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Fuzzy observer for state estimation of the METANET traffic model

Z. Hidayat, Zs. Lendek, R. Babuška, B. De Schutter

Abstract— Traffic control has proven an effective measure to
reduce traffic congestion on freeways. In order to determine
appropriate control actions, it is necessary to have information
on the current state of the traffic. However, not all traffic
states can be measured (such as the traffic density) and so
state estimation must be applied in order to obtain state
information from the available measurements. Linear state
estimation methods are not directly applicable, as traffic models
are in general nonlinear. In this paper we propose a nonlinear
approach to state estimation that is based on a Takagi–
Sugeno (TS) fuzzy model representation of the METANET traffic
model. By representing the METANET traffic model as a TS
fuzzy system, a structured observer design procedure can be
applied, whereby the convergence of the observer is guaranteed.
Simulation results are presented to illustrate the quality of the
estimate.

I. INTRODUCTION

Significant amounts of time and fuel are wasted due to

traffic jams, which also contribute to the deterioration of

the air quality and environment. Hence, effective traffic

control on freeways is necessary to reduce congestion. In

this context, traffic control is an important component of the

traffic management system that aims at making a better use

of the available infrastructure.

Appropriate traffic control actions must be based on the

actual traffic state, which, however, is not always available

at any point in the traffic network. Not all relevant state

variables can be measured due to technical limitations, such

as the sparse arrangement of sensors or the occurrence of

sensor failures. Moreover, the available measurements are

corrupted by noise. For these reasons, traffic state estimation

is a very relevant topic with regard to effective traffic control.

Designing a state estimator requires a traffic model. Traffic

models are generally classified into microscopic, mesoscopic,

and macroscopic models [1]. In the case of on-line model-

based traffic control, it is common to use the macroscopic

traffic flow model, see, e.g., [2]–[4]. Such a model is typ-

ically nonlinear and captures the average traffic behavior

through aggregated variables at different locations in the

network [1]. The variables used in macroscopic models

include the flow, density, and speed. The model used in this

paper is the well-known METANET model [5].

Among the methods applied traffic state estimation are the

extended Kalman filter (KF) [6], the unscented Kalman filter

[7] and the particle filter [8]. In [9] an adaptive approach

to the extended Kalman filter was used. In [10] different

filter configurations are compared for the case of traffic flow

estimation and parameter estimation.
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A common limitation of the above approaches is the lack

of convergence guarantees. Although a well-tuned extended

KF, unscented KF, or particle filter can perform well in

simulations, there is no guarantee that they will perform

equally well in real-life situations. In this paper we propose

an alternative approach that is based on transforming the

METANET traffic model into a Takagi–Sugeno (TS) fuzzy

model representation and consequently applying a systematic

observer design method with stability guarantees. The TS

model [11] is a general function approximator that can

exactly represent or approximate to an arbitrary degree of

accuracy a large class of nonlinear systems. The TS model

consists of fuzzy if–then rules. The rule antecedents partition

a given subspace of the model variables into fuzzy regions.

The consequents of the rules are linear or affine models that

are valid locally in the corresponding fuzzy region.

In the literature, there are several approaches to design

TS fuzzy observers for continuous-time systems [12] and

for discrete-time systems [13]. The design of TS fuzzy

observers is formulated as a feasibility problem of Linear

Matrix Inequalities (LMI), which can be solved by convex

optimization algorithms.

In this paper, we develop a TS fuzzy observer for the

METANET traffic flow model. The design starts by transform-

ing the METANET model into the TS fuzzy model. Then a

discrete-time fuzzy observer is designed by applying stability

and robustness conditions. This method is the discrete-time

counterpart of the approach proposed in [14]. While in [14]

the METANET model was first transformed into a continuous-

time model, here we design the TS observer directly in the

discrete-time setting. This is a much more realistic approach,

as the METANET model is in its essence a discrete-time

model validated for sampling times that are typically in the

order of 10 s. In addition, the measurements are available at

discrete time instants as well. It is also important to note

that discrete-time design for the TS observer is substantially

different from its continuous-time counterpart.

This paper is organized as follows. After the introduction

in Section I, the TS fuzzy model and the METANET model

are briefly presented in Section II. The TS representation of

the METANET model is derived in Section III. The observer

design for a TS fuzzy system is addressed in Section IV.

Section V illustrates the proposed approach through a simple

case and Section VI concludes the paper.

II. PRELIMINARIES

In this section, we briefly review the fuzzy TS model and

the METANET model.



A. TS fuzzy models

The Takagi-Sugeno fuzzy model [11] is a mathematical

model that can be used to represent nonlinear systems by

fuzzy if–then rules with local linear or affine consequents.

Model rule i:

If

z1(k) is Mi1 and · · · and zp(k) is Mip

Then
{

x(k+1) = Aix(k)+Biu(k)+ai

y(k) =Cix(k)
i = 1, . . . ,r

where r denotes the number of rules, Mi j are fuzzy sets, and

Ai ∈R
n×n, Bi ∈R

n×m, Ci ∈R
q×n, and ai ∈R

n are parameters

of the local models.

The state and the output of the TS fuzzy system are

computed as follows:

x(k+1) =
r

∑
i=1

hi(z){Aix(k)+Biu(k)+ai}

y(k) =
r

∑
i=1

hi(z)Cix(k)

(1)

with

hi(z) =
wi(z)

∑r
i=1 wi(z)

and

wi(z) =
p

∏
j=1

µi j(z j(k))

where µi j(z j(k)) denotes the membership function of Mi j.

In Section III we show how the parameters of the TS

fuzzy model can be computed such that it exactly represents

a given nonlinear system.

B. The METANET traffic model

In this section, we present the METANET traffic flow

model developed in [5]. The METANET model is one of

the existing macroscopic traffic flow models. Macroscopic

models express the average behavior of vehicles at a specific

location and time instant. Three state variables reflect the

behavior of the traffic, namely [5]

• traffic density ρ: the number of vehicles per length unit.

• space-mean speed v: the instantaneous average speed of

vehicles in a length increment.

• traffic volume or flow q: the number of vehicles pass-

ing/leaving a specific location in each time step.

The METANET model represents a freeway network as a

directed graph whose links are associated with stretches in

the freeway network. Each link in the graph corresponds to

a stretch that has uniform characteristics. A node is placed

in the graph when there is change in the geometry, such as

an on-ramp or a split.

The METANET model is discrete in time and space. In

the model, the m-th link of a freeway is divided into N

segments of length Lm. For each link m and segment i, the

state variables of the traffic as described above are expressed

as the average density ρm,i(k), the space-mean speed vm,i(k),
and flow qm,i(k). The definitions of the variables that are

used in the METANET model are shown in Table I while the

parameters and their typical values (as used in this paper) are

given in Table II. The values of the parameters have been

adapted from [15].

In segment i of link m, the flow at time step k is determined

by the speed, the density, and the number of the lanes for

the same time step k:

qm,i(k) = ρm,i(k) · vm,i(k) ·λm (2)

where λm is the number of lanes in the corresponding

segment. At time step k + 1, the density of segment i is

influenced by the density at time step k, the number of

vehicles entering from segment i−1 (inflow), and the number

of vehicles leaving the segment i (outflow). This relationship

can be expressed as

ρm,i(k+1) = ρm,i(k)+
T

Lmλm

(qm,i−1(k)−qm,i(k)) (3)

where T is the sampling time, which typically has a value of

10 s. The space-mean speed on segment i at time step k+1 is

influenced by three terms, expressing relaxation, convection,

and anticipation. The relaxation term expresses the speed

change in order to achieve a desired equilibrium speed

V (ρm,i(k)) corresponding to the density ρm,i(k). This term

is proportional to the difference between the current space-

mean speed and V (ρm,i(k)). The convection term expresses

the speed difference between the segment i and the upstream

segment i − 1. The anticipation term is the speed change

due to the density change when moving from the upstream

segment i − 1 to the downstream segment i. Using these

terms, the space-mean speed at time step k+1 can be written

as

vm,i(k+1) = vm,i(k)+
T

τ
[V (ρm,i(k))− vm,i(k)]

+
T

Lm

vm,i(k)(vm,i−1(k)− vm,i(k))

−
ν ·T

τ ·Lm

ρm,i+1(k)−ρm,i(k)

ρm,i(k)+κ

(4)

where

V (ρm,i(k)) = vf,m · exp

[

−
1

am

(

ρm,i(k)

ρcr,m

)am
]

(5)

Note that the METANET model (2)–(5) presented above

is the basic model without geometry changes such as on-

ramps, off-ramps, splits, or merges. However, the model can

be extended to include those cases (see [5] for details). In

the sequel, for the sake of simplicity but without loss of

generality, we consider only one link, and therefore the index

m is dropped.

III. TS FUZZY REPRESENTATION OF THE METANET

MODEL

In this section, a TS fuzzy model that exactly represents

the METANET model presented in the previous section is

developed. Before the TS model is derived, the set of



TABLE I

VARIABLES IN THE TRAFFIC MODEL.

Symbol Variable Units

k time step –
i segment index –
ρm,i(k) traffic density veh/km/lane
vm,i(k) space-mean speed km/h
qm,i(k) traffic volume or flow veh/h

TABLE II

PARAMETERS OF THE TRAFFIC MODEL.

Symbol Parameter Value Units

Lm length of segment 0.5 km
λm number of lanes 3 –
vf,m free flow speed 102 km/h
ρcr,m critical density 30 veh/km/lane
τ time constant 18 s

ν anticipation constant 60 km2/h
κ constant 40 veh/km
am parameter 2.34 –
vmin minimum velocity 7.4 km/h
vmax maximum velocity 200 km/h
ρmin minimum density 0 veh/km/lane
ρmax maximum density 150 veh/km/lane
T sampling time 10 s

equations of the METANET model, i.e., equations (2), (3),

(4), and (5), have to be written as a state space representation

of a nonlinear system. Since in general TS fuzzy models

do not use algebraic equations, qi(k) in (2) is eliminated,

by substituting it into (3). The information needed from the

neighboring segments, namely ρi+1(k) and vi−1(k), is treated

as input to the model. After some algebraic manipulations,

the METANET model can be expressed as a state equation

with an affine term as follows
(

ρi(k+1)
vi(k+1)

)

=

(

1− T
L

vi(k) 0
νT
τ ·L

1
ρi(k)+κ

1− T
τ − T

L
vi(k)

)

(

ρi(k)
vi(k)

)

+

(

T
L

ρi−1(k) 0
T
L

vi(k) − νT
τ ·L

1
ρi(k)+κ

)

(

vi−1(k)
ρi+1(k)

)

+

(

0
T
τ V (ρi(k))

)

(6)

V (ρi) = vf · exp
[

−
1

am

( ρi

ρcr

)am
]

The expression above exactly represents the METANET

model. Now we can proceed with the development of the

TS fuzzy representation of this model.

A. TS fuzzy model construction

Consider a nonlinear system described by the following

state space model1:

x(k+1) = f (z)x(k)+g(z)u(k)+a(z)

y(k) = hout(z)x(k)
(7)

Here, f , g, and a are smooth nonlinear matrix and vector

functions, respectively, x ∈ R
n is the state vector, u ∈ R

m

1In the output equation we use hout to denote the nonlinear function and
not h as could be expected, since the symbol h is used to denote membership
functions.

the input vector, y ∈ R
q the measurement vector, and z =

[

z1(k) · · · zp(k)
]T

a given vector function2 of x, y, and u;

z is called the vector of scheduling variables. All variables x,

y, u are assumed to be bounded and to belong to a compact

set Cxyu.

There exist several approaches to obtain TS fuzzy models

that exactly represent or approximate a given nonlinear

system. A simple, yet effective approach is to use Taylor

series expansion in several operating points, thereby ob-

taining local linear or affine models [16]. These models

are then combined using fuzzy if–then rules to obtain an

approximation of the nonlinear system. As the number of

linearization points increases, so does the accuracy of the

approximation. However, an increase in the number of local

models implies a larger computational cost when designing

observers. Another shortcoming of the approach is that there

are no general guidelines on how to chose the linearization

points.

A second approach to obtain a TS fuzzy approximation

of a nonlinear model is to approximate the nonlinear matrix-

valued functions f , g, and hout of (7) over intervals by aggre-

gates of weighted constant matrices [17]. In [17] Gaussian

membership functions have been used, and the number of

operating points and the parameters of the Gaussians have

been computed such that a specified approximation accuracy

is achieved. However, this approach has the same shortcom-

ings as the previous one: for an accurate approximation, a

large number of local models is necessary.

The methods presented above can be used to construct TS

models that are approximations of a given nonlinear system.

An exact TS representation of a nonlinear system can be

obtained using the sector nonlinearity approach [18]. The

basic idea of the sector nonlinearity approach is to represent

each of the non-constant terms in the matrix functions f ,

g, and hout, and the vector function a of the model as the

convex combination of two constant terms and to build the

set of fuzzy rules as all combinations of the so-obtained

terms. Therefore, in this approach, the number of rules is

determined by the number of non-constant terms in the

matrix functions.

The multiplications of the state variables have the follow-

ing effect: compared to the sector nonlinearity approach,

a larger number of operating points is needed to obtain

a TS model that accurately approximates the METANET

model when the first two approaches discussed above are

used. As already mentioned, using more operating points

leads to a larger number of local models and a greater

computational load when designing the observers. Therefore,

we use the sector nonlinearity approach to construct the TS

fuzzy representation of the METANET model. This goes as

follows.

First consider the state equation of the nonlinear system

(7). The sector nonlinearity approach requires the nonlinear

2Each element of the vector z is time-dependent, i.e., z should be denoted
as z(k). For the simplicity of notation, the explicit time-dependence is
omitted in this paper.



functions to be bounded. Therefore, we consider the non-

constant terms in either f , g, or a of (7), and we represent

them by nl j(·) ∈ [nl j,nl j], j = 1,2, . . . , p where nl j and nl j

are respectively the lower and upper bound of the j-th term.

Now, for each nonlinearity nl j, we construct two weighting

functions as follows

w
j
0(·) =

nl j −nl j(·)

nl j −nl j

w
j
1(·) = 1−w

j
0(·)

for j = 1, 2, . . . , p

(8)

We can see that for each non-constant term, the two weight-

ing functions w
j
0 and w

j
1 are normalized, i.e., w

j
0(nl j(·))+

w
j
1(nl j(·)) = 1, for any nl j(·). To define the membership

functions we consider all possible products of the weight

functions w
j
ℓ for j ∈ {1,2, . . . , p} and ℓ ∈ {0,1}. This results

in 2p membership functions of the form

hi(z) =
p

∏
j=1

w
j
ℓ(z j) (9)

for i = 1, 2, · · · ,2p, ℓ ∈ {0,1}. These membership functions

are normal, i.e., hi(z)≥ 0 and ∑r
i=1 hi(z) = 1, r = 2p, where

r is the number of rules. Then the fuzzy representation of

(7) is given as

x(k+1) =
r

∑
i=1

hi(z)(Aix(k)+Biu(k)+ai) (10)

where Ai, Bi, and ai, i = 1,2, . . . ,r are matrices and vectors

of proper dimensions, obtained by substituting the nonlinear

terms nl j(·) by either nl j or nl j depending on whether w
j
0 or

w
j
1 is selected in the membership function hi of rule i.

The TS representation of the output function can be

obtained in a similar way.

B. TS fuzzy representation of the METANET model

To construct the TS fuzzy representation of (6) using

the sector nonlinearity approach, it is necessary to assume

that the values of the variables ρi−1(k), ρi(k), and vi(k) are

bounded, ρi−1(k)∈ [ρi−1,min, ρi−1,max], ρi(k)∈ [ρi,min, ρi,max],
and vi(k) ∈ [vi,min, vi,max], for all k. This assumption is

reasonable since a freeway segment always has capacity

limits. Furthermore, when the segment is in congestion, the

space-mean speed will be very small, while there is always

an upper limit of the speed of a car on a freeway.

First, we consider the state equation of (6). There are

four non-constant terms in the matrix functions f , g, and a,

based on which the weighting functions are defined as

follows

1) For the term 1− T
L

vi(k), the space-mean speed vi(k)
has a maximum and minimum value of vi,max and

vi,min respectively. Applying (8), one obtains

w1
0(vi(k)) =

vi,max−vi(k)
vi,max−vi,min

and w1
1(vi(k)) = 1−w1

0(vi(k));

note that the nonlinearities 1− T
L

vi(k) and

1− T
τ − T

L
vi(k) lead to the same weighting functions;

2) Similarly to the above, 1
ρi(k)+κ

leads to

w2
0(ρi(k)) =

ρi(k)−ρi,min

ρi(k)+κ

ρi,max+κ
ρi,max−ρi,min

,

w2
1(ρi(k)) = 1−w2

0(ρi(k));

3) The term exp
[

− 1
am

(

ρi(k)
ρcr

)am
]

appearing in V (ρi) is

expressed using the weighting functions

w3
0(ρi(k)) =

exp

[

− 1
am

(

ρi,min
ρcr

)am
]

−exp

[

− 1
am

(

ρi(k)
ρcr

)am
]

exp

[

− 1
am

(

ρi,min
ρcr

)am
]

−exp

[

− 1
am

(

ρi,max
ρcr

)am
] ,

w3
1(ρi(k)) = 1−w3

0(ρi(k))
4) The term ρi−1(k) leads to the weighting functions

w4
0(ρi−1(k)) =

ρi−1,max−ρi−1(k)
ρi−1,max−ρi−1,min

,

w5
1(ρi−1(k)) = 1−w5

0(ρi−1(k)).

Based on the above four non-constant terms, to describe

all possible combinations, a fuzzy system with 24 = 16 rules

is necessary.

Consider now the output equation

y(k) =

(

qi(k)
vi(k)

)

=

(

vi(k)λ 0

0 1

)(

ρi(k)
vi(k)

)

.

(11)

The measurement matrix has one non-constant term, namely

vi(k). But since vi(k) in the measurement matrix is the

same as that of the system equation, the same weighting

function as above can be used. Moreover, the speed vi(k) is

also assumed to be measured, which means the membership

functions of the measurement do not depend on states that

have to be estimated.

Using the weighting functions developed above, the con-

sequent models of the fuzzy rules can be written as

x(k+1) = Aix(k)+Biu(k)+ai

y(k) =Cix(k)
(12)

where

x(k) =

(

ρi(k)
vi(k)

)

u(k) =

(

vi−1(k)
ρi+1(k)

)

and Ai, Bi, ai, and Ci are obtained by substituting the min-

imum or maximum values corresponding to the weighting

functions used in rule i into the functions f , g, hout, and a.

The TS fuzzy model of the METANET is then expressed

as

x(k+1) =
r

∑
i=1

hi(z)(Aix(k)+Biu(k)+ai(k))

y(k) =
r

∑
i=1

hi(z)Cix(k)

(13)

This concludes the TS fuzzy representation of the METANET

model.

IV. OBSERVER DESIGN FOR THE TS METANET MODEL

In general, an observer designed for the model (13) has

the form

x̂(k+1) =
r

∑
i=1

hi(ẑ)
[

Aix̂(k)+Biu(k)+ai

+Ki(y(k)− ŷ(k))
]

ŷ(k) =
r

∑
i=1

hi(ẑ)Cix̂

(14)



where ẑ denotes the estimated scheduling vector and Ki, i =
1, . . . ,r, are the observer gains. The observer design problem

is to calculate the values of Ki, i = 1, . . . ,r such that the

estimation error converges to zero. The estimation error can

be written as

e(k) = x̂(k)− x(k) . (15)

Substituting (13) and (14) into (15) yields

e(k) =
r

∑
i=1

hi(z)[Aix(k)+Biu(k)+ai]

−
r

∑
i=1

hi(ẑ)
[

Aix̂(k)+Biu(k)+ai +Ki(y(k)− ŷ(k))
]

Adding to and subtracting from the right-hand side of the

above equation ∑r
i=1 hi(ẑ)(Aix(k)+Biu(k)+ ai), after some

algebraic manipulations we obtain

e(k+1) =
r

∑
i=1

hi(ẑ)[Aie(k)−Ki(y(k)− ŷ(k))]

+
r

∑
i=1

(hi(z)−hi(ẑ))
[

Aix(k)+Biu(k)+ai(k)
]

(16)

Since the speed is measured, the membership functions of the

measurement model do not depend on the estimated states.

Therefore, we can rewrite (16) as

e(k+1) =
r

∑
i=1

r

∑
j=1

hi(ẑ)h j(z)[Ai −KiC j]e(k)

+
r

∑
i=1

(hi(z)−hi(ẑ))
[

Aix(k)+Biu(k)+ai(k)
]

(17)

In order for the estimation error to converge to zero, the

observer gains Ki have to be calculated such that the first term

of (17) converges to zero and such that the disturbance due to

the second term, hi(z)−hi(ẑ) becomes zero as ẑ approaches z.

The observer gains Ki are usually computed using stability

conditions developed for TS systems. The estimation error

dynamics (17) is asymptotically stable, i.e., the estimation

error converges to zero if there exists a positive definite

matrix P such that [13]

GT
ii PGii −P < 0

(Gi j +G ji)
T

2
P
(Gi j +G ji)

2
−P < 0

for all i, j such that i < j and ∃z s.t. hi(z)h j(z) 6= 0

(18)

where Gi j = Ai −KiC j. The inequalities above can be trans-

formed into the following LMI problem:

Find a positive definite matrix P and matrices Mi, where

Mi = PKi, i = 1, . . . ,r, such that
(

P 2LT
ii

2Lii P

)

> 0

(

P (Li j +L ji)
T

(Li j +L ji) P

)

> 0

for all i, j such that i < j and ∃z s.t. hi(z)h j(z) 6= 0

(19)

where Li j = (PAi −MiC j)/2.

The condition (19) above ensures the asymptotic stability

of the first term of the right-hand side of (17). The asymptotic

stability of (17) can be guaranteed using stability conditions

for uncertain fuzzy systems (see [19]). Since (19) are robust

stability conditions and provided the initial estimate is close

enough to the true state, (17) is stable [20].

The LMIs above can e.g. be solved using the Sedumi

solver of YALMIP [21]. Next the values of Ki are substituted

into the observer model.

The approach presented above can easily be extended to

include the node equations of the METANET model, which

implies that the proposed approach is not only also applicable

to freeway stretches but also to (complex) freeway networks.

Note that the fuzzy model is also observable if only the

flow is measured, (i.e., the speed is not measured), as long

as neither the flow nor the speed on a segment is zero.

Moreover, under these conditions it is possible to design a

fuzzy observer similar to (14) that can estimate both the

speed and the density. This indicates that it is possible

to design observers in a distributed fashion for a whole

stretch or even a whole network, given that the neighboring

observers communicate the estimated states among them.

V. SIMPLE CASE STUDY

Now the proposed approach is illustrated for simple case

study in which we consider one particular segment i. The

true initial state of the segment is x =
[

10 20
]T

. The

boundary inputs for the segment were constructed such that

the downstream speed was equal to the initial speed of

the segment plus a random uniform noise signal with an

amplitude of 15 km/h, and such that the upstream density

was equal to the initial density of the segment plus a random

uniform noise signal with an amplitude of 15 veh/km/lane.

The observer has been simulated using the initial estimate

x =
[

20 100
]T

. The output of the TS fuzzy representation

of the METANET model is shown in Figure 1. The estimation

error using the observer is shown in Figure 2. As expected,

the estimation error converges to zero.

The simulation and estimation reported here have been

performed on a PC with an Intel T9300 2.5 GHz processor

and 3GB RAM. The total computation time, including the

computation of the observer gains (1.75 s, done offline,

before the actual estimation), simulation of the model and

estimation of the states was 2.26 s. To compute the estimate

in one time step on average requires 0.0042 s, with 0.008 s

being the maximum time that was encountered. These values

are well below the typical sampling times for freeway traffic

networks (which currently are typically in the range of

several tens of seconds to minutes). This clearly indicates

that the proposed observer is applicable online.

VI. CONCLUSIONS

A discrete-time Takagi–Sugeno (TS) fuzzy observer has

been proposed in this paper for the METANET traffic model.

An exact TS representation of the METANET model has been

obtained using the sector nonlinearity approach. The observer

has been designed based on the TS fuzzy representation of
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Fig. 1. Output of the TS fuzzy model of the METANET model.
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Fig. 2. Estimation error using the TS fuzzy observer.

the METANET model for one segment of highway stretch.

The designed observer is able to estimate the non-measurable

traffic states.

In our future research, we will investigate how the perfor-

mance of proposed observer compares to that of other types

of observers that can be applied to the METANET model

such as extended Kalman filters, unscented Kalman filters,

or particle filters (see also [6]–[10]), in particular for models

of real-life networks and using real measurement data as

input. We will also consider robust TS fuzzy observer design

in order to handle uncertainties in the METANET model, as

well as TS fuzzy observers for other traffic flow models.
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