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On Acceleration of Traffic Flow

T. Luspay1, B. Kulcsár2, I. Varga1, S.K. Zegeye2, B. De Schutter2, M. Verhaegen2

Abstract— The paper contributes to the derivation and anal-
ysis of accelerations in freeway traffic flow models. First, a
solution based on fluid dynamics and on pure mathematical
manipulations is given to express accelerations. The continuous-
time acceleration is then approximated by a discrete-time equiv-
alent. By applying continues time microscopic and macroscopic
traffic flow velocity definitions, spatial and material derivatives
are used to describe the continuous-time and exact changes in
the velocity vector field. A forward-difference Euler method
is proposed to discretize the acceleration both in time and
space. For applicability purposes the use of average quantities
is proposed. The finite-difference approximation by space-mean
speed is shown to be consistent, and its solution is convergent
to the original continuous-time form. As an alternative, the
acceleration obtained from a second-order macroscopic freeway
model by means of physical interpretation [1] is analyzed and
found to be an appropriate discrete approximation. Compara-
tive remarks as well as future research questions conclude the
paper.

I. INTRODUCTION

Traffic models play an important role in both today’s traffic

research and in many traffic applications such as traffic flow

prediction, monitoring, incident detection, and traffic control.

Traffic models can be categorized along several dimensions,

one of which is the distinction between microscopic, meso-

scopic, and macroscopic traffic models [2], [3], [4]. In mi-

croscopic traffic models each individual vehicle is described

separately. In a mesoscopic model individual vehicles with

the same characteristics are grouped into a package. So, each

vehicle within a package has the same origin and destination,

the same route, the same driver characteristics, and so on. In

that way the computation time needed for the simulation is

reduced compared to microscopic models. In a macroscopic

models the individual vehicles are aggregated and described

as fluid flows, which are then characterized by average space-

mean speeds, densities, and flows (or throughput rates). In

that way the computation time needed for the simulation is

reduced even further (at the cost of accuracy). In general,

there is thus a trade-off between the accuracy of the model

and the computation time required to simulate the model. In

this context, many on-line model-based traffic prediction and

traffic control approaches [5], [6] that require the model to
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be simulated repeatedly and at a high rate (much faster than

real-time), use macroscopic traffic flow models.

However, in some traffic prediction and control applica-

tions, we also need to have information about the acceleration

of the vehicles. A prime example of this is the estimation of

traffic emissions and fuel consumption. Many macroscopic

emission models that are based on the average speed of

vehicles only provide coarse estimates of emissions and fuel

consumption of the traffic flow due to two reasons. First, the

emissions and fuel consumptions are estimated based on trip-

based average speeds of all vehicles (i.e., the models do not

consider the emissions and fuel consumption of each vehicle

at a time). Second, macroscopic models neglect the second-

by-second dynamics of the traffic flow, while emissions and

fuel consumption are sensitive to the acceleration of vehicles.

This implies that for accurate estimation of emissions and

fuel consumption of the traffic flow, dynamic emission and

fuel consumption models are required. However, such models

in general require the acceleration and speed of each vehicle

on a second-by-second basis, while in general macroscopic

traffic flow models do not provide the acceleration of the

vehicles. In fact, macroscopic traffic flow models (such as,

e.g., the METANET model used in [5], [6]) only provide

macroscopic variables such as space-mean speed, density,

and flow. Therefore, one needs to derive the acceleration of

the vehicles from these macroscopic variables. However, this

is not a trivial task. On the one hand macroscopic variables

are average quantities that describe the characteristics of

vehicles. Nevertheless, our goal is to appropriately estimate

the acceleration of individual vehicles and try to derive it

from macroscopic quantities if possible.

One way to simplify this task is to compute the average

acceleration of a number of vehicles that have the same

average speed. This can be done in two ways: using the

discrete-time macroscopic traffic flow model, or using the

continuous-time continuous-space traffic flow model. In the

first approach, the average accelerations and the numbers

of vehicles subject to these accelerations are computed from

the discrete traffic flow model variables. Hence, the resulting

accelerations are already discrete. In the second approach,

first the accelerations are derived from the continuous-time

continuous-space speed field. Next, the accelerations have to

discretized.

The first approach has already been developed and applied

in the estimation and prediction of emissions and fuel

consumption in [1]. The second approach is far from being a

trivial task and has not been yet investigated. In this paper we

therefore first derive the continuous-time domain acceleration

of macroscopic traffic flow models. Next, we show how



to discretize and prove consistency and convergence of the

discretized accelerations to the continuous values. Our paper

was partially motivated by the derivation of higher-order

macroscopic models in [7].

Therefore, the contribution of the paper is twofold. After

a rigorous mathematical derivation of the exact and contin-

uous time acceleration (continuous equation (CE)) its finite-

difference approximate (FDA) is formulated, resulting in a

discrete acceleration. Asymptotical mathematical properties

such as consistency and convergence of the FDA are pro-

posed to validate any type of approximation for traffic flow

acceleration.

Finally, throughout the above conditions, not only the

novel FDA of original CE will been validated but also the

results obtained in [1].

The layout of the paper is as follows. After motivating

the paper and the importance of the accelerations in the

Introduction, the continuous-time and exact acceleration field

is derived in Section II. Section III presents the rigorous

discretization of the continuous-time acceleration both in

time and in space and its links to the discrete-time equivalent

forms to average macroscopic quantities. Physical interpre-

tation of the acceleration is briefly analyzed in Section IV.

Comparison and conclusion is given at the end of the paper

in Section V.

II. CONTINUOUS TIME VELOCITIES AND ACCELERATIONS

A. Traffic variables

Let us consider (for sake of simplicity) a one-lane freeway,

with cars moving in the same direction. Our aim is to

determine the acceleration of the flow.

t = 0

t = δt

x = 0

x̃0
1

x̃0
2

x = x′

x̃(x̃0
1, δt)

x̃(x̃0
2, δt)

Fig. 1. Illustration of spatial and material variables

The following notations will be used along the paper, see

also the illustration of Figure 1:

• t denotes the continuous time,

• x denotes the spatially fixed coordinate (spatial vari-

able), independent from time t,

• x̃0 denotes the initial position of a vehicle at time t = 0
(material variable), independent from time t,

• x̃(x̃0, t) denotes the position of a vehicle as a function

of its initial position and the elapsed time t.

Some terminology of fluid dynamics are adopted to discuss

traffic behavior. The basic notions are the Lagrangian and

Eulerian coordinate frames [8]. The motion of a streaming

fluid in the Lagrangian coordinate system is described by the

motion of individual particles. It is known as microscopic

traffic modeling in the transportation literature [3]. The Eu-

lerian description investigates the flow at fixed spatial points.

This approach corresponds to macroscopic traffic modeling.

Every physical quantity (such as speed, acceleration or

density) can be described in both Lagrangian and Eulerian

coordinate frames, as detailed in the sequel.

B. Micro- and macroscopic description of the velocity

It is known that the speed of individual vehicles can

be calculated as the first time derivative of their positions,

therefore one can write:

ṽ(x̃0, t) =
∂x̃(x̃0, t)

∂t

∣

∣

∣

∣

x̃0

. (1)

Note, x̃0 is a variable in the Lagrangian coordinate system

(see Figure 1), hence fixed x̃0 indicates the tracking of one

vehicle’s motion 1. Derivation with a fixed material variable

is called material (or substantial) derivative and denoted as

follows [9]:

D

Dt
=

∂

∂t

∣

∣

∣

∣

x̃0

. (2)

The material derivative can be considered as the rate of

change at which the property varies when measured by an

observer traveling together with a group of particles.

At the same time, the velocity in the Eulerian coordinate

frame should represent the velocity of the streaming contin-

uum at every fixed spatial point. For this propose a velocity

field (v(x, t)) is used, which returns the measured speed at

the fixed spatial position x and time t. If the fixed spatial

coordinate x coincides with the position of a vehicle x̃(x̃0, t),
then:

v(x, t)|x=x̃(x̃0,t) = ṽ(x̃0, t). (3)

This equation relates the velocity field to the speed of mov-

ing vehicles and gives the connection between Lagrangian

(microscopic) and Eulerian (macroscopic) modeling method-

ologies.

C. Continuous time accelerations

Let us investigate the motion in Eulerian and Lagrangian

coordinate systems. We analyze the rate of changes of the

velocity.

The acceleration of a single vehicle can be calculated

in Lagrangian coordinates system by using the material

derivative, eq. (2) of the vehicle’s speed:

Dṽ(x̃0, t)

Dt
=

∂ṽ(x̃0, t)

∂t

∣

∣

∣

∣

x̃0

. (4)

The material derivative of the individual vehicle speed is

called microscopic acceleration.

1x̃0
i denotes the initial position of i-th vehicle and

∂x̃(x̃0,t)
∂t

∣

∣

∣

x̃0
i

denotes

the speed of vehicle initially positioned at x̃0
i .



To analyze the acceleration in the Eulerian coordinates, we

introduce the local (or spatial) time derivative as the time rate

of change at a given fixed point in the space:

d

dt
=

∂

∂t

∣

∣

∣

∣

x

. (5)

Consequently, the macroscopic acceleration field is defined

as the local time derivative of the velocity field given by:

dv(x, t)

dt
=

∂v(x, t)

∂t

∣

∣

∣

∣

x

. (6)

Due to eq. (3) one can write:

v(x, t)|x=x̃(x̃0,t) = v(x̃(x̃0, t), t), (7)

i.e., the velocity field depends on material variables, hence

its material derivative can be calculated by using the chain

rule:

Dv(x̃(x̃0, t), t)

Dt

∣

∣

∣

∣

x̃0

=
∂v(x̃(x̃0, t), t)

∂t

∣

∣

∣

∣

x

+

+
∂v(x̃(x̃0, t), t)

∂x

∣

∣

∣

∣

t

∂x̃(x̃0, t)

∂t

∣

∣

∣

∣

x̃0=x̃−1(x,t)

.

By using the definitions of material derivative eq. (2) and

local derivative eq. (5) one gets the following form:

Dv(x, t)

Dt
=

∂v(x, t)

∂t
+

∂v(x, t)

∂x
v(x, t). (8)

Note, the derivative in eq. (8) is not equal to the acceleration

of the fluid at a fixed point in space, neither the acceleration

of the particle. It is the rate of change in the velocity field

observed by the particle as it moves in space. Eq. (8) states

that the variation in the velocity field is a sum of two effects:

the velocity change in time at a given spatial point and the

change in velocity due to the movement in space, also known

as advection acceleration [9].

Remark 1: Using the same derivation, the material deriva-

tive of the density field ρ(x, t) would take the following

form:

Dρ(x, t)

Dt
=

∂ρ(x, t)

∂t
+

∂ρ(x, t)

∂x
v(x, t), (9)

which is the well-known vehicle conservation law [2].

The continuous-time and space representation of the ac-

celeration in eq. (8) has only a theoretical importance. Due

to its continuous dependence eq. (8) is not suitable for real

applications with limited temporal and spatial measurements.

To overcome this difficulty two major issues are addressed

in the following sequels. Firstly, the Euler discretization of

eq. (8) is introduced. Secondly, the use of space-mean speeds

is suggested and validated.

Remark 2: Consequently, the discretized acceleration has

to be a “good” approximation of the continuous equation,

attention has to be paid on the selection of the step size.

Furthermore, difference approximation using average speed

terms has to fulfill several conditions to appropriately char-

acterize the acceleration vector field.

III. DISCRETIZATION OF ACCELERATION

The section provides the Euler discretization of eq. (8) in

space and time respectively [10].

A. The discrete form of acceleration

Firstly, let us investigate the motion of a single particle in

a time span δt. Obviously, its position will be changed by

δx. The velocity can be described with the velocity field by:

v(x+δx, t+δt). In case of small δt, one can use a first-order

Taylor approximation to express this velocity:

v(x+ δx, t+ δt) ≈ v(x, t) +
∂v(x, t)

∂t
δt+

∂v(x, t)

∂x
δx. (10)

Furthermore the variation in the velocity during this small

time can be expressed as:

δv = v(x+ δx, t+ δt)− v(x, t) (11)

≈
∂v(x, t)

∂t
δt+

∂v(x, t)

∂x
δx, (12)

and accordingly the rate of change as:

δv

δt
= v(x+ δx, t+ δt)− v(x, t) =

≈
∂v(x, t)

∂t
+

∂v(x, t)

∂x

δx

δt
. (13)

If one takes the limit δt → 0 then we return to the initial

condition:

lim
δt→0

δx

δt
= v(x, t), (14)

and the following equivalence is straightforward:

Dv(x, t)

Dt
= lim

δt→0

v(x+ δx, t+ δt)− v(x, t)

δt
. (15)

At the same time, one can discretize the right-hand side of

eq. (8) using first order forward-difference Euler method with

finite time step T and space step ∆:

∂v(x, t)

∂t
= lim

T→0

v(x, t+ T )− v(x, t)

T
, (16)

∂v(x, t)

∂x
= lim

∆→0

v(x+∆, t)− v(x, t)

∆
. (17)

It is important to denote that, there are two different finite

temporal (δt and T ) and spatial steps (δx and ∆) introduced.

T and ∆ are chosen for the Euler discretization method as the

discrete step sizes, while δt can be chosen optionally, while

δx represents the distance traveled by the particle with speed

v(x, t) during a δt time. To connect these notations one can

chose δt = T and as a consequence δx will represent the

distance traveled by a moving particle during a single time-

step T . In case of several moving particles one has to choose

different δx values for different vehicles according to their

actual speed. To overcome this difficulty one could select a

single and uniform value besides. This uniform bound should

be chosen carefully, taking the fact, that no vehicles could be

created or disappeared in cells (i.e., all vehicles must cross all

segments), into consideration. This condition can be fulfilled

by the following selection:

max {δx} = max {v(x, t)}T ≤ ∆. (18)



Note, that a similar reasoning is used in the traffic literature

[11]. Moreover eq. (18) is in accordance with the Courant-

Friedrichs-Lewy condition known from the theory of partial

differential equations [12], [13].

B. Approximation of velocity field

The discrete form necessitates the knowledge of the ve-

locity field at given spatial and temporal coordinates, which

is usually not available in real traffic applications due to the

limited number of detector locations. In order to calculate the

acceleration with limited measurements the velocity field is

approximated by space-mean speed terms.

The average speed of vehicles in a given space segment

(with ∆ length) is defined as follows:

vi(t) =

∫ xi+∆

xi

v(x, t)dx

∆
, (19)

where subscript indices the ith discrete cell (segment) on the

freeway with origin xi. Consequently, in case of the next

segment the space-mean speed:

vi+1(t) =

∫ xi+1+∆

xi+1
v(x, t)dx

∆
=

∫ xi+2∆

xi+∆
v(x, t)dx

∆
. (20)

By using averaged speed values the finite-difference ap-

proximation of eq. (15) reads as follows:

Dv(x, t)

Dt
≈

vi(k + 1)− vi(k)

T
+

vi+1(k)− vi(k)

∆
vi(k). (21)

Indeed, the above approximation might be very conserva-

tive but is required to connect the discrete approximations

to the mean speed components. Consequently, it allows us

to use space mean speed in the sequel. Before proceeding,

the following section shows the analytical properties of the

above FDA with mean speed terms.

C. Numerical analysis of the finite difference approximation

This section gives the validation of the discretization in

eq. (21) using the notions of consistency and convergence

[12], [14]:

1) Consistency: the finite difference approximation (FDA)

converges to the original continuous equation (CE) as

the discretization steps approach 0:

CE(x, t) = lim
∆,T→0

FDA(i, k)

2) Convergence: the solution of the finite difference ap-

proximation (FDA) converges to the solution of the

original continuous equation (CE) as the discretization

steps approach 0:
∫ t2

t1

CE(x, t) dt = lim
∆,T→0

∫ t2

t1

FDA(i, k) dt. (22)

Both properties describe the validity of a finite-difference

approximation. Theorem 1 proves the validity of the finite

difference approximation:

Theorem 1: The finite-difference approximations (FDAs)

in eq. (21) of the acceleration eq. (8) are consistent and

convergent.

In the proof of the Theorem 1, the following Lemmas are

used:

Lemma 1: Lebesque’s dominated convergence theorem

[15]: Let {fn} denote a sequence of real-valued measurable

functions on a measure space described by the σ-algebra

Σ over the set S and measure µ: (S,Σ, µ). Assume that

the sequence converges point-wise to a function f and is

dominated by some integrable function g. Then the limiting

function f is integrable and:

lim
n→∞

∫

S

fndµ =

∫

S

fdµ.

Lemma 2: L’Hospital’s rule [16]: Let f and g be two

real-valued functions defined and differentiable on E :
{x| |x0 − δ| < ǫ} , ǫ, δ > 0, moreover: g′(x) 6= 0 if x ∈ E.

If:

lim
x→x0

f(x) = lim
x→x0

g(x) = 0,

and the:

L′ = lim
x→x0

f ′(x)

g′(x)
,

limit exists, then:

L = lim
x→x0

f(x)

g(x)
,

also exists and L = L′.

Lemma 3: If the real valued scalar function f is continu-

ous on the closed interval [a, b], then the function:

I : I(y) =

∫ y

a

f(z)dz,

is defined on the closed interval [a, b]. Moreover; I is

differentiable on the open interval (a, b), and:

I ′(y) = f(y), if y ∈ (a, b),

i.e., the function I is a primitive function of f on (a, b) [17].

Now we are at the point of proving one of the most

important contribution of the paper.

Proof of Theorem 1: Now we are at the position of giving

the proof of the Theorem 1. Assumptions of Lemma 1 are

fulfilled for the sequence of finite difference approximations.

As a consequence the limit process and the integration

are commutable in eq. (22) and hence the finite difference

approximations are convergent if they are consistent.

The proof of consistency requires the following equality:

lim
T,∆→0

FDA(i, k) = CE(x, t). (23)

From the definition of space-mean speed eq. (19), it

follows that vi(k) is the average speed of vehicles in segment

i at time step k or equivalently the sample of vi(t) at time-

step t = kT , i.e.: the order of averaging and time sampling

can be interchanged. This remark leads us to:

lim
∆→0

FDA(i, t) = CE(x, t). (24)



which can be proved by the verification of:

lim
∆→0

vi(t) = v(xi, t). (25)

Let us investigate the limit of the space-mean speed as the

segment length tends to zero:

lim
∆→0

vi(t) = lim
∆→0

∫ xi+∆

xi

v(x, t) dx

∆
. (26)

As ∆ → 0 the upper integration limit tends to the lower

one and hence the integral tends to zero, i.e.: the limit in

eq. (26) is indeterminate (zero over zero). Lemma 2 can be

applied to calculate the limit, by forming the derivative of

the numerator and denominator in (26). Since the integral is

the function of its upper limit, Lemma 3 is used to calculate

its derivative:

d
∫ xi+∆

xi

v(x, t) dx

d∆
= v(xi +∆, t), (27)

d∆

d∆
= 1, (28)

i.e.:

lim
∆→0

vi(t) = v(xi, t), (29)

which completes the proof of Theorem 1. �

Accordingly, we have shown that the most important

properties of the FDA by space mean speed satisfy the ana-

lytical condition and we can suggest to apply them as valid

approximators. As mention in the Introduction, acceleration

variables can also be obtained directly out from the discrete-

time second-order macroscopic freeway models by means of

physical interpretations.

IV. PHYSICAL INTERPRETATION

The sequel gives the physical interpretation of the derived

discrete acceleration eq. (21) using the previously published

notions of “temporal” and “spatiotemporal” accelerations [1].

Consider a segment of a link with length ∆ as in Fig. 2,

illustrating the traffic flow at time step k and k + 1. At the

time step k the number of vehicles in segment i in λ lanes is

equal to λ ·∆ ·ρi(k) and the number of vehicles going from

segment i to segment i+1 in the time period [Tk, T (k+1)]
is Tqi(k). Therefore, the number of vehicles that stayed in

segment i in the time period [kT, (k+1)T ] is equal to λ ·∆·
ρi(k)−Tqi(k). From time step k to k+1 the acceleration is

not only due to the change in speed of the vehicles within the

segment i, but also there is an acceleration for the vehicles

flowing from segment i to segment i+ 1.

The acceleration of the vehicles that stay within a segment

in the time period [Tk, T (k + 1)] is called the “temporal”

acceleration, and it is given by:

a
tmp
i (k) =

vi(k + 1)− vi(k)

T
. (30)

The corresponding number of vehicles subject to this accel-

eration is:

n
tmp
i (k) = λ ·∆ · ρi(k)− Tqi(k). (31)

segment i− 1 segment i segment i+ 1

Tqi−1(k) Lλρi(k)− Tqi(k)
Tqi(k)

at k

at k + 1

Fig. 2. Illustration of traffic flow in METANET

Moreover, the acceleration of the vehicles moving from

segment i to segment i+1 in the time period [Tk, T (k+1)]
is named as “spatiotemporal” and it is given by:

a
spatmp
i (k) =

vi+1(k + 1)− vi(k)

T
(32)

and the number of vehicles that are subject to this accelera-

tion is:

n
spatmp
i (k) = Tqi(k). (33)

It could be deduced from the above concept that the “tem-

poral” acceleration equals with the macroscopic acceleration

field in the discrete framework, i.e., the discretized local time

derivative of the velocity field.

At the same time, the “spatiotemporal” acceleration turns

out to be equal with the material derivative of the velocity

field in the discrete representation (left-hand side of eq. (21)).

Moreover eq. (21) also gives the connection between

“temporal” and “spatiotemporal” accelerations. “Temporal”

acceleration can be considered as the special case of “spa-

tiotemporal” acceleration, when the transition from segment

i to i + 1 is zero, hence the “spatial” term is zero in the

right-hand side of eq. (21).

Finally one can compute the average acceleration of

vehicles that are in segment i at time step k. Since this

acceleration is connected with the number of vehicles in

segment i, it is denoted by ani (k) and defined as:

ani (k) =
n
tmp
i (k)atmp

i (k) + n
spatmp
i (k)aspatmp

i (k)

n
tmp
i (k) + n

spatmp
i (k)

,

using the definitions of n
tmp
i , n

spatmp
i and a

tmp
i , a

spatmp
i :

ani (k) =
(λ ·∆ · ρi(k)− Tqi(k))

vi(k+1)−vi(k)
T

λ ·∆ · ρi(k)− Tqi(k) + Tqi(k)
+

+
Tqi(k)

vi+1(k + 1)− vi(k)

T
λ ·∆ · ρi(k)− Tqi(k) + Tqi(k)

.

Using the continuity relation qi(k) = λρi(k)vi(k) and



rearranging terms:

a
n
i (k) =

(

1−
T

∆
vi(k)

)

vi(k + 1)− vi(k)

T
+

+
T

∆
vi(k)

vi+1(k + 1)− vi(k)

T
=

=
vi(k + 1)− vi(k)

T
+ vi(k)

vi+1(k + 1)− vi(k + 1)

∆
.

(34)

The FDA in eq. (21) and the interpretation in eq. (34)

are not identical but both of them are valid, consistent, and

convergent approximations of the original CE.

V. CONCLUSION

This paper has been motivated by the derivation and anal-

ysis of accelerations used in macroscopic freeway environ-

ments. Two different approaches have been investigated and

found to be identical in terms of consistent and convergent

approximations of the continuous-time freeway acceleration.

One of the major contributions of the paper is to present

(approximative) acceleration terms expressed purely in terms

of macroscopic and mean quantities. Consequently, by us-

ing average (measurable) speed components not only the

continuous-time velocity vector field can be approximated

but also its derivative.

Acceleration has a more and more larger impact on the

performance of traffic control systems since reliable emission

models depend on it. Average emission minimization as

well as more complex performance requirements can be

formulated with the help of accelerations, computable based

on mean-speed components.

Comparative analysis of the approximation errors is re-

quire further research in this framework.
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