
Delft University of Technology
Delft Center for Systems and Control

Technical report 10-041

Predictive control for baggage handling
systems using mixed integer linear

programming∗

A.N. Tarău, B. De Schutter, and J. Hellendoorn

If you want to cite this report, please use the following reference instead:
A.N. Tarău, B. De Schutter, and J. Hellendoorn, “Predictive control for baggage
handling systems using mixed integer linear programming,” Proceedings of the 5th
IFAC International Conference on Management and Control of Production Lo-
gistics (MCPL 2010), Coimbra, Portugal, pp. 16–21, Sept. 2010. doi:10.3182/
20100908-3-PT-3007.00004

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/10_041.html

https://doi.org/10.3182/20100908-3-PT-3007.00004
https://doi.org/10.3182/20100908-3-PT-3007.00004
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/10_041.html

Predictive Control for Baggage Handling

Systems using Mixed Integer

Linear Programming

A.N. Tarău B. De Schutter J. Hellendoorn

Delft Center for Systems and Control
Delft University of Technology, Mekelweg 2, 2628 CD Delft,

The Netherlands {a.n.tarau,b.deschutter,j.hellendoorn}@tudelft.nl

Abstract: State-of-the-art baggage handling systems transport luggage in an automated way
using destination coded vehicles (DCVs). These vehicles transport the bags at high speeds on a
network of tracks. In this paper we consider the problem of controlling the route of each DCV
in the system. In general this results in a nonlinear, nonconvex, mixed integer optimization
problem which is usually very expensive in terms of computational effort. Therefore, we present
an alternative approach for reducing the complexity of the computations by simplifying and
approximating the nonlinear optimization problem by a mixed integer linear programming
(MILP) problem. The advantage is that for MILP problems solvers are available that allow
us to efficiently compute the global optimal solution. The solution of the MILP problem can
then be used as a good initial starting point for the original nonlinear optimization problem.
We use model predictive control (MPC) for solving the route choice problem. We also assess
the performance of the proposed (nonlinear and MILP) formulations of the MPC optimization
problem using a benchmark case study.

1. INTRODUCTION

Modern baggage handling systems in airports transport
luggage at high speeds using destination coded vehicles
(DCVs) that transport the bags in an automated way on a
network of tracks. Currently, the DCVs are routed through
the system using routing schemes based on preferred
routes. These routing schemes can be adapted to respond
to the occurrence of predefined events. However, as argued
by de Neufville (1994), the patterns of loads on the system
are highly variable, depending on e.g. the season, time of
the day, type of aircraft at each gate, number of passengers
for each flight. Therefore, we do not consider predefined
preferred routes. Instead we develop advanced control
methods to determine the optimal routing.

Theoretically, the maximum performance of such a DCV-
based baggage handling system would be obtained if one
computes the optimal routes using optimal control (Lewis,
1986). However, as shown by Tarău et al. (2008), this
control method becomes intractable in practice due to the
heavy computation burden. Therefore, in order to make
a trade-off between computational effort and optimality,
in (Tarău et al., 2009), we have developed centralized and
decentralized model predictive control (MPC). MPC is an
on-line model-based predictive control design method that
uses a receding horizon principle. As the results confirmed,
centralized MPC requires a high computation time to
determine a solution. The use of decentralized control
lowers the computation time, but this comes at the cost of
suboptimality.

In this paper we investigate whether the computational ef-
fort required for computing the route of each DCV by using
centralized MPC can be lowered by using mixed integer

linear programming (MILP). The large computation time
obtained in previous work comes from solving nonlinear,
nonconvex, mixed integer optimization problems that can
have multiple local minima. So, in this paper we rewrite
the routing problem as an MILP problem, for which effi-
cient solvers are available. The MILP solution can then be
used as an initial starting point for the original nonlinear
optimization problem.

The paper is organized as follows. Section 2 briefly recapit-
ulates the event-driven routing model developed in (Tarău
et al., 2008). Next, in Section 3, we simplify the event-
driven model and recast it into MILP form. In Section 4
we propose two MPC approaches where we solve the opti-
mization problems corresponding to the nonlinear routing
problem and to the MILP-based problem respectively. For
a simple case study, we compare the proposed formulations
in Section 5. Finally, Section 6 concludes the paper.

2. PRELIMINARIES

2.1 Model predictive control

Since later on we will use model predictive control (MPC)
for determining the routes of the DCVs in the network, in
this section we briefly introduce the basic MPC concepts.

MPC is an on-line model-based control design method,
see e.g. (Maciejowski, 2002), that uses a receding horizon
principle. In the basic MPC approach, given an horizon N ,
at step k ≥ 0, where k is integer-valued, corresponding to
the time instant tk = kτs with τs the sampling time, the
future control sequence u(k), u(k+1), . . . , u(k+N − 1) is
computed by solving a discrete-time optimization problem
over the period [tk, tk +Nτs) so that a performance index

defined over the considered period [tk, tk + Nτs) is opti-
mized subject to the operational constraints. After com-
puting the optimal control sequence, only the first control
sample is implemented, and subsequently the horizon is
shifted. Next, the new state of the system is measured or
estimated, and a new optimization problem at time tk+1

is solved using this new information.

2.2 Mixed integer linear programming

Mixed integer linear programming (MILP) problems are
optimization problems with a linear objective function
dealing with real and integer variables, subject to linear
equality and inequality constraints. The advantage is that
for MILP problems efficient solvers are available (Fletcher
and Leyffer, 1998) that allow us to efficiently compute the
global optimal solution.

Next we present two properties that will be used in
transforming the original nonlinear route choice model
of a DCV-based baggage handling system into an MILP
model. These properties are in fact equivalences, see e.g.
(Bemporad and Morari, 1999), where f is a function
defined on a bounded set X with upper and lower bounds
M and m for the function values, δ is a binary variable, y
is a real-valued scalar variable, and ǫ is a small tolerance
(typically the machine precision):

P1: [f(x) 6 0] ⇐⇒ [δ = 1] is true if and only if
{

f(x) 6 M(1− δ)

f(x) > ǫ+ (m− ǫ)δ ,

P2: y = δf(x) is equivalent to

y 6 Mδ

y > mδ

y 6 f(x)−m(1− δ)

y > f(x)−M(1− δ) .

2.3 System description and original model

Now we briefly recapitulate the event-driven route choice
model of a baggage handling system that we have devel-
oped in (Tarău et al., 2008).

Consider the general DCV-based baggage handling system
with L loading stations and U unloading stations sketched
in Figure 1. The DCV-based baggage handling system
operates as follows: given a demand of bags and the
network of tracks, the route of each DCV (from a given
loading station to the corresponding unloading station)
has to be computed subject to operational and safety
constraints such that the performance of the system is
optimized.

bags

on

conveyor

belts
planes

onto

loaded

to be

bags

conveyors end points

network

of tracks

L1

L2

LL

U1

U2

UU

Fig. 1. Baggage handling system using DCVs.

The model of the baggage handling system we have de-
veloped in (Tarău et al., 2008) consists of a continuous
part describing the movement of the individual vehicles
transporting the bags through the network, and of the
following discrete events: loading a new bag onto a DCV,
unloading a bag that arrives at its end point, updating the
position of the switches into and out of a junction, and
updating the speed of a DCV. The state of the system
consists of the positions of the DCVs in the network and
the positions of each switch of the network. According to
the discrete-event model of Tarău et al. (2008), as long as
there are bags to be handled, the system evolves as follows:
we shift the current time to the next event time, take the
appropriate action, and update the state of the system.

The operational constraints derived from the mechanical
and design limitations of the system are the following: the
speed of each DCV is bounded between 0 and vmax, while
a switch at a junction has to wait at least τ switch time
units between two consecutive toggles in order to avoid
the quick and repeated back and forth movements of the
switch which may lead to mechanical damage. We assume
τ switch to be an integer multiple of τs where τs is the
sampling time.

2.4 Network

We represent the network of tracks that the DCVs use
to transport the luggage as a directed graph. Then the
nodes via which the DCVs enter the network are called
loading stations, the nodes via which the DCVs unload
the transported bags are called unloading stations, while
all other nodes in the network are called junctions. The
section of track between two nodes is called link.

Note that without loss of generality we can assume that
each junction has at most 2 incoming links and at most 2
outgoing links, both indexed by l ∈ {0, 1}.

Each junction with 2 incoming links has a switch going into
the junction (called switch-in hereafter). Each junction
with 2 outgoing links has a switch going out of the junction
(called switch-out hereafter).

3. SIMPLIFIED DCV ROUTING MODELS

In this section we present simplified route choice models
that can be written as MILP models. We consider two
cases with a gradually increasing complexity where the
DCV-based baggage handling system has respectively only
one unloading station and more unloading stations. We
consider these two cases since they grow in complexity and,
for each of these cases, additional assumptions have to be
made in order to write an MILP model that is equivalent
to the simplified route choice model.

3.1 Common assumptions for both cases

To transform the route choice problem into an MILP
problem, we first simplify it by assuming the following:

• The DCVs run with maximum speed along the track
segment and, if necessary, they wait at the end of
the link in a vertical queue. In principle, the queue
lengths should be integers as their unit is “number of
DCVs”, but we will approximate them using reals.

Sb

Sd

Sc

τd,0
ℓd,0

ℓd,1

τd,1

0

0

0

1

1

1

Fig. 2. Network elements.

• The dynamic demand Di of loading station Li, i ∈
{1, . . . , L}, is approximated with a piecewise constant
demand; in the time interval [tk, tk+1), with tk = kτs,
the demand at loading station Li is Di(k).
• For each link a free-flow travel time is assigned. This
free-flow travel time represents the time period that
a DCV requires to travel on a link in case of no
congestion, using, hence, maximum speed. The free-
flow travel time of a link is always assumed to be a
multiple of τs.

3.2 Case 1: one unloading station

In this section we consider the case of a DCV-based
baggage handling system with only one unloading station.

Model To illustrate the derivation of the route model we
now consider the most complex cell a network can contain,
as depicted in Figure 2 where junction Sd has 2 neighboring
junctions Sb and Sc connected to it via its incoming links.

The control time step for each junction in the network
is τs. So, at each step k ≥ 0, for each junction that
has two incoming links, we compute a control action that
determines the position of the switch into a junction for
the time period [tk, tk+1). Let Sd be such a junction as
sketched in Figure 2. Then the control action that we
determine is denoted by usw in

d (k) and expresses the index
of the incoming link that the switch is positioned on.
At each step k, we also compute a control action that
determines the position of the switch out of a junction
during [tk, tk+1). Let Sb be such a junction. Then the
control action that we determine is denoted by usw out

b (k).

Next we present how the evolution of the queue length
at the end of each incoming link of Sd is determined.
At step k ≥ 0, we compute usw out

b (k), usw out
c (k), and

usw in
d (k). Let ℓj,l denote the link between a junction Sj

and its neighbor connected via the incoming link l of Sj as
illustrated in Figure 2. Also, let qj,l(k) denote the length of
the queue at the end of link ℓj,l at time instant tk. Recall
that each link in the network has been assigned a given
free-flow travel time. Then, let τd,0 and τd,1 denote the free-
flow travel time of link ℓd,0 and ℓd,1 respectively. Hence,
the control signals usw out

b (k) and usw out
c (k) influence qd,0

and qd,1 after
τd,0

τs
and respectively

τd,1

τs
time steps.

The evolution of the length of the queue at the end of link
ℓd,l, is given by:

qd,l(k+1) = max

(

0, qd,l(k)+
(

Id,l(k−
τd,l

τs
)−Omax

d,l (k)
)

τs

)

(1)

where qd,l(k + 1) is the length of the queue at the end of
link ℓd,l at time instant tk+1, Id,l(k) represents the inflow
of link ℓd,l during the period [tk, tk+1), and Omax

d,l (k) is the
maximum number of DCVs per time unit that cross Sd
during [tk, tk+1) via link ℓd,l.

The maximum number of DCVs per time unit that wait in
the queue or arrive at the end of link ℓd,l, and that cross
Sd during [tk, tk+1) is defined as follows:

Omax
d,0 (k) = (1− usw in

d (k))Omax (2)

Omax
d,1 (k) = usw in

d (k)Omax (3)

where Omax is the maximum outflow of a junction. Note
that we have used the operator max in (1) since the length
of the queue is always larger than or equal to 0.

The inflows Id,0(k) and Id,1(k) are defined as:

Id,0(k) = usw out
b (k)Ob(k) (4)

Id,1(k) = (1− usw out
c (k))Oc(k) (5)

with Ob(k) and Oc(k) respectively the outflow of junction
Sb and Sc during the time interval [tk, tk+1).

For k ≥ 0 the outflow Od(k) of a junction Sd with two
incoming links is defined as:

Od(k) =min

(

(1− usw in
d (k))

(qd,0(k)

τs
+ Id,0(k −

τd,0

τs
)
)

+

usw in
d (k)

(qd,1(k)

τs
+ Id,1(k −

τd,1

τs
)
)

, Omax

)

(6)

The unloading station is modeled as follows. Let Sexit

denote the junction connected to the unloading station.
Then let Oexit(k) denote the outflow at Sexit during the
period [tk, tk+1). The outflow Oexit(k) can be deduced
in a similar way as explained above. Furthermore, let
U(k) denote the outflow at the unloading station during
[tk, tk+1). We assume that the unloading station is always
link 0 out of Sexit. Then

U(k) =
(

1− uexit
sw out(k −

τ

τs
)
)

Oexit(k −
τ

τs
)

where uexit
sw out(k) expresses the position of the switch out

of Sexit during [tk, tk+1) and τ is the free-flow travel time
between Sexit(k) and the unloading station.

MILP model Now we use the MILP properties presented
in Section 2.2 in order to obtain an MILP model for the
route choice model given by equations (1)-(6).

We start by transforming (6) using Property P1. Let the
real-valued variable fout

j (k) be equal to

fout
d (k) =

(qd,0(k)

τs
+ Id,0(k −

τd,0

τs
)
)

(1− usw in
d (k))+

(qd,1(k)

τs
+ Id,1(k −

τd,1

τs
)
)

usw in
d (k). (7)

So, we introduce the binary variable δoutd,1 (k) which equals

1 if and only if Omax ≤ fout
d (k). Then we rewrite (6) as

follows:

Od(k) = δoutd (k)Omax + (1− δoutd (k))fout
d (k) (8)

where the condition δoutd (k) = 1 if and only if Omax −
fout
d (k) ≤ 0 is equivalent to (cf. Property P1):

{

Omax − fout
d (k) ≤M(1− δoutd (k))

Omax − fout
d (k) ≥ ǫ+ (m− ǫ)δoutd (k)

with M = Omax and m = − 1
τs
qmax where qmax is the

maximum possible length of the queue at the end of a
link.

But (8) is not yet linear, so, we use Property P2 and
introduce the real-valued scalar variables youtd (k) such
that:

youtd (k) = δoutd (k)fout
d (k).

Hence, one obtains:

Od(k) = Omaxδoutd (k) + fout
d (k)− youtd (k)

which is linear. Note that (7) can be written as a linear ex-
pression by introducing the additional variables yinq,d,l(k) =

usw in
d (k)qd,l(k) and yinI,d,l(k) = usw in

d (k)Id,l(k −
τd,l
τs

) and
the corresponding set of linear inequalities of Property
P2 for f(x) = qd,l(k) with M = qmax, and m = 0,
and f(x) = Id,l(k −

τd,l
τs

) with M = Omax, and m = 0
respectively.

Finally, we transform (1) into its MILP equivalent. Let the

real-valued variable fd,l(k) be equal to qd,l(k) +
(

Id,l(k −

τd,l
τs

) − Omax
d,l (k)

)

τs. Additionally we also introduce the

binary variable δd,l(k) which equals 1 if and only if
fd,l(k) ≤ 0 and we rewrite (1) as:

qd,l(k + 1) = (1− δd,l(k))fd,l(k)) (9)

together with the set of linear inequalities of Property P1
with M = qmax +Omaxτs and m = −Omaxτs.

However (9) is not yet linear. Therefore, we introduce
the variable yd,l(k) = δd,l(k)fd,l(k) and the set of linear
inequalities of Property P2 for f(x) = fd,l(k), with M
and m as defined above, and we obtain:

qd,l(k + 1) = fd,l(k)− yd,l(k)

which is linear.

Next we collect all the variables for the route choice
model (i.e. inputs, control variables, and extra variables
introduced by the MILP transformations) in a vector v(k)
and all the partial queue lengths in a vector q(k+1). Then
the expressions derived above allow us to express q(k+1)
as an affine function of v(k):

q(k + 1) = Λv(k) + γγγ

with a properly defined matrix Λ and vector γγγ, where v(k)
satisfies a system of linear equations and inequalities

Cv(k) = e

Fv(k) ≤ g,

which corresponds to the linear equations and constraints
introduced above by the MILP transformations.

3.3 Case 2: more unloading stations

Now we analyze the case where the track network has
several unloading stations.

Assumptions For this case we define partial demand
patterns at loading stations. So, each loading station Li

has a demand pattern Di,υ(·) corresponding to each end
point Uυ with υ ∈ {1, . . . , U}. Then for a network with
U unloading stations, the total demand of Li during the

time interval [tk, tk+1) is given by Di(k) =
∑U

υ=1 Di,υ(k).

Next, since we deal with partial demands at each loading
station, we assume that the DCVs wait before the junc-
tions in partial vertical queues according to the unloading
station towards which the DCVs travel.

Model We now derive the route choice model by re-
ferring again to the network cell illustrated in Figure 2.
We consider partial queues at the end of each link and
corresponding to each unloading station Uυ. Then the
evolution of the length of the partial queue qd,l,υ is given
by:

qd,l,υ(k + 1) = qd,l,υ(k) + (Id,l,υ(k −
τd,l

τs
)−Od,l,υ(k))τs

where Id,l,υ(k) is the partial inflow at link ℓd,l and Od,l,υ(k)
is the partial outflow of link ℓd,l during the time interval
[tk, tk+1) corresponding to Uυ.

The inflow Id,0,υ(k) is defined as Id,0,υ(k) = usw out
b (k)

(

(1−

usw in
b (k))Ob,0,υ(k)+usw in

b (k)Ob,1,υ(k)
)

if Sb has 2 incom-

ing links Id,0,υ(k) = (1−usw out
b (k))Ob,0,υ(k) if Sb has only

one incoming link. Similarly, one can define Id,1,υ(k).

The partial outflows Od,l,υ(k) at the end of link ℓd,l
(l = usw in

d (k)) are determined such that we have maxi-
mal exhaustion of the available capacity as described in
Algorithm 1. Note that if junction Sd has 2 incoming
links, then Od,1−l,υ(k) = 0 since only the partial queues at
the end of the incoming link indexed by l = usw in

d (k) are
emptied during [tk, tk+1).

Algorithm 1 1. Outflow distribution at the end of
link ℓd,l
1: Ω = {1, 2, . . . , U}
2: while Ω 6= ∅ do
3: Λ = argmin

υ∈Ω
(qd,l,υ(k) + τsId,l,υ(k))

4: for all υ ∈ Λ do
5: Od,l,υ(k) = min (

qd,l,υ(k)
τs

+ Id,l,υ(k),
Omax

|Ω|)

6: Omax ← Omax −Od,l,υ(k)
7: end for
8: Ω← Ω \ Λ
9: end while

Without loss of generality we assume that for any junction
Sz directly connected to Uυ, the unloading station is link 0
out of Sz. Then the outflow of unloading station Uυ during
the period [tk, tk+1) is given by:

Uυ(k) = min

(

(

1−usw out
z (k−

τυ

τs
)
)

Oz,0,υ(k−
τυ

τs
), Omax

)

.

MILP model The MILP routing model for this case can
be derived using a reasoning that is similar to that in
Section 3.2 (for more details see (Tarău, 2010)).

1 In Algorithm 1, |Ω| represents the cardinality of the set Ω.

4. MODEL PREDICTIVE ROUTE CHOICE
CONTROL

Next we derive the MPC optimization problems that we
will later on solve to determine the optimal routing. We
consider both the nonlinear and the MILP case.

4.1 MPC objective function

The first objective of a baggage handling system is to
transport all the checked-in or transfer bags to the corre-
sponding end points before the planes have to be loaded.
However, due to the airports’ logistics, an end point is
allocated to a plane only with a given time period before
the departure of the plane. Hence, the baggage handling
system performs optimally if each of the bags to be han-
dled arrives at its given end point in a specific time window
[tload plane
υ − τopenυ , tload plane

υ) where tload plane
υ is the time

instant when the end point Uυ closes and the last bags
are loaded onto the plane, and τopenυ is the time period for
which the end point Uυ stays open for a specific flight. We
have assumed tload plane

υ and τopenυ to be integer multiple
of τs. As a consequence, in this paper we consider the
objective of reaching a desired outflow for each unloading
station. In this paper we consider that each destination
has only one flight assigned to it. However, this can be
easily extended to the general case.

Hence, one objective is to achieve a desired outflow at
destination Uυ during the prediction period. Since the
objective is to have each bag arriving at its end point
within a given time interval, we can define the desired
outflow at unloading station Uυ with υ ∈ {1, . . . , U} as

follows: Udesired
υ (k) =

Nbags
υ

τ
open
υ

if k ≥
tload plane
υ − τopenυ

τs
and

k ≤
tload plane
υ

τs
with Nbags

υ the total number of bags to be

sent to unloading station Uυ during the simulation period,
and Udesired

υ (k) = 0 otherwise.

However, to add some additional gradient to the objective
function and to make sure that all the bags will be handled,
we add the weighted length of queues at each junction in
the network, but only for time steps bigger than kstopυ with

υ ∈ {1, . . . , U}, where kstopυ =
tload plane
υ

τs
.

Let Uυ(k) denote the actual outflow of unloading station
Uυ during the period [tk, tk+1). Then, the performance
index at step k, for a prediction horizon N , can be written
as follows:

Jk,N =

U
∑

υ=1

(

wυ

k+N−1
∑

i=k

(

|Uυ(i)− Udesired
υ (i)|+

αi,υ

S
∑

j=1

λj,υqj(i)
)

)

where αi,υ is a binary variable equal to 1 if i > kstopυ

and 0 otherwise, qj(k) denotes the sum of the partial
queue lengths at junction Sj at time instant tk, wυ > 0
is a penalty that expresses the importance of the flight,
λj,υ > 0 is a weighting parameter that expresses the
penalty on junction Sj .

Now let us consider the case where k+N−1 ≤ kstopυ . Since

we want to write the problem min

U
∑

υ=1

wυ

k+N−1
∑

i=k

|Uυ(i) −

Udesired
υ (i)| as a linear programming problem, the MPC

optimization problem can be rewritten as follows:

min

U
∑

υ=1

wυ

k+N−1
∑

i=k

Udiff
υ (i)

subject to
system’s dynamics
operational constraints
Udiff
υ (i) > Uυ(i)− Udesired

υ (i)
Udiff
υ (i) > −Uυ(i) + Udesired

υ (i)
for i = k, . . . , k +N − 1.

Since Udiff
υ only appears on the left-hand side of the last

inequalities, it is easy to verify that this problem has as
optimal solution

Udiff,∗
υ (i) = max (U∗

υ (i)− Udesired
υ (i),−U∗

υ (i) + Udesired
υ (i))

= |U∗
υ (i)− Udesired

υ (i)|.

For the case where k+N−1 > kstopυ we can apply a similar
procedure.

Hence, when using the original model we have to solve
mixed integer nonlinear optimization problems, while
when using the MILP model we solve MILP problems.

4.2 Optimization algorithms

In order to solve this mixed integer nonlinear optimization
problem one could use e.g. mixed-integer nonlinear pro-
gramming solvers such as bqpd, miqpBB, minlpBB of the
Tomlab/MINLP optimization toolbox of Matlab, genetic
algorithms, simulated annealing of the Matlab optimiza-
tion toolbox Genetic Algorithm and Direct Search, or tabu
search. To solve the MILP optimization problem one could
use solvers such as CPLEX, Xpress-MP, GLPK, see e.g.
Atamtürk and Savelsbergh (2005).

In general, computing the route for each DCV in the net-
work when solving nonlinear MPC optimization problems
will give better performance than when solving the MILP
optimization problems (due to the simplified assumptions
used to write the MILP model), but at the cost of higher
computational efforts. So, one could use MILP to compute
a good initial point for the nonlinear optimization problem
and this would reduce the computation time. One could
also use directly the MILP solution, but at the cost of
suboptimality.

5. CASE STUDY

Let us now analyze the trade-off between performance and
computation time when using the two formulations of the
MPC optimization problems. To this aim we consider as
benchmark case study the network depicted in Figure 3.
This network consists of 4 loading stations, 5 junctions,
and 2 unloading stations where the free-flow travel time is
indicated for each link.

We assume that the velocity of each DCV varies between
0m/s and 20m/s. In order to faster assess the efficiency

L1

L2 L3

L4

S1

S2

S3

S4

Sexit

2τs
4τs

2τs 2τs

3τs

2τs

4τs
3τs

τs

2τs2τs

0

0

0

0

0

1

1

1

1
1

U1
U3

Fig. 3. Case study.

of our control method we do not start with an empty
network but with a network already populated by DCVs
transporting bags.

To compare the results we have considered 6 scenarios
where 800 bags have to be handled for different initial
states of the system, queues at different junctions, and
different demand profiles at each loading station. We
simulate a period of 600 s, for a network where the capacity
of each junction is 5DCVs/s. The simulation time step τs
is set to 20 s.

In order to solve the MILP optimization problem we have
used the CPLEX solver implemented through the cplex

interface function of the Matlab Tomlab toolbox, while
to solve the original mixed integer nonlinear MPC opti-
mization problem we have chosen the genetic algorithm of
the Matlab optimization toolbox Genetic Algorithm and
Direct Search. This function allows the user to set the
initial search point. Then we can apply directly the results
of the MILP optimization to the original nonlinear route
choice problem, we can solve the nonlinear optimization
problem starting from random initial points only, or we can
use the solution of the MILP optimization problem as a
good initial guess when solving the nonlinear optimization.
As prediction horizon we have considered N = 8 for all
MPC optimization problems.

Based on simulations we now compare, for the given sce-
narios, the results obtained for the proposed formulations
of the optimization problem. The results of the simula-
tions are reported in Figure 4. These results confirm that
computing the route choice using the original nonlinear
formulation for the MPC optimization problem gives bet-
ter performance than using only the MILP formulation.
However, this happens at the cost of a much higher compu-

0 1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

800

GA (10 runs)

GA (init. guess MILP)

only MILP

p
er
fo
rm

an
ce

(s
)

scenario index
(a) closed-loop performance

0 1 2 3 4 5 6 7
10

0

10
1

10
2

10
3

10
4

10
5

GA (10 runs)

GA (init. guess MILP)

only MILP

C
P
U

ti
m
e
(s
)

scenario index
(b) computation time

Fig. 4. Comparison of the obtained results.

tational effort. Finally, we also compute the DCV routing
using as initial feasible solution for the original nonlinear
MPC problem the control sequence determined by solving
the MILP optimization problem. As illustrated in Figure
4, the results indicate that this last method offers a good
trade-off between performance and computational effort.

6. CONCLUSIONS

We have considered the problem of efficiently computing
(sub)optimal routes for destination coded vehicle (DCV)
that transport bags in an airport on a network of tracks.
In general, this results in a nonlinear, nonconvex, mixed
integer optimization problem that is very expensive to
solve in terms of computational effort. Therefore, we
have proposed an alternative approach for reducing the
complexity of the computations by approximating the
nonlinear optimization problem by a mixed integer linear
programming (MILP) problem. The advantage is that
for MILP problems solvers are available that allow us to
efficiently compute the global optimal solution.

In future work we will apply this method to more complex
case studies. We will also consider reducing the computa-
tion time by developing hierarchical route choice control.

ACKNOWLEDGEMENTS

Research supported by the STW-VIDI project “Multi-Agent Control
of Large-Scale Hybrid Systems”, the BSIK project “Next Generation
Infrastructures”, the Transport Research Centre Delft, by the Delft
Research Centre Next Generation Infrastructures, and by the Euro-
pean 7th framework STREP project “Hierarchical and Distributed
Model Predictive Control of Large Scale Systems”.

REFERENCES

Atamtürk, A. and Savelsbergh, M. (2005). Integer-
programming software systems. Annals of Operations
Research, 140(1), 67–124.

Bemporad, A. and Morari, M. (1999). Control of systems
integrating logic, dynamics, and constraints. Automat-
ica, 35(3), 407–427.

de Neufville, R. (1994). The baggage system at Denver:
Prospects and lessons. Journal of Air Transport Man-
agement, 1(4), 229–236.

Fletcher, R. and Leyffer, S. (1998). Numerical experience
with lower bounds for MIQP branch-and-bound. SIAM
Journal on Optimization, 8(2), 604–616.

Lewis, F. (1986). Optimal Control. John Wiley & Sons,
New York, New York, USA.

Maciejowski, J. (2002). Predictive Control with Con-
straints. Prentice Hall, Harlow, UK.

Tarău, A., De Schutter, B., and Hellendoorn, J. (2008).
Travel time control of destination coded vehicles in bag-
gage handling systems. In Proceedings of the 17th IEEE
International Conference on Control Applications, 293–
298. San Antonio, Texas, USA.

Tarău, A. (2010). Model-Based Control for Postal Au-
tomation and Baggage Handling. Ph.D. thesis, Delft
University of Technology.

Tarău, A., De Schutter, B., and Hellendoorn, J. (2009).
Route choice control of automated baggage handling
systems. Transportation Research Record, (2106), 76–
82.

