ2
i , i.e., ẽi(k) ∼ N (µi,σ

2
i ) for

i= 1, . . . ,nẽ. Hence, ẽi(k) is not bounded from below. However,
99.7% of the observations of a normally distributed random
variable fall within 3 standard deviation of the mean, i.e., be-
tween µi−3σi and µi+3σi. Therefore, the lower bound of each
random variable ẽi(k) can be approximated by ζi = µi−3σi for
i = 1, . . . ,nẽ and hence, we can take L = min(ζ1, . . . ,ζnẽ

).

Now consider the random variables y j ∼ N (µ j,σ
2
j ) for j =

1, . . . ,n. Let x j = y j − L where L = min
j=1,...,n

(µ j − 3σ j). By

considering (7) and the fact that expected value is a linear,
monotonic operator, we have:

E
[

max(x1, . . . ,xn)
]

+L ≤ E
[

max(|x1|, . . . , |xn|)
]

+L

≤ E‖x‖∞ +L (8)

Since ‖x‖∞ ≤ ‖x‖p (Golub and Van Loan, 1990), we have:

E
[

‖x‖∞ +L
]

≤ E
[

(|x1|p + · · ·+ |xn|p)1/p +L
]

or E‖x‖∞ +L ≤ E
[

(|x1|p + · · ·+ |xn|p)1/p
]

+L (9)

Finally, by applying Theorem 2 to the right-hand side of (9), we
obtain:

E‖x‖∞ +L ≤
(

E
[

|x1|p + · · ·+ |xn|p
]

)1/p

+L (10)

Note that we can apply Theorem 2 since ϕ(x) = x1/p is a
concave function for p > 1 and x > 0, and in our case the
argument x is ∑n

i=1 |xi|p which is positive. Accordingly, from
(8)-(10) we conclude that

E
[

max(x1, . . . ,xn)
]

+L ≤
(

n

∑
j=1

E
[

|x j|p
]

)1/p

+L (11)

Therefore, instead of minimizing the left-hand side of (11),
we can minimize its right-hand side. As a result, we choose

1 Note that in theory this may sometimes result in negative values for quantities

that are in principle positive such as the execution times. However, this will not

have any impact later on due to the selection of the offset or lower bound L

(which will then be taken positive).



the function v̂ũ,app(k) as an approximation of v̂ũ(k) for an

appropriate choice of p as follows 2 :

v̂ũ,app(k) =

(

nv

∑
j=1

E
[(

α j +β T
j ũ+ γT

j ẽ−L
)p]

)1/p

+L. (12)

Remark 3. For an even positive integer p= 2q, q∈Z
+, E[xp] =

E[|x|p]. Hence, without loss of generality, we can use E[xp] in
our problem by only considering even values for p in the sequel.
So from now on, p is an even integer larger than or equal to 2.

We also have (Dekking et al., 2005):

Lemma 4. If z1 ∼ N (µ1,σ
2
1 ) and z2 ∼ N (µ2,σ

2
2 ) are inde-

pendent, then az1 +bz2 + c ∼ N (aµ1 +bµ2 + c,a2σ2
1 +b2σ2

2 )
for any real numbers a,b,c

Recall that we assume that each element of the error vector
is normally distributed, i.e., ẽi ∼ N (µi,σ

2
i ) for i = 1, . . . ,nẽ.

By Lemma 4, the random variable x j = α j + β T
j ũ + γT

j ẽ −
L in (12) is also normally distributed with mean µ j = α j +

β T
j ũ+ γT

j µẽ −L and variance σ2
j = γT

j [σ
2
1 , . . . ,σ

2
nẽ
]T . Note that

L = min
j=1,...,nv

(α j +β T
j ũ+γT

j µẽ−3σ j) and µẽ = [µ1, . . . ,µnẽ
]T is

the mean of the error vector ẽ.

By definition, the p-th raw moment of a normally distributed
random variable x with mean µ and standard deviation σ can
be computed as follows:

E[xp] =
∫ ∞

−∞
xp 1√

2πσ
e−(x−µ)2/(2σ2)dx

which is finite for all p ≥ 2. According to Willink (2005), this
moment has a closed form which can be expressed as follows:

E
[

xp
]

= σ pi−pHp(iµ/σ) (13)

where

Hp(x)≡ (−1)p exp(x2/2)
dp

dxp
exp(−x2/2)

is the p-th Hermite polynomial. Considering equations (26.2.51)
and (22.3.11) in (Abramowitz and Stegun, 1964), leads to

Hp(x) = p!

p/2

∑
k=0

(−1)kxp−2k

2kk!(p−2k)!

where p is an even integer in our case and therefore, p/2 ∈ Z
+.

As a consequence, E
[

xp
]

in (13) can be written as,

E
[

xp
]

=
p/2

∑
k=0

σ2k2−k p!

k!(p−2k)!
µ p−2k, (14)

which gives a better insight into the construction of (13).

5. CONVEXITY OF THE APPROXIMATION

The approximation method (12), where the expectation can be
replaced by (13) or equivalently (14), decreases the compu-
tational complexity significantly since there is no numerical
integration involved any more and consequently, increases the
time efficiency. Moreover, if we can prove the convexity of (12),
it is possible to use convex optimization algorithms to solve the
MPC optimization problem in a very efficient way.

To this end, let f j(ũ) = α j +β T
j ũ+ γT

j ẽ−L, which is an affine

and so a convex function in ũ. As mentioned in Section 4,
the p-th moment of a normally distributed random variable is

2 For brevity, we drop k everywhere, except for v̂.

finite for p ≥ 2. Consequently, since ẽ is normally distributed,
E[(ẽ(k))p] < ∞. Accordingly, the p-th raw moment of f j(ũ) is
defined as:

E[ f j(ũ)
p] =

∫ ∞

−∞

(

f j(u)
)p

dFũ(u)

where Fũ is the cumulative distribution function of f j(ũ).
Note that f j(ũ) is normally distributed with mean µ j = α j +

β T
j ũ(k)+γT

j µẽ−L and variance σ2
j = γT

j [σ
2
1 , . . . ,σ

2
nẽ
]T , as men-

tioned in Section 4. To be able to proceed further, we need the
following theorems (see Chapter 5 of (Mitrinović et al., 1993)):

Theorem 5. (Minkowski inequality for functions). Let h and g
be real-valued functions in R such that the functions |h(x)|ℓ and

|g(x)|ℓ for an integer ℓ > 1 are integrable on R. Then
(

E
[

|h(x)+g(x)|ℓ
]

)1/ℓ
≤
(

E
[

|h(x)|ℓ
]

)1/ℓ
+
(

E
[

|g(x)|ℓ
]

)1/ℓ

Theorem 6. (Minkowski inequality for vectors). Let x,y ∈ R
n

and ℓ > 1 be an integer. Then,
(

n

∑
j=1

|x j + y j|ℓ
)1/ℓ

≤
(

n

∑
j=1

|x j|ℓ
)1/ℓ

+

(

n

∑
j=1

|y j|ℓ
)1/ℓ

.

Since p is even in our case (cf. Remark 3), we have |x|p = xp.
Consequently, we do not use the absolute value sign for the
expressions with the power p in the rest of this section. First we
prove the following proposition:

Proposition 7.
(

E
[(

f j(ũ)
)p])1/p

is a convex function of ũ.

Proof: If we show that
(

E
[(

f j(λ ũ1 +(1−λ )ũ2)
)p]
)1/p

≤ λ
(

E[ f j(ũ1)
p]
)1/p

+(1−λ )
(

E[ f j(ũ2)
p]
)1/p

for any two points ũ1 and ũ2 in the domain of E
[(

f j(ũ)
)p]

and
for any 0 ≤ λ ≤ 1, then the proof is complete. Since f j is a
linear function in ũ, we have

f j(λ ũ1 +(1−λ )ũ2) = λ f j(ũ1)+(1−λ ) f j(ũ2)

Therefore, instead of the inequality above, we prove that the
following inequality holds true.
(

E
[(

λ f j(ũ1)+(1−λ ) f j(ũ2)
)p]
)1/p

≤ λ
(

E[ f j(ũ1)
p]
)1/p

+(1−λ )
(

E[ f j(ũ2)
p]
)1/p

(15)

In fact (15) follows directly from the Minkowski inequality
for functions (Theorem 5). So the inequality holds true and

consequently,
(

E
[(

f j(ũ)
)p])1/p

is a convex function in ũ. �

Before proving the convexity of (12), consider the following
remark.

Remark 8. Let x,y ∈ R
n and p ≥ 2 be an even integer. If |x j|<

|y j| for j = 1, . . . ,n, then
(

n

∑
j=1

|x j|p
)1/p

<

(

n

∑
j=1

|y j|p
)1/p

.

Now according to the above notation, we can rewrite (12) more
compactly as

v̂ũ,app(k) =
( nv

∑
j=1

E[ f j(ũ)
p]
)1/p

+L.



Proposition 9. v̂ũ,app(k) is a convex function of ũ.

Proof: Considering Remark 8, the Minkowski inequality
for vectors (Theorem 6), and Proposition 7, we prove that
v̂λ ũ1+(1−λ )ũ2,app(k)≤ λ v̂ũ1,app(k)+(1−λ )v̂ũ2,app(k) and there-
fore, it is a convex function of ũ:
(

nv

∑
j=1

E
[(

λ f j(ũ1)+(1−λ ) f j(ũ2)
)p]

)1/p

=

(

nv

∑
j=1

(

E
[(

λ f j(ũ1)+(1−λ ) f j(ũ2)
)p]
)(1/p)(p)

)1/p

eq.(15),Rem.8

≤
(

nv

∑
j=1

(

λ (E[ f j(ũ1)
p])1/p

+(1−λ )(E[ f j(ũ2)
p])1/p

)p

)1/p

Minkowski, Thm.6

≤
(

nv

∑
j=1

λ p
E[ f j(ũ1)

p]

)1/p

+

(

nv

∑
j=1

(1−λ )p
E[ f j(ũ2)

p]

)1/p

≤ λ

(

nv

∑
j=1

E[ f j(ũ1)
p]

)1/p

+(1−λ )

(

nv

∑
j=1

E[ f j(ũ2)
p]

)1/p

Note that the constant value L in v̂ũ,app(k) is omitted since this
term does not influence the convexity. �

6. WORKED EXAMPLE

Now we illustrate our approximation method using an example
that involves a simple manufacturing system taken from Van
den Boom and De Schutter (2004). Selecting this example
also enables us to compare our results with the exact analytic
solution. Moreover, we can also compare the computation time
of our method with the one of (Van den Boom and De Schutter,
2004).

M1 M2

d1=5+e(k) d2=1

✲ ✲ ✲u(k) y(k)
x1(k) x2(k)

t1=0 t2=1 t3=0

Fig. 1. A production system.

Consider the manufacturing system of Figure 1. This system
consists of two machines M1 and M2 and operates in batches.
The raw material is fed to M1 where preprocessing is done.
Afterwards the intermediate product is fed to M2 and finally
leaves the system. We assume that each machine starts working
as soon as possible on each batch, i.e., as soon as the raw
material or the required intermediate product is available, and
as soon as the machine is idle (i.e., the previous batch of
products has been processed and has left the machine).

Define:
u(k) : time instant at which the system is fed for the k-th time

y(k) : time instant at which the k-th product leaves the
system

xi(k) : time instant at which machine i starts for the k-th time

t j(k) : transportation time on link j for the k-th batch

di(k) : processing time on machine i for the k-th batch.

The system equations are given by Van den Boom and De
Schutter (2004)

x1(k) = max(x1(k−1)+d1(k−1),u(k)+ t1(k))

x2(k) = max(x1(k)+d1(k)+ t2(k),x2(k−1)

+d2(k−1))

= max(x1(k−1)+d1(k−1)+d1(k)+ t2(k),

u(k)+d1(k)+ t1(k)+ t2(k),

x2(k−1)+d2(k−1))

y(k) = x2(k)+d2(k)+ t3(k)

In matrix notation this becomes

x(k) = A(k)⊗ x(k−1)⊕B(k)⊗u(k)

y(k) =C(k)⊗ x(k) .

where the system matrices A, B and C are given by

A =

[

d1(k−1) ε

d1(k−1)+d1(k)+ t2(k) d2(k−1)

]

B =

[

t1(k)

d1(k)+ t1(k)+ t2(k)

]

C =
[

ε d2(k)+ t3(k)
]

.

It is assumed that the transportation times are constant: t1(k) =
0, t2(k) = 1, t3(k) = 0; the production time of M2 is constant:
d2(k) = 1; the due date (reference) signal is r(k) = 4 + 6 ·
k and the initial state is x(0) = [0 7]T . The vector ẽ(k) =
[ d1(k−1) d1(k) d1(k+1) d1(k+2) ]T consists of indepen-
dent stochastic random variables, i.e., the production time on
M1 is corrupted by noise: d1(k+ ℓ) = 5+ e(k+ ℓ) where e(k+
ℓ) ∼ N (0,1) for ℓ = −1, . . . ,2. The cost criterion (3) will
be optimized for Np = 3 and Nc = 2. Hence, we can write
the tardiness error equations with deterministic and stochastic
parts:

max(y(k)− r(k),0)

= max(η1 + ẽ1 + ẽ2,η2 + ẽ2,η3,0)

max(y(k+1)− r(k+1),0)

= max(η4 + ẽ1 + ẽ2 + ẽ3,η5 + ẽ2 + ẽ3, (16)

η6 + ẽ3,η7 + ẽ1 + ẽ2,η8 + ẽ2,η9,0)

max(y(k+2)− r(k+2),0)

= max(η10 + ẽ1 + ẽ2 + ẽ3 + ẽ4,η11 + ẽ2 + ẽ3 + ẽ4,

η12 + ẽ3 + ẽ4,η13 + ẽ4,η14 + ẽ1 + ẽ2 + ẽ3,

η15 + ẽ2 + ẽ3,η16 + ẽ3,η17 + ẽ1 + ẽ2,

η18 + ẽ2,η19,0)

where η1, . . . ,η19 are sums of deterministic values and ẽ1, . . . , ẽ4

are the elements of the stochastic vector ẽ(k). Note that we omit
the argument k for brevity. Next, we add an offset L to all terms
in y(k+ ℓ)− r(k+ ℓ), ℓ= 0,1,2. As mentioned in Section 4 the
value L used in (7) for each maximization term will be defined
as follows:

L = min
j=1,...,nv

(η j + γT
j µẽ −3σ j,0)

where µẽ = [µ1, . . . ,µ4]
T and σ2

j = γT
j [σ

2
1 , . . . ,σ

2
4 ]

T such that

µi = 0 and σ2
i = 1 are the mean and variance of ẽi for i =

1, . . . ,4 by assumption, and γ j is a vector of 0 and 1 that
indicates which elements of ẽ appear in the maximization.

Table 1 lists the results of computing the expected values of the
tardiness error shown in (16) using the approximation method



k ℓ v̂ũ(k) v̂ũ,app(k) relative error (%)

1 0 2.0089 3.6895 84

1 6.0120 6.2912 4.644

2 11.0099 11.1758 1.507

2 0 3.5606 3.6318 2.003

1 8.5607 8.5637 0.035

2 13.5603 13.5638 0.026

3 0 5.8460 5.8476 0.027

1 10.8460 10.8464 0.004

2 15.8459 15.8465 0.004

4 0 4.9771 5.0006 0.472

1 9.9766 10.0011 0.246

2 14.9758 15.0036 0.186

Table 1. Exact value v̂ũ(k) and approximation
v̂ũ,app(k) of max(y(k + ℓ)− r(k + ℓ),0) for ℓ =

0,1,2.

(12), as well as the exact values obtained by using numerical
integration. At each event step k = 1,2,3,4, three expectations
are computed due to the equations in (16). Our numerical
experiment with different values of p show that for the first
expectation, p = 8, for the second one, p = 24, and for the third
one, p = 36, give a very good approximation. The error of the
approximation method is less than 2% on average, as shown
in the last column of Table 1 which presents the percentage
relative error.

If we apply MPC in closed loop for 20 successive event steps,
then the total computation time 3 using our approximation
approach is 9 s. The computation time for the method of Van
den Boom and De Schutter (2004) when applied to this example
is 93 s, but this computation time holds for the case that the error
vector ẽ is uniformly distributed; for the normal distribution the
computation time will only increase.

So the proposed approximation approach combines a good
performance with computation times that are much lower than
existing approaches, and is thus an efficient and useful tool for
solving the MPL-MPC optimization problem.

7. CONCLUSIONS

For the stochastic MPL-MPC problem, we have introduced an
approximation method to reduce the computational complexity.
In this stochastic framework, the complexity of the optimiza-
tion problem increases if the number of stochastic variables
increases, due to the numerical integrations present in the cost
function and output constraint. To tackle these difficulties, we
have proposed a method based on the p-th raw moments of
the stochastic variables. We assumed that the elements of the
noise vector in the system are normally distributed. Since a
closed form of the p-th raw moments of a normally distributed
random variable exists, we can compute the expectation without
using the numerical integration. We have also proved that the
expectations and consequently the cost function are convex.
Therefore, if the constraints are a nondecreasing affine function
of the output, the resulting optimization problem is a convex
optimization problem, and thus can be solved very efficiently.

Future work will focus on decreasing the error of approxima-
tion method by finding the best choice for the offset L and the

3 The CPU times reported here were obtained running Matlab 7.5.0 (R2007b)

on a 2.33 GHz Intel Core Duo E655 processor.

raw moment order p. Moreover, we will compare this method
with variability expansion (Van den Boom et al., 2007) more
precisely to find the strong and weak points of these methods in
comparison to each other.
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