
Delft University of Technology
Delft Center for Systems and Control

Technical report 10-043

Ant colony optimization for traffic
dispersion routing∗

D. Alves, J. van Ast, Z. Cong, B. De Schutter, and R. Babuška

If you want to cite this report, please use the following reference instead:
D. Alves, J. van Ast, Z. Cong, B. De Schutter, and R. Babuška, “Ant colony opti-
mization for traffic dispersion routing,” Proceedings of the 13th International IEEE
Conference on Intelligent Transportation Systems (ITSC 2010), Madeira Island, Por-
tugal, pp. 683–688, Sept. 2010.

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/10_043

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/10_043

Ant Colony Optimization for Traffic Dispersion Routing

Diogo Alves, Jelmer van Ast, Zhe Cong, Bart De Schutter, and Robert Babuška

Abstract— Ant Colony Optimization (ACO) has proven to
be a very powerful optimization heuristic for combinatorial
optimization problems. This paper introduces a new type of
ACO algorithm that will be used for routing along multiple
routes in a network as opposed to optimizing a single route.
Contrary to traditional routing algorithms, the Ant Dispersion
Routing (ADR) algorithm has the objective of determining
recommended routes for every driver in the network, in order to
increase network efficiency. We present the framework for the
new ADR algorithm, as well as the design of a new cost function
that translates the motivations and objectives of the algorithm.
The proposed approach is illustrated with a small simulation-
based case study for the Singapore Expressway Network.

I. INTRODUCTION

The objective of traffic dispersion routing algorithm is to

dynamically control the traffic network equilibrium such that

traffic flow in the network is optimized. The concept of traffic

network equilibrium was introduced by Knight in 1924 [1]

and was formalized in a traffic context by Wardrop in 1952

[2], resulting in what is today known as Wardrop’s first and

second principle of equilibrium. Wardrop points out in his

first principle that each driver in the traffic network non-

cooperatively seeks routes to benefit himself most, which is

usually the case in reality. At equilibrium no driver has any

incentive to change his current route, and thus it is defined as

the User Equilibrium (UE) state. Wardrop’s second principle

assumes that there is a central decision maker that assigns

routes to drivers. When the goal is achieved, all drivers

collectively optimize the utilization of the network and the

average travel time is minimum. This state is defined in the

literature as the System Optimum (SO) state.

The problem of traffic modeling and traffic control with

respect to the UE and the SO states has been studied

extensively in the last years. Modeling and simulating these

states in a traffic network has been studied in [3], [4], [5],

while optimization and control for this purpose has been

published in [6], [7], [8]. In general, reaching the SO state

and reaching the UE state are conflicting objectives, where

in the SO state the users will not all maximize their personal

objectives, and where for the UE state the collective objective

will not be maximized. In our work, we therefore aim at

optimizing traffic routing by balancing both states. For this

purpose, we introduce a novel routing algorithm, derived

from the existing class of Ant Colony Optimization (ACO)

algorithms. ACO has widespread applications in traffic, such

as traffic simulation [9], routing and jam avoidance algo-

rithms [10], [11], and traffic assignment [8]. However, most

The authors are with the Delft Center for Systems and
Control, Delft, The Netherlands, email: diogo.a.alves@gmail.com,
{j.m.vanast,z.cong,b.deschutter,r.babuska}@tudelft.nl

routing algorithms found throughout the literature pursue

the UE and do not consider the impact the actions of the

users will have on the traffic network. This limitation is

the main motivation for the development of the algorithm

presented in this paper, the Ant Dispersion Routing (ADR)

algorithm. Algorithms such as the dynamic path planning

algorithm presented in [6] already include in their cost

function predicted states of the network, in order to avoid

the users making “selfish” decisions and to ensure a more

efficient routing policy. However, that particular algorithm is

based on unrealistic assumptions, disregarding the fact that

drivers want to optimize their own routes. It also does not

use a traffic model, but solely a constant capacity constraint

on each road, disregarding the location of the drivers on that

road. The novelty in our algorithm is the use of an ant-based

optimization method in combination with a traffic prediction

model to analyze the impact of routing decisions on the

future states of the network, and the use of a more complete

cost function, which includes the states described above so

that it can pro-actively act against traffic jams and even under

low density traffic conditions optimize the distribution of

flows to improve network efficiency and overall travel time.

The rest of this paper is structured as follows. In Section

II the basic ACO algorithm is briefly reviewed. Section III

contains the problem statement and defines the objectives. In

Section IV the novel ACO-based algorithm for traffic routing

is presented. Section V illustrates the approach using a small

simulation-based case study for the Singapore Expressway

Network. We conclude with a short discussion of open issues

and topics for future work in Section VI.

II. ANT COLONY OPTIMIZATION

ACO algorithms have been developed to solve hard

combinatorial optimization problems [12]. A combinatorial

optimization problem can be represented as a tuple P =
〈S ,F〉, where S is the solution space with s ∈ S a

specific candidate solution and where F : S → R+ is a

fitness function assigning strictly positive values to candidate

solutions, where higher values correspond to better solutions.

The purpose of the algorithm is to find a solution s∗ ∈S , or a

set of solutions S ∗ ⊆S that maximize the fitness function.

The solution s∗ is then called an optimal solution and S ∗ is

called the set of optimal solutions.

In ACO, the combinatorial optimization problem is rep-

resented by a graph consisting of a set of vertices and a

set of arcs connecting the vertices. A particular solution

s is a concatenation of solution components (i, j), which

are pairs of vertices i and j connected by the arc i j. The

concatenation of solution components forms a path from

the initial vertex to the terminal vertex. Two values are

associated with the arcs of the graph: a pheromone trail

variable τi j and a heuristic variable ηi j. The pheromone

trail represents the acquired knowledge about the optimal

solutions over time and the heuristic variable provides a

priori information about the quality of the solution com-

ponent, i.e., the quality of moving from vertex i to vertex

j. In general, a heuristic variable represents a short-term

quality measure of the solution component, while the task

is to acquire a concatenation of solution components that

overall form an optimal solution. A pheromone variable, on

the other hand, encodes the measure of the long-term quality

of concatenating the respective solution components.

The most basic ACO algorithm is called the Ant System

(AS) [13] and works as follows. A set of M ants is randomly

distributed over the vertices. The heuristic variables ηi j are

set to encode the prior knowledge by favoring the choice of

some vertices over others. For each ant c, the partial solution

sp,c is initially empty and all pheromone variables are set to

some initial value τ0 > 0 (note that this ensures that later on

the pheromone values will keep on being strictly positive).

In each step, each ant decides based on some probability

distribution, which solution component (i, j) to add to its

partial solution sp,c. The probability pc{ j|i} for ant c on

vertex i to move to a vertex j within its feasible neighborhood

Ni,c is defined as:

pc{ j|i}=
τα

i j η
β
i j

∑l∈Ni,c
τα

il η
β
il

,∀ j ∈Ni,c, (1)

with α ≥ 1 and β ≥ 1 determining the relative importance

of ηi j and τi j respectively. The feasible neighborhood Ni,c

of an ant c on a vertex i is the set of not yet visited vertices

that are connected to i. By moving from vertex i to vertex

j, ant c adds the associated solution component (i, j) to its

partial solution sp,c until it reaches its terminal vertex and

completes its candidate solution.

The candidate solutions of all ants are evaluated using the

fitness function F(s) and the resulting value is used to update

the pheromone levels by:

τi j← (1−αev)τi j + ∑
s∈Supd

∆τi j(s), (2)

with αev ∈ (0,1) the evaporation rate and Supd the set of

solutions that are eligible to be used for the pheromone

update, which will be explained further on in this section.

This update is called the global pheromone update. The

pheromone deposit ∆τi j(s) is computed as:

∆τi j(s) =

{

F(s) , if (i, j) ∈ s

0 , otherwise.

In an ACO algorithm, there is an inner and an outer loop.

Within the inner loop, each ant repeatedly applies (1) to

constructs a solution. In the outer loop, all solutions are

evaluated over the fitness function and the pheromone levels

are updated using (2). We define an iteration as one cycle of

the outer loop.

The pheromone levels are a measure of how desirable it

is to add the associated solution component to the partial

solution. In order to incorporate forgetting, the pheromone

levels decrease by some factor in each iteration. This is called

pheromone evaporation in correspondence to the physical

evaporation of the chemical pheromones for real ant colonies.

By evaporation, it can be avoided that the algorithm prema-

turely converges to suboptimal solutions. Note that in (2) the

pheromone level on all vertices is evaporated and only those

vertices that are associated with the solutions in the update

set receive a pheromone deposit.

In the following iteration, each ant repeats the previous

steps, but now the pheromone levels have been updated and

can be used to make better decisions about which vertex

to move to. After some stopping criterion has been reached

(e.g., when the difference between pheromone levels across

iterations is less than some threshold, or after a pre-specified

number of iterations), the values of τ and η on the graph

encode the solution for all (i, j)-pairs. This final solution

can be extracted from the graph by selecting the pairs (i, j)

such that j = argmax
l
(τα

il η
β
il). Note that all ants are still

likely to follow suboptimal trajectories through the graph,

thereby exploring constantly the solution space and keeping

the ability to adapt the pheromone levels to changes in the

problem structure.

There exist various rules to construct Supd, of which the

most standard one is to use all the candidate solutions found

in the trial. This update rule is typical for the Ant System.

However, other update rules have shown to outperform

the AS update rule in various combinatorial optimization

problems. Rather than using the complete set of candidate

solutions from the last trial, either the best solution from

the last trial, or the best solution since the initialization of

the algorithm can be used. The former update rule is called

Iteration Best in the literature, and the latter is called Best-

So-far or Global Best in the literature [12]. These methods

result in a strong bias of the pheromone trail reinforcement

towards solutions that have been proven to perform well

and additionally reduce the computational complexity of the

algorithm. As the risk exists that the algorithm prematurely

converges to suboptimal solutions, these methods are only

superior to AS if extra measures are taken to prevent this

[14], [15]. In this paper we will use an AS-like update rule

because of its easier implementation. Note, however, that we

could also use one of the other update rules instead.

III. TRAFFIC NETWORK EQUILIBRIUM

A. Problem Statement

The aim of this paper is to develop an ACO-based routing

algorithm. In order to determine the “optimal” routes (in

the UE or SO sense), a cost has to be assigned to a given

route. There are several ways to express travel costs for a

route, such as the travel time, the length of the route, the

traffic density on the route, etc. or a weighted combination

of these. In this paper we focus on the travel time as the

main component of the travel cost. However, the approach

can easily be extended to other cost measures.

To improve the traffic network efficiency, flows have to be

redistributed, as opposed to the UE state where all drivers

go for the best available road. However, odds are that the

SO state will consist of a distribution of flows that severely

increases the travel times of some drivers to benefit the

entire system, which is undesirable as well, since the routing

suggestions are likely to not be accepted by the drivers.

The objective of our algorithm is to, given a certain origin

and destination pair, redistribute flows such that the traffic

network efficiency is optimized, and in extreme cases of

density in the network, traffic jams are prevented at all cost.

This is done while considering the independent wishes of

each driver that at all times want to use the best individual

solution available to them. These are conflicting objectives,

which requires establishing priorities. The objective is trans-

lated into a dynamic balance between the UE and SO states

that will be quantified by a cost function. This balance must

satisfy the following conditions:

Condition A: Avoid congestion by keeping the flows below

the known bottleneck capacities.

Condition B: The difference in travel time between the

fastest and the slowest routes must be below a certain

threshold.

Condition C: The fastest route must have as many vehicles

as possible under the constraints imposed by Condition A

and Condition B.

There will be cases where all three conditions cannot be

met, and in those cases Condition A takes precedence

over Condition B, and Condition B takes precedence over

Condition C.

It is important to note that for the sake of brevity we will

consider a static prediction model based on the equilibrium

relation between speed and density of the fundamental dia-

gram. In fact, for the static prediction model, both steps of

the ADR algorithm of Section IV can also be solved using

standard graph algorithms. However, the ADR algorithm

presented below is modular and also allows to include

a dynamic traffic prediction model. Moreover, the ACO

approach naturally lends itself to massive parallel execution,

which is a big advantage for large-scale traffic networks.

B. Travel Time Cost

The travel time cost γr is the time it takes to travel a stretch

of road (indicated by “road” for short in the sequel) r and

— in the static case — is calculated by dividing the length

of the road by the average speed of the vehicles on it, i.e.:

γr =
Lr

Vr(ρr)
, (3)

where Lr is the total length of road r and Vr(ρr) is the relation

of the fundamental diagram that gives the equilibrium speed

Vr corresponding to the given density ρr.

In order to severely penalize passing the critical level of

density ρcrit, beyond which the traffic system is unstable and

Traffic

NetworkRouting

Ant Dispersion

Traffic Model

q
oin,

ρr

nveh,r

rρ
sim,r,r’

σ

r,r’σ

Fig. 1. Schematic representation of the closed-loop control traffic system
with the ADR algorithm and the traffic prediction model.

easily results in a jam, an updated travel time cost function

should be introduced based on (3):

γr = fr(ρr) =






Lr

Vr(ρr)
+M exp

(

−
(ρr−ρcrit,r)

2

ε

)

if ρr ≤ ρcrit,r,

Lr

Vr(ρr)
+M otherwise.

(4)

where M is a constant, ρcrit,r is the critical density for road

r, and the parameter ε is the steepness of the bell function (a

lower value of ε results in a larger steepness of the function).

The above travel time cost function will satisfy Condition

A, since the costs on roads that exceed the critical value

of density ρcrit will be unattractive for ants, thus preventing

that the new distribution of flows to be computed by the

algorithm results in traffic jams.

C. Equilibrium States

Now we formally characterize the User Equilibrium (UE)

and System Optimum (SO) traffic states that were already

mentioned in Section I.

The UE state was defined by Wardrop [2] as the state

where all drivers choose, at each moment, the route that

minimizes their own travel time cost. Let ϕi be the travel

time cost of route i between a fixed origin and destination,

which is just the sum of the individual travel time costs of

the roads that compose that route:

ϕi = ∑
r∈Ri

γr , (5)

where Ri is the set of roads in route i. Therefore the decision

process of each driver is represented as the optimization of

the following cost function:

J∗UE = min
i

ϕi . (6)

The SO state can be reached if the average travel time cost

of the drivers using the network is minimized. Let nveh,i be

the number of vehicles on route i and let nr be the number

of routes. Then the SO state is defined as the optimization

of the following cost function:

J∗SO = min
nveh,1,...,nveh,nr

∑
nr
i=1 ϕinveh,i

∑
nr
i=1 nveh,i

. (7)

IV. ANT DISPERSION ROUTING ALGORITHM

A. Main Algorithm

A schematic representation of the closed-loop operation

of the ADR algorithm is given in Fig. 1. As indicated before

we consider a static traffic prediction model in this paper to

predict the behavior of the traffic network (in the form of

simulated densities ρsim.r for each road r). However, we can

also use a dynamic traffic prediction model instead.

The ADR algorithm is composed of two separate main

steps, viz. network pruning and flow optimization. The

network pruning step consists of a normal ant-based routing

algorithm that finds multiple paths with less travel time costs

than other paths, based on the present traffic conditions.

Next, the flow optimization steps consists in determining the

correct distribution of flows on these paths (or equivalently,

the desired splitting rates σr,r′ from road r to r′ in each

node of the network) such that the overall network conditions

(expressed in function of the travel time costs) are optimized.

We assume the presence of another control layer in the

traffic network that translates these splitting rates into route

guidance commands as well as settings for other traffic

control measures that could have an impact on route choice

(such as traffic signals, speed limits, ramp metering, etc.).

B. Network Pruning

For the network pruning part of ADR, the algorithm

largely follows the structure of the AS. Initially, the

pheromone levels on all roads are set to a small initial

value. The probability function from (1) is taken without

the heuristic variables in order to prevent biasing the ants

towards certain paths. The probability of choosing road r′

from road r at an intersection is:

pr,r′ =







τr′

∑ j∈Nr
τ j

if r′ ∈Nr

0 otherwise
, (8)

with Nr the set of roads connected to road r at the intersec-

tion. All ants iteratively make these decisions in order to find

routes through the network. Then all routes are evaluated to

determine the pheromone deposit. This is done by calculating

the travel time cost ϕi of each route i based on the currently

measured traffic state ρr for each road r. Next, the travel

time cost γr of each road and the travel time cost ϕi of each

route i are computed using the expression given in Section

III-B. Finally the routing algorithm adds pheromone deposits

to the routes identified as the fastest nr routes, and also sets

all pheromone levels to zero for roads that are not part of

any of those fastest nr routes. Note that if pheromone levels

on routes are set to zero then those roads become invisible

to ants, thus pruning the network, while also reducing the

unnecessary exploration by ants of routes that are of no

interest. The pheromone deposit on each route is the inverse

of the cost of that route:

∆τi =
1

ϕi

. (9)

Let αev be the pheromone evaporation rate and let I be

the set of routes found by the ants. The global pheromone

update is then defined as:

τr← (1−αev)τr +αev ∑
i∈I ;
r∈Ri

∆τi , ∀r : ∃i ∈I : r ∈Ri. (10)

This simple routing algorithm transforms the traffic network

into a reduced network, composed only of the routes of

interest that will be used in the flow optimization part of

the ADR algorithm.

C. Flow Optimization

Now the ADR algorithm can proceed to optimize the

distribution of traffic flows in this reduced network. A clear

departure must be made from the AS when it comes to

the optimization of flows since, when the AS converges, it

always converges to only one optimal route. This happens

due to the fact that the more ants use a route, the more

attractive that route becomes, because of the pheromone

deposits. However, we want to optimize the distribution of

flows that leads to a better usage of the network as opposed

to finding one single optimal route. The pheromone deposit

function in ADR thus cannot be based on the number of ants

using it. Instead, the pheromone deposits should be based on

the aggregated solutions of all ants. Likewise, the function

should incorporate the conditions stated in Section III, the

cost of a route ϕi, and the network cost Ω.

Similarly to the network pruning part presented above, the

ants have the objective of finding the best solution according

to the probability function defined in (8). The number of ants

must then be converted into the number of vehicles so that

densities can be correctly calculated according to the traffic

model used by ADR. Let nveh,i be the number of vehicles

using route i, and nants,i be the number of ants using route

i. Similarly, nveh is the total number of vehicles and nants

the total number of ants. The number of vehicles using each

route i is:

nveh,i = nants,i
nveh

nants
. (11)

Now the ADR traffic model can calculate the density ρsim,r

on each road r of the network, from which we can again

derive the value of the travel time cost function ϕi for each

route i. The network cost Ω can now be computed as the

average cost over all drivers:

Ω =
∑

nr
i=1 ϕinveh,i

∑
nr
i=1 nveh,i

. (12)

While Condition A was addressed in the cost function γr,

Condition B and Condition C have yet to be represented

in this framework. This will be done by creating a new

pheromone deposit equation, which is clearly different from

the ones traditionally used in ACO. Instead of the pheromone

deposit equation representing a minimization of costs, it will

represent a minimization of differences between costs. We

want to minimize the cost of each route ϕi and the network

cost Ω, so the pheromone deposit should be a weighted sum

of the inverse of these components. The new pheromone

deposit is defined as follows:

∆τi =
1

ϕi

+
W

Ω
, (13)

with W a weighting factor. Minimizing the difference be-

tween the constant network cost Ω and the cost of each route

can be formalized as follows:

min
c1,...,cni

|ϕi−Ω| , (14)

which reaches its minimum when ϕ1 = ϕ2 = · · ·= ϕni
= Ω,

i.e., when the costs of all routes are the same. In order to

achieve this minimum, in (13) we must choose W = −1.

If we do not want the cost of all routes to be exactly the

same, but have a certain bias towards the shortest route, we

must choose W ∈ (−1,0). The tuning of W depends on the

constraints we want to set between the difference of the least

and most costly routes. For a small difference of around 5–

10%, W should be only slightly larger (less negative) than

−1. For larger differences of around 20%, the weight should

tend more towards 0.

The last step of the ADR algorithm is again the pheromone

update equation (10).

V. CASE STUDY

We now illustrate the ADR algorithm on a case study

involving the Singapore Expressway Network. The Sin-

gapore Expressway Network was chosen due to its high

density of highways, with several intersections, meaning that

there are several possible routes from each origin to each

destination without requiring the driver to use urban roads.

A simplification of the network will be done since we are

interested in the routing results of the algorithm rather than

the precision of the network. As such, speed limits in tunnels

are removed, and the transition between highways is assumed

to be limited to just the removal or the addition of lanes,

instead of the more complex interchanges, on-ramps, and

off-ramps. Only the central and eastern parts of the full

Singapore Expressway Network will be used (see Fig. 2)

since those are enough to test the ADR algorithm and contain

the points of the island that are usually subject to traffic jams.

The network is composed of 18 stretches of highway (36

if we consider both directions), 8 origins and 8 destinations,

as seen in Fig. 2. The critical area of the network is in

the business district (connected to origins o5, o6, o7, o8 and

destinations d5, d6, d7, d8). The existence of several origins

and destinations in that area and the fact that the Central

Expressway has only two lanes severely limit capacity.

In our case study, the ADR algorithm will be used to lead

drivers optimally from a certain area of Singapore towards

the central business district. We assume that all traffic states

are available through floating car data. However, control of

only one zone (the airport, corresponding to origin o4) is

assumed to be available, and all drivers coming from other

areas do not use the ADR algorithm. Note that in total the

business district area can be accessed through 4 different

Tampines Expressway

C
en

tr
al

 E
x
p
re

ss
w

ay

Pan Isla
nd Expressway

East Coast Parkway

K
al

la
ng

−P
ay

a
L
eb

ar
 E

xp
re

ss
w

.

7

d

7

d
o

o d

o

d d

od

o

o

d
o

o

d

4 4

3

3

2

2

8

8

5

5

6

6

1

1

9
10

7

5

6

11

8

2

3

4

1

35

36

2221

19

20

16

15

14

13

1734

33

23
24

2625

32

31

1

2 3

4

109

1211

18

5

6

27

28 7

8

30
29

Fig. 2. Part of the Singapore Expressway Network used for the case study.

TABLE I

TRAFFIC CONDITIONS FOR THE CASE STUDY.

Origin Destination Flow [veh/h] Route

o1 d5 2000 {31,1,3,10}
o1 d7 1000 {31,26}
o2 d6 1000 {33,18,11}
o2 d8 1000 {33,23}
o3 d1 1000 {35,21,23,25,32}
o3 d2 2000 {35,21,34}
o3 d4 1000 {35,19,15,7,30}
o4 d5,d6,d7,d8 4000 ADR

destinations (d5, d6, d7, d8), increasing the freedom of the

ADR algorithm.

As simulation model we use the METANET model [16],

[17] and as prediction model we use the static model

discussed in Section III.

In this case study, only one of the origins is controlled

by the ADR algorithm. So the algorithm must be capable of

routing vehicles through several different routes, while also

accounting for the traffic it is not controlling. We will use the

ADR algorithm to control the traffic going from the airport

(origin o4) towards the business district (destinations d5, d6,

d7, and d8). In Table I the demand at each origin is defined,

with 4 origins feeding traffic into the network. In the given

scenario, ADR will check whether there are roads on which

the density is already larger than the critical level, and then

find the ideal routes from the airport to the business district.

First the ADR determines the optimal routes from o4 to the

business district, which turn out to be R1 = {29,6,10} and

R2 = {29,8,28,11}, with respectively 15 and 16 kilometers

in length. This result can be easily verified as follows.

Intuitively, looking at Fig. 2, several possible routes exist,

but two of them are considerably shorter than all others: R1

and R2.

Note that at the start of the trial there are already

2000veh/h using road 10 and 1000veh/h using road 11. This

means that the fact that there are fewer vehicles on route 2

compensates for the shorter length of route 1. This makes the

difference in travel time cost between the two routes close

TABLE II

ADR PERFORMANCE ON ROUTES R1 AND R2 .

Route R1 Route R2

ϕ [s] 622.9 665.5
Route usage [%] 47.08 52.92

TABLE III

ADR PERFORMANCE ON ALL ROADS. THE SUBSCRIPT “CONTROLLED”

REFERS TO THE VEHICLES CONTROLLED BY THE ADR ALGORITHM;

“UNCONTROLLED” REFERS TO THE OTHER VEHICLES, AND “TOT”

REFERS TO ALL VEHICLES TOGETHER.

Road
29

Road
6

Road
10

Road
8

Road
28

Road
11

γ [s] 45.1 528.4 49.4 81.7 449.5 89.2
ρcontrolled 15.65 6.65 8.59 7.51 7.51 5.68
ρuncontrolled 0 0 11.35 0 0 9.37
ρtot [veh/km/lane] 15.65 6.65 19.94 7.51 7.51 15.05
qcontrolled 5000 2354 2354 2646 2646 2646
quncontrolled 0 0 2000 0 0 1000
qtot [veh/h] 5000 2354 4354 2646 2646 3646

to zero. This is an important situation since now Condition

C will be impossible to be met for two reasons: now that the

travel time cost of each route is the same, if the algorithm

routes more vehicles to one road that road will become more

costly than the other, and vice versa. Also, as we can see in

Table II, the algorithm will route more vehicles towards route

2. That is due to the fact that originally without ADR, traffic

on road 10 (route 1) has a higher density than on road 11

(route 2), and thus ADR cannot route more vehicles to route

1 due to the penalty introduced in (4).

Tables II and III show that Condition A and Condition B

(the most important ones) are accomplished by the algorithm.

No traffic jams occur in the network with the maximum

density on roads used by the algorithm is the one on road

10 with ρ = 19.94veh/km/lane. Also the difference between

travel time costs of both routes is kept inside the usual

interval of 5–10% with ϕ2/ϕ1 = 1.068, which means that

the difference is 6.8%.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced a novel on-line ant-based traffic

routing algorithm that optimizes the distribution of traffic

flows. This model-based ADR algorithm was designed to

solve the traffic network equilibrium problem, which is a

complex optimization problem since it has two conflicting

objectives: reducing travel times of individual drivers, while

improving network efficiency. The algorithm proved to work

accurately for a case study network involving the Singapore

Expressway Network.

Several topics for future work can be identified. Note that

in this paper we used a static traffic prediction model for the

sake of brevity. If a dynamic traffic prediction model is used,

it is in general necessary to iterate the two main steps of the

ADR algorithm, viz. network pruning and flow optimization,

several times in order to obtain an equilibrium situation.

The convergence speed and convergence properties of this

process should be investigated. In addition, the scalability,

the performance, and the computational requirements of the

ADR algorithm using a dynamic traffic prediction model and

more complex travel cost function should be assessed for a

wide range of case studies (involving both freeway and urban

networks) and compared to that of other methods from the

literature for static or dynamic traffic routing. Moreover, the

robustness of the algorithm against model mismatches and

disturbances should be investigated.

ACKNOWLEDGEMENTS

Research supported by the China Scholarship Council, the

Transport Research Center Delft, the European COST Action

TU0702, and the European 7th Framework Network of

Excellence “Highly-complex and networked control systems

(HYCON2)”.

REFERENCES

[1] F. H. Knight, “Some fallacies in the interpretation of social cost,” The

Quarterly Journal of Economics, vol. 38, pp. 582–606, 1924.
[2] J. G. Wardrop, “Some theoretical aspects of road traffic research,”

Proceedings, Institute of Civil Engineers, Part II, vol. 1, pp. 325–378,
1952.

[3] J. Dong and J. Wu, “Urban traffic networks equilibrium status recog-
nition with neural network,” Proceedings Intelligent Transportation

Systems, 2003 IEEE, vol. 2, pp. 1049–1053 vol.2, Oct. 2003.
[4] L. D’Acierno, B. Montella, and F. D. Lucia, “A stochastic traffic

assignment algorithm based on ant colony optimization,” in Lecture

Notes in Computer Science, 2006, pp. 25–36.
[5] F. Zhang and N. E. Leonard, “Coordinated patterns of unit speed

particles on a closed curve,” Systems and Control Letters, p. 92, 2007.
[6] W. Hong, Y. Tian, and Y. Xu, “The research of dynamic path planning

for centralized vehicle navigation,” Automation and Logistics, 2007

IEEE International Conference on, pp. 1198–1202, Aug. 2007.
[7] M. Rodriguez-Perez, S. Herreria-Alonso, M. Fernandez-Veiga,

A. Suarez-Gonzalez, and C. Lopez-Garcia, “Achieving fair network
equilibria with delay-based congestion control algorithms,” Commu-

nications Letters, IEEE, vol. 12, no. 7, pp. 535–537, July 2008.
[8] Z. Xu, H. Sun, X. Li, D. Chen, and S. Yu, “Ant colony optimization

arithmetic of capacity restraint traffic assignment,” Automation and

Logistics, 2008. ICAL 2008. IEEE International Conference on, pp.
972–976, Sept. 2008.

[9] R. Hoar, J. Penner, and C. Jacob, “Evolutionary swarm traffic: if ant
roads had traffic lights,” Evolutionary Computation, 2002. CEC ’02.

Proceedings of the 2002 Congress on, vol. 2, pp. 1910–1915, 2002.
[10] B. Tatomir and L. Rothkrantz, “Hierarchical routing in traffic using

swarm-intelligence,” Intelligent Transportation Systems Conference,

2006. ITSC ’06. IEEE, pp. 230–235, 2006.
[11] P. Bedi, N. Mediratta, S. Dhand, R. Sharma, and A. Singhal, “Avoiding

traffic jam using ant colony optimization - a novel approach,” Com-

putational Intelligence and Multimedia Applications, International

Conference on, vol. 1, pp. 61–67, 2007.
[12] M. Dorigo and C. Blum, “Ant colony optimization theory: a survey,”

Theoretical Computer Science, vol. 344, no. 2-3, pp. 243–278, Novem-
ber 2005.

[13] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization
by a colony of cooperating agents,” IEEE Transactions on Systems,

Man, and Cybernetics, Part B, vol. 26, no. 1, pp. 29–41, 1996.
[14] M. Dorigo and L. Gambardella, “Ant Colony System: a cooperative

learning approach to the traveling salesman problem,” IEEE Transac-

tions on Evolutionary Computation, vol. 1, no. 1, pp. 53–66, 1997.
[15] T. Stützle and U. Hoos, “MAX MIN Ant System,” Journal of Future

Generation Computer Systems, vol. 16, pp. 889–914, 2000.
[16] A. Messmer and M. Papageorgiou, “METANET: A macroscopic

simulation program for motorway networks,” Traffic Engineering and

Control, vol. 31, no. 8/9, pp. 466–470, Aug./Sept. 1990.
[17] A. Kotsialos, M. Papageorgiou, C. Diakaki, Y. Pavlis, and F. Middel-

ham, “Traffic flow modeling of large-scale motorway networks using
the macroscopic modeling tool METANET,” IEEE Transactions on

Intelligent Transportation Systems, vol. 3, no. 4, pp. 282–292, Dec.
2002.

