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Control of a String of Identical Pools Using Non-Identical Feedback

Controllers

Yuping Li and Bart De Schutter

Abstract— In the distant-downstream control of irrigation
channels, the interactions between pools and the internal time-
delay for water to travel from upstream to downstream, impose
limitations on global performance, i.e. there exist propagation
of water level errors and amplification of flows over gates in the
upstream direction. This paper analyses these coupling proper-
ties for a string of identical pools, both with identical feedback
controllers and with non-identical feedback controllers. The
definition of string stability in terms of bounded water level
errors and bounded flows is given. It is shown that for a string of
infinite number of pools, string stability cannot be achieved by
decentralised distant-downstream feedback control. However,
for a string of finite number of pools, a better global perfor-
mance can be achieved by non-identical feedback controllers
such that the closed-loop bandwidths of the subsystems increase
from downstream to upstream.

I. INTRODUCTION

When designing decentralised feedback controllers for

irrigation networks, one usually only takes local performance

into account, i.e. regulating the water-level in a pool at its

setpoint while rejecting offtake disturbances. Such a design

might present very bad global performance, e.g. in response

to offtake disturbances in the downstream pools, the gates

in the upstream pools may go beyond saturation or the

water-levels in the upstream pools may drop too low to

satisfy the water demands. Therefore, in this paper, design

of decentralised feedback controllers is discussed based on

global performance considerations.

In large-scale irrigation networks, water is often distributed

via open water channels under the power of gravity (i.e. there

is no pumping). The flow of water through the network is

then regulated by automated gates positioned along the chan-

nels [2], [6], [12]. The stretch of a channel between two gates

is commonly called a pool. Water offtake points to farms

and secondary channels are distributed along the pools.1 As

such, an important control objective is setpoint regulation of

the water-levels immediately upstream of each gate, which

enables flow demand at the (often gravity-powered) offtake

points to be met without over-supplying. When the number

of pools to be controlled is large and the gates are widely

dispersed, it is natural to employ a decentralised control

structure. In practice, a distant-downstream control structure

(i.e. using the upstream gate to control the downstream
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1Typically at the downstream end of pools.

water-level of a pool) is implemented for management of

water service and water distribution efficiency [8]. Fig. 1

shows a side view of a channel under decentralised distant-

downstream control. For such a control structure, when

offtake disturbances occur in the downstream pools, the

interactions between pools, due to the fact that the flow into

one pool equals to the flow supplied by its upstream pool,

and the internal time-delay for the transportation of water

from upstream to downstream put requirements on managing

the water-level error propagation and attenuating the ampli-

fication of flows over gates in the upstream direction, see

[2], [3] for analysis of coupling between pools with distant-

downstream control.

This paper studies the global control performance problem

by analysing decentralised feedback control of a string of

identical pools, for which we suggest a control strategy

of using non-identical feedback controllers. A definition of

string stability in terms of bounded water level errors and

bounded flows is given. It is shown that string stability cannot

be achieved for infinite number of pools with decentralised

distant-downstream feedback control. However, for finite

number of pools (which is true in practice), by designing the

non-identical feedback controllers such that the closed-loop

bandwidths of the subsystems increase from downstream to

upstream, a much better global performance than that with

identical feedback controllers can be achieved. Furthermore,

we extend the analysis result to a string of heterogeneous

pools and give guidelines for designing feedback controllers

based on global performance.

The paper is organised as follows. Section II gives the

definition of string stability in terms of bounded water level

errors and bounded flows. Both the cases of a string of

identical pools with identical feedback controllers and with

non-identical feedback controllers are discussed. The global

performance analysis is extended to a string of heterogeneous

pools in Section III. Section IV shows simulation results. A

brief summary is finally given in Section V.

II. BOUNDED WATER LEVEL ERRORS AND BOUNDED

FLOWS

Consider n + 1 pools. Denote the first downstream pool

G0, the second downstream pool G1, and so on, till the

most upstream pool, Gn. The sideview of the interconnected

closed-loop system is shown in Fig. 1, where yi is the water

level in pooli and hi is the head over gatei.
Based on mass balance, a simple model of the water-level

in pooli that captures the dynamics at low frequencies is



−

−
ri−1

ri

hi−1

hi−2

hi ui−1

ui
Ki

Ki−1

yi−1

yi−1

yi

yi

yi+1
pooli

pooli−1

DATUM

gatei

gatei−1

Fig. 1. Decentralised control of an open water channel

obtained (see [11]):

Gi : yi(s) =
cie

−τis

s
ui(s)−

ci−1

s
(ui−1 + di) (s), (1)

where ci and ci−1 are discharge coefficients, function of the
pool surface area and the width of upstream and downstream
gates respectively, and τi is the internal time-delay that
the water takes to travel from the upstream end to the

downstream end of the pool, ui := h
3/2
i is proportional to

the flow over gatei,
2 and di is the water offtake disturbance.

Denote the water level error as ei := ri− yi, where ri is the
water level setpoint. Essentially, the decentralised controller
Ki is a PI compensator:

Ki : ui(s) =

(

κi +
φi

s

)

ei(s), (2)

with κi > 0 and φi > 0; the integrator is included for

zero steady-state water-level error in rejection to step load

disturbance di, the phase-lead term helps for closed-loop

stability.
As previously mentioned, the interaction between pools

(i.e. the flow out of pooli equals to the flow into pooli−1)
influences the global performance of the closed-loop system.
This is represented by the propagation of water level errors
and the amplification of control actions in the upstream
direction. To analyse the above coupling properties between
pools, we study a string of identical pool with decentralised
feedback control. In such case,

Gi : yi(s) =
ce−τs

s
ui(s)−

c

s
(ui−1 + di) (s), (3)

with c := ci and τ := τi for i = 0, . . . , n.
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Fig. 2. Identical pools with decentralised feedback control

Fig. 2 shows the configuration of a string of identical pools
with decentralised feedback control. The coupling transfer
function from one closed-loop subsystem to the next one
can be obtained as follows from the above pool model and

2We consider here open water channels with overshot gates, for which

the flow over gatei can be approximated by cih
3/2
i (t) [1]. Note that the

discussions in this paper also work for channels with undershot gates.

the feedback controller:

Tee,i(s) :=
ei(s)

ei−1(s)
=

c(κi−1s+φi−1)
s2

1 + c(κis+φi)

s2
e−sτ

(4)

Tuu,i(s) :=
ui(s)

ui−1(s)
=

c(κis+φi)

s2

1 + c(κis+φi)

s2
e−sτ

(5)

Denote the coupling transfer functions from the first down-

stream pool to the nth pool as En(s) :=
en(s)
e0(s)

and Fn(s) :=
un(s)
u0(s)

.

Definition 2.1: Given a string of n + 1 pools under

centralised or decentralised control, if limn→∞ |En(jω)| <
∞ and limn→∞ |Fn(jω)| < ∞ for all ω ≥ 0, the system

is said to be string stable in terms of bounded water level

errors and bounded flows.

For a string of pools with decentralised control one has

En(s) =

n
∏

i=1

Tee,i(s) =

n
∏

i=1

c (κi−1s+ φi−1)

s2 + c (κis+ φi) e−sτ
(6)

Fn(s) =

n
∏

i=1

Tuu,i(s) =

n
∏

i=1

c (κis+ φi)

s2 + c (κis+ φi) e−sτ
. (7)

A. Coupling of pools with identical feedback controllers

If one designs the decentralised controller based on local
performance and if one takes the interaction between pools
as an unknown disturbance, then for identical pools, it is
natural to select Ki in (2) the same for i = 0, . . . , n, i.e.

ui(s) =

(

κ0 +
φ0

s

)

ei(s), (8)

where κ0 and φ0 are selected by just considering the local
closed-loop system: regulating the water level in a pool to its
setpoint while rejecting the offtake disturbances in the pool.
Then the couplings between neighbouring pools are:

Tee(s) = Tuu(s) =
c(κ0s+φ0)

s2

1 + c(κ0s+φ0)

s2
e−sτ

(9)

Similar as Lemma 1 in [2], we have the following result.

Lemma 2.2: For a string of identical pools with identical

feedback controllers, there exists an ω > 0 such that

|Tee(jω)| > 1 and |Tuu(jω)| > 1.

Proof. The proof follows the lines of the proof for Lemma

9.3 of [4].
We first prove

∫∞

0
ln |Tee(jω)|

dω
ω2 ≥ 0. Denote L(s) :=

c(κ0s+φ)
s2 , then Tee =

L(s)e−sτ

1+L(s)e−sτ e
sτ . Correspondingly,

|Tee(jω)| =

∣

∣

∣

∣

L(jω) exp(−jτω)

1 + L(jω) exp(−jτω)

∣

∣

∣

∣

(10)

for all ω ∈ R. Applying Cauchy’s Theorem to the integral

of the function F (s) := 1
s2 ln

(

L(s) exp(−τs)
1+L(s) exp(−τs)

)

along the

standard Nyquist contour C with infinitesimal indentation
Cǫ around the origin, we have
∮

C

F (s)ds = 0 =

∫

C
i−

F (s)ds+

∫

Cǫ

F (s)ds+

∫

C∞

F (s)ds,

where Ci− is the imaginary axis minus the indentation Cǫ.
Since L(s) has two poles at the origin, the integral along Cǫ



is 0. By straightforward calculation, the integral along C∞ is
equal to jπτ . Using the conjugate symmetry of the integrand
and rearranging terms, yields

∫

∞

0

ln

∣

∣

∣

∣

L(jω) exp(−jτω)

1 + L(jω) exp(−jτω)

∣

∣

∣

∣

dω

ω2
=

πτ

2
> 0. (11)

Indeed, L(s) is strictly proper, hence ln |Tee(jω)| < 0
at high frequencies. It follows from (11) that there exists

an ω0 ∈ (0,∞), such that |Tee(jω0)| > 1. From (9),

|Tuu(jω0)| > 1.

Note that for the string of pools with identical feedback

controllers, En(s) = (Tee(s))
n

. Hence there exists an ω > 0
such that limn→∞ |En(jω)| is unbounded. Similarly, there

exists an ω > 0 such that limn→∞ |Fn(jω)| is unbounded.

Following Definition 2.1,

Theorem 2.3: Consider a string of infinite number of

pools (3) controlled by identical decentralised feedback

controllers (8), the closed-loop system is string unstable.

Let us consider a numerical example for a string of 101

identical pools. The model of the pools is given in (3) with

the coefficient c = 0.68 and the transportation time delay

τ = 20 min. For local performance, select κ0 = 0.31 and

φ0 = 8.2×10−4 for the feedback controller (8). The magni-

tudes of the coupling transfer functions Tee,i(s) and Tuu,i(s),
for i = 1, . . . , 100, are shown in Fig. 3. It is observed that
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Fig. 3. Closed-loop coupling with identical feedback controllers

maxω |Tee,i(jω)| ≈ 2.28. The maximum occurs at the same

frequency, around 0.14 rad/min for all i = 1, . . . , 100. Hence

maxω
|e101|
|e0|

= 2.28100 (and maxω
|u101|
|u0|

= 2.28100), which

is intolerable in practice.

B. Coupling of pools with non-identical feedback controllers

In fact, a string of n + 1 identical pools with identical
feedback controllers involves the strongest coupling between
pools, e.g. maxω |Tee,i(jω)|(> 1) occurs at the same ω for
all i, which makes bounded water level errors impossible.
To decouple the interaction and hence for global closed-loop
performance, we consider non-identical feedback controllers
as follows:

K0 : u0(s) =

(

κ0 +
φ0

s

)

e0(s), (12)

Ki : ui(s) =

(

(κ0 + αi) +
φ0

s

)

ei(s) for i = 1, . . . , n (13)

with α > 0. Substituting (12-13) into (6-7) results in3

|En(jω)|
2 =

n
∏

i=2

|Tee,i(jω)|
2 =

n
∏

i=2

i2 +Aei+Be

i2 + Ci+D
(14)

|Fn(jω)|
2 =

n
∏

i=1

|Tuu,i(jω)|
2 =

n
∏

i=1

i2 +Af i+Bf

i2 + Ci+D
(15)

for ω > 0, where

Ae =
2αc2(κ0 − α)ω4 + 8αc2(κ0−α)

τ2 ω2

α2c2ω4 + 4α2c2

τ2 ω2

Be =
(κ0 − α)2c2ω4 +

(

φ2
0 +

4(κ0−α)2

τ2

)

c2ω2 +
4φ2

0
c2

τ2

α2c2ω4 + 4α2c2

τ2 ω2

Af =
2κ0αc

2ω4 + 8κ0αc2

τ2 ω2

α2c2ω4 + 4α2c2

τ2 ω2

Bf =
κ2
0c

2ω4 +
(

φ2
0 +

4κ2

0

τ2

)

c2ω2 +
4φ2

0
c2

τ2

α2c2ω4 + 4α2c2

τ2 ω2

C =

(

2κ0αc
2 − 8αc

τ

)

ω4 + 8κ0αc2

τ2 ω2

α2c2ω4 + 4α2c2

τ2 ω2

D =
ω6 +

(

κ2
0c

2 − 8κ0c
τ

+ 4
τ2 + 2φ0c

)

ω4

α2c2ω4 + 4α2c2

τ2 ω2

+

(

4κ2

0
c2−8φ0c

τ2 + φ2
0c

2
)

ω2 +
4φ2

0
c2

τ2

α2c2ω4 + 4α2c2

τ2 ω2

Note that for ω = 0, lim
n→∞

|En(jω)| = lim
n→∞

|Fn(jω)| = 1 .

The following sufficient conditions for bounded wa-

ter level errors (in Lemma 2.4) and bounded flows (in

Lemma 2.5) use properties (a) and (b) of the Gamma function

defined in (16).

(a) If the real part of the complex number x is positive (i.e.
Re[x] > 0), then the integral

Γ(x) :=

∫

∞

0

e
−t

t
x−1

dt (16)

converges absolutely.

(b) Using integration by parts, Γ(x+ 1) = xΓ(x).

Lemma 2.4: For a fixed ω > 0, lim
n→∞

|En(jω)| exists if

Ae(ω) > 0, C(ω) > 0, D(ω) > 0 and Ae(ω) < C(ω).

Proof. For the case of Ae(ω) = C(ω), one has

|En(jω)|
2 =

n
∏

i=1

[

1 +
Be −D

(i− y1)(i− y2)

]

. (17)

When n → ∞, expression (17) corresponds to equation
(89.5.7) of [5], which gives

lim
n→∞

|En(jω)|
2 =

Γ(1− y1)Γ(1− y2)

Γ(1− x1)Γ(1− x2)
. (18)

Note the convergence of the RHS of (18) is not ensured.

Indeed, even for the case that Ae(ω) > 0 (and equivalently

3Here we use a first-order Padé approximation to represent the transporta-
tion time-delay τ . Such an approximation does not change the analysis result
in practice given that the offtake disturbance that induces e0 is significant at
low frequency range, while the high-frequency resonances caused by time-
delay are dampened by the feedback controller with a low-pass filter, see
Section IV.



C(ω) > 0) and D(ω) > 0,4 and hence Re[x1] < 0, Re[x2] <
0, Re[y1] < 0, Re[y2] < 0; one only has that Γ(1−x1)Γ(1−
x2) and Γ(1− y1)Γ(1− y2) converge respectively, based on

the previous property (a) of the Gamma function. However,
Γ(1−y1)Γ(1−y2)
Γ(1−x1)Γ(1−x2)

might still diverge.

For Ae(ω) 6= C(ω), one has

|En(jω)|
2 =

n
∏

i=1

(

1 +
y1 − x1

i− y1

)(

1 +
y2 − x2

i− y2

)

(19)

where x1, x2 are the roots of x2 +Aex+Be = 0, and y1,
y2 are the roots of y2 + Cy +D = 0. Note that expression
(19) corresponds to equation (89.9.1) of [5], i.e.

|En(jω)|
2 =

Γ(1− y1)Γ(1− y2)

Γ(1− x1)Γ(1− x2)

·
Γ(n+ 1− x1)Γ(n+ 1− x2)

Γ(n+ 1− y1)Γ(n+ 1− y2)
. (20)

Applying the previous properties (a) and (b) of the

Gamma function to the RHS of (20), it is direct that when

0 < Ae(ω) < C(ω) and D(ω) > 0, lim
n→∞

|En(jω)|
2 = 0;

while the limitation does not exist for the case of

Ae(ω) > C(ω). The lemma is thus proved.

Remark 1: a) For all ω > 0, the condition Ae(ω) > 0
holds if and only if κ0 > α.

b) For all ω > 0, the condition Ae(ω) < C(ω) holds if and

only if −2α2c2ω4 − 8α2c2

τ2 ω2 < − 8αc
τ

ω4, which is equivalent
to

αc−
4

τ
> −

4αc

τ2
ω

−2
. (21)

Since α > 0, c > 0 and ω > 0, (21) holds if αc− 4
τ
≥ 0.

c) Note the denominator of D(ω) > 0 for ω > 0. The
numerator of D(ω) can be written as

(

ω
3 −

2κ0c

τ
ω

)2

+

(

2

τ
ω

2 −
2φ0c

τ

)2

+
(

2φ0cω
2 + φ

2
0c

2)
ω

2 +

(

κ
2
0c

2 −
4κ0c

τ

)

ω
4
.

For all ω > 0, the condition D(ω) > 0 holds if κ0 ≥ 4
cτ .

From the above points a), b) and c), if κ0 > α ≥ 4
cτ , then

the conditions 0 < Ae(ω) < C(ω) and D(ω) > 0 hold for

all ω > 0. ◦
Similarly, one has the following result for bounded flows.

Lemma 2.5: For a fixed ω > 0, lim
n→∞

|Fn(jω)| exists if

0 < Af (ω) < C(ω) and D(ω) > 0.

Proof. The proof follows the same lines as the proof of

Lemma 2.4.

Remark 2: For ω > 0, the condition Af (ω) < C(ω) holds

if and only if 0 < − 8αc
τ

ω4, which is impossible given the

assumption that α > 0. ◦
In fact, under distant-downstream control, to compensate

the influence of the internal time-delay, the amplification of

control action in the upstream direction is unavoidable. This

ri

yi

uiui−1

ts

ts

ts + τi

Aui
Aui−1

(a)

(b)

(c)

Fig. 4. Control actions for zero steady-state water-level error

is shown in Fig. 4. Initially, the system is at steady-state.

At time ts, the flow out of pooli increases, see the change

of ui−1 (the dashed line in Fig. 4(a)). To compensate for

the influence of ui−1 on yi, the flow into the pool, ui, also

increases (the solid line in Fig. 4(a)). However, the influence

of ui on the downstream water-level yi will be τi (min) later

than that of ui−1 on yi (see Fig. 4(b)). For zero steady-state

error of yi from ri (see Fig. 4(c))), ui should be greater than

ui−1 for some time such that the area of Aui
is equivalent

to the area of Aui−1
. Hence, there exists ω > 0 such

that limn→∞ |Fn(jω)| is unbounded. Then to have bounded

water level errors for infinite number of identical pools with

decentralised control, the energy of the control action goes to

infinity, which is impossible in practice. Indeed, for robust

stability of the closed-loop, one has the condition on the

closed-loop bandwidth such that ωb <
1
τ (see [10]). However,

with the condition that α ≥ 4
cτ , the bandwidths of the string

of pools increase from downstream to upstream. Hence, for

a string of infinite number of pools, there exists an N < ∞,

such that the temporal stability condition for the subsystems

i > N is not satisfied.

From the above discussions and Definition 2.1, the fol-

lowing conclusion is obtained.

Theorem 2.6: For a string of infinite number of pools (3)

controlled by the decentralised feedback controller (12-13),

the closed-loop system is string unstable.

Consider the numerical example given in Section II-A for

a string of 101 identical pools. Select κ0 = 0.31, φ0 =
8.2 × 10−4 and α = 0.29 for the feedback controller in

(12-13). The magnitudes of the coupling transfer functions

Tee,i(s) and Tuu,i(s), for i = 1, . . . , 100, are shown in Fig. 5.

The decoupling function of applying non-identical feedback

controller is observed. Indeed, for all i = 1, . . . , 100,

|Tee,i(jω)| ≤ 1 for all ω ≥ 0. Hence, we can expect

a decreasing propagation of the water-level errors in the

upstream direction, which is confirmed by the top graph

of |En(jω)| in Fig. 6. Furthermore, an attenuation of the

amplification of the control action (i.e. flows over gates)

is also achieved, see in the bottom graph in Fig. 6 that

maxω
|u101|
|u0|

= 17.3, while as analysed in Section II-A,

maxω
|u101|
|u0|

= 2.28100 for the case with identical feedback

controllers.

4Note Be(ω) > 0 for all ω > 0.
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Fig. 5. Closed-loop coupling with non-identical feedback controllers
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III. FURTHER DISCUSSION

In reality, the number of the pools in a channel is finite.

When designing decentralised feedback control for a string of

n+1 (< ∞) similar pools (in terms of e.g. pool lengths, gate

properties, etc.), one can first select κ0, φ0 such that the local

performance in terms of setpoint regulation is guaranteed.

Then select an α > 0 such that the tradeoff between local

and global performance is managed, i.e. with the selected

α, the bandwidth of the upstream closed-loop ωb,n < 1
τn

.

Indeed, by including an α > 0 in the non-identical feedback

controllers, the bandwidths of the closed-loop subsystems

increase in the upstream direction; hence, one can expect a

faster response of the interconnected system to the offtake

disturbance in the downstream pools than the case with

identical feedback controllers. Note that in the distributed

control strategy discussed in [2], [7], such a speeding up of

the closed-loop response is achieved by involving the known

interaction between neighbouring pools in the input signals

to be rejected and by solving an optimisation problem to

manage the tradeoff between local and global performance.

One can extend the analysis results to channels with

heterogeneous pools: For a channel with distant-downstream

control, given that the temporal stability is ensured for each

subsystem, one can guarantee good global performance,

i.e. management of the water level error propagation and

attenuation of the amplification of flows over gates in the

upstream direction, by ensuring that the closed-loop band-

widths increase from downstream to upstream.

Remark 3: For a channel in which the pool lengths in-

crease from upstream to downstream, the above condition

that the closed-loop bandwidths increase from downstream

to upstream can be satisfied even by simply designing

the decentralised feedback controllers just based on local

performance. In reality, based on the consideration of storing

water to satisfy demands from farms, civil engineers design

irrigation networks such that the pool lengths, in general,

tend to decrease from upstream to downstream. However, the

previous guidelines for decentralised feedback control design

should still be kept in mind for a good tradeoff between local

and global performance. ◦

IV. SIMULATION RESULTS

In this section, simulation results are shown for the case

of a string of 5 identical pools with identical feedback

controllers and for the case with non-identical feedback

controllers. In the simulations, a third-order model that

captures the dominant wave-frequency dynamics in the pools

is used. The parameters of the pool is given in Table I.5

Saturations are set for gate positions and flows over gates.

TABLE I

PARAMETERS OF THE POOL AND SATURATION VALUES SET

Pool length Wave frequency τ c

3129 m 0.20 rad/min 16 min 0.0092

Saturations of gate positions Saturations of flows

max (m) 1.487 max (Ml/day) 300
min (m) 0 min (Ml/day) 0

Correspondingly, the feedback controllers involve an extra
low-pass filter 1

s+0.125 to guarantee no excitement of waves,
i.e. a low gain at high frequencies. Hence, a) the identical
feedback controllers are set as

Ki(s) =

(

0.1050 +
0.0008

s

)

1

s+ 0.125
for i = 0, 1, . . . , 4;

b) while the non-identical feedback controllers are set as

K0(s) =

(

0.1050 +
0.0008

s

)

1

s+ 0.125
, and for i = 1, . . . , 4

Ki(s) =

(

(0.1050 + 0.1i) +
0.0008

s

)

1

s+ 0.125
.

Fig. 7 and 8 give the closed-loop responses to an offtake

disturbance in the downstream pool. Clearly, a much better

decoupling performance is obtained by the strategy with the

non-identical feedback controllers.

Fig. 7 shows the water level errors in the five pools when

an offtake of 75 Ml/day at the downstream pool begins at

time 200 min. The water level setpoints for the pools are set

5The parameters of the pool is the same as that identified for pool10 of
the Haughton Main Channel, see [9].
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Fig. 7. Water-level error propagation, with identical feedback controllers
(top graph) and with non-identical feedback controllers (bottom graph)

the same: r = 1.15 m. Note that the local water level error in

the downstream pool (i.e. r−y0) is the same for identical and

non-identical feedback controllers. With identical feedback

controllers (the top graph), the water level errors in the pools

increase in the upstream direction. In the upstream pool, the

maximum water level error caused by the offtake is 0.28 m.

In contrast, with the non-identical feedback controllers (the

bottom graph), the water level errors in the pools decrease in

the upstream direction. In the upstream pool, the maximum

water level error caused by the offtake is 0.06 m.
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Fig. 8. Flow amplification, with identical feedback controllers (top graph)
and with non-identical feedback controllers (bottom graph)

Fig. 8 shows the amplification of flows to compensate the

influence of the offtake of 75 Ml/day at the downstream pool

begins at time 200 min. With identical feedback controllers

(top graph), the amplification of flows is significant, e.g.

the maximum flow over the most upstream gate is 240

Ml/day around 600 min; more seriously, the flow over the

most upstream gate goes beyond saturation from 870 min

to 1170 min. While with non-identical feedback controllers

(bottom graph), the amplification of flows over gates is well

attenuated, e.g. the maximum flow over the most upstream

gate is 130 Ml/day around 450 min. Note that, as expected,

the control actions in the upstream pools, i.e. ch
3/2
i (t) for

i = 1, . . . , 4, in response to the offtake disturbance are faster

than the case with identical controllers.

V. CONCLUSIONS

This paper discusses the designing of decentralised feed-

back controllers for a string of identical pools based on the

global performance of managing water-level error propaga-

tion and attenuating the amplification of flows over gates

in the upstream direction. A definition of string stability in

terms of bounded water level errors and bounded flows is

given. It is shown that for infinite number of pools with de-

centralised distant-downstream feedback control, the closed-

loop bandwidth limitation of each subsystem, imposed by

the internal time-delay, makes it impossible to achieve string

stability. However, for finite number of pools, by selecting

non-identical feedback controllers such that the closed-loop

bandwidths of the subsystems increase from downstream to

upstream, a better global performance than that with identical

feedback controllers is achieved. Furthermore, the analysis

result is extended to a string of heterogeneous pools: In

general, for distant downstream control, the management

of water-level error propagation and the attenuation of the

amplification of flows over gates in the upstream direction

require the closed-loop bandwidths to increase from down-

stream to upstream.
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