
Delft University of Technology

Delft Center for Systems and Control

Technical report 10-053

Towards automation of control software:

A review of challenges in mechatronic

design∗

A.A. Alvarez Cabrera, M.J. Foeken, O.A. Tekin, K. Woestenenk,

M.S. Erden, B. De Schutter, M.J.L. van Tooren, R. Babuška,

F.J.A.M. van Houten, and T. Tomiyama

If you want to cite this report, please use the following reference instead:

A.A. Alvarez Cabrera, M.J. Foeken, O.A. Tekin, K. Woestenenk, M.S. Erden,

B. De Schutter, M.J.L. van Tooren, R. Babuška, F.J.A.M. van Houten, and

T. Tomiyama, “Towards automation of control software: A review of challenges in

mechatronic design,” Mechatronics, vol. 20, no. 8, pp. 876–886, Dec. 2010.

Delft Center for Systems and Control

Delft University of Technology

Mekelweg 2, 2628 CD Delft

The Netherlands

phone: +31-15-278.24.73 (secretary)

URL: https://www.dcsc.tudelft.nl

∗This report can also be downloaded via https://pub.deschutter.info/abs/10_053.html

https://www.dcsc.tudelft.nl
https://pub.deschutter.info/abs/10_053.html

Towards Automation of Control Software: A Review of

Challenges in Mechatronic Design

A.A. Alvarez Cabreraa,
∗
∗, M.J. Foekenb, O.A. Tekina, K. Woestenenkc,

M.S. Erdena, B. De Schuttera, M.J.L. van Toorenb, R. Babuškaa,

F.J.A.M. van Houtenc, T. Tomiyamaa

a Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Tech-

nology, Mekelweg 2, 2628 CD, Delft, The Netherlands
b Faculty of Aerospace Engineering, Delft University of Technology, PO Box 5058, 2600

GB, Delft, The Netherlands
c Faculty of Engineering Technology, University of Twente, PO Box 217, 7500 AE, En-

schede, The Netherlands

Abstract

Development of mechatronic systems requires collaboration among experts from different design

domains. In this paper the authors identify a set of challenges related to the design of mecha-

tronic systems. The challenges are mostly related to integration of design and analysis tools,

and automation of current design practices. Addressing these challenges enables the adoption

of a concurrent development approach in which the synergetic effects that characterize mecha-

tronic systems are taken into account during design. The main argument is that in order to deal

with software development problems for complex mechatronic systems, there is a need to look

at system design practices beyond concurrency, i.e., there is a need to consider the complex in-

terdependencies among subsystems and the designers that develop them. A review on current

methods and tools is carried out to identify possible solutions proposed in previous works. The

purpose is not to make an extensive review, but to show that integration, from different points of

view, is a major issue and that increasing the level of abstraction in the description of systems

can help to overcome the integration challenges. An increased level of abstraction also forms a

basis for addressing other issues in mechatronic product development, which are presented in this

work. With that in mind, concepts for an integration framework are proposed. The goal of the

framework is to support a multi-disciplinary design team to (almost) automatically generate and

verify control software. Based on high-level architectural descriptions, the software generation

and verification process can be supported by knowledge-based methods and tools. Other goals

are to support communication among engineers, improve reliability of designs, increase reuse of

design knowledge, and reduce development time and development costs.

Keywords: Control software generation, design methods, design tools, development challenges, func-

tion modeling, integration, knowledge base, mechatronics.

∗* Corresponding author. Email a.a.alvarezcabrera@tudelft.nl. Tel. +31 15 278 5608. Fax. +31 15 278 4717.

1

1 Introduction

Developing mechatronic products requires intensive collaboration between engineers of the mechan-

ical, electronic, control, and software domains in a design team [1-3]. A central issue is that design

decisions cannot be taken from the point of view of a single domain, as often they will have an impact

in other domains. The procedure in traditional sequential design is that the mechanical design has to

be “frozen” before proceeding to the design of control software. This responds to the required prepa-

rations for production of the hardware, while for the software still last-minute changes may occur,

sometimes to fix problems from the rest of the design. This approach usually does not lead to optimal

overall behavior, since it does not properly address the interaction among mechanical, electronic, and

control behaviors. Furthermore, it does not reflect the importance of software design, which can have

a major impact on overall system design and performance.

Therefore, there is a need for a concurrent engineering approach with a highly integrated devel-

opment strategy [4,5], where design freeze is based on multi-disciplinary objective and constraint

evaluation. Such an approach is referred to as a mechatronic design approach by multiple authors

[3,6,7]. The idea that mechatronic design must be considered as a whole has been well known for

some time now, as Ziegler and Nichols [8] commented in 1943: “In the application of automatic con-

trollers, it is important to realize that controller and process form a unit; credit or discredit for results

obtained are attributable to one as much as the other.”

This paper describes the challenges related to the use of this mechatronic design approach and its

relations to software generation. The authors revise current solutions and propose extensions and com-

binations of them. It is concluded that methods based on higher abstraction levels play an important

role, but that their implementation is an issue. Furthermore, it is shown that multi-disciplinary design

optimization and verification of both hardware and software require suited modeling paradigms and

tool support. With these findings in mind, the authors propose an integrated design support frame-

work for mechatronic systems, which also addresses control software development. The framework

is supported by a common high-level system model, to provide both a clear system overview for the

designers and to enable the transfer of critical product information between tools. So far, the pro-

posed framework outline is intended to deal with the challenges mentioned above, mainly at the early

stages of the design process. As such the proposal does not target a defined control paradigm, specific

industry, or product type.

In Section 2 the identified challenges in mechatronic design are presented and discussed in more

detail. Section 3 gives a review on existing methods and solutions to face those challenges. After

that, Section 4 introduces the approach proposed by the authors, based on the discussions about the

identified challenges. The conclusions are presented in Section 5.

2 Challenges in mechatronic design

Both academic and industrial sources have reported on challenges related to the design and develop-

ment of mechatronic systems, such as:

• Exchange of design models and data [2,6].

• Cooperative work and communication among the design engineers [2,5,6,9,10].

• Multidisciplinary modeling [4,7,9].

• Simultaneous consideration of designs from different disciplines [4,5,7,11].

2

Physical
prototypes / tests

Prototyping

Product
definition

Conceptual
design

Documents.
Requirement tools.

Single domain tools
/ verification

Mechanical
design

Electronic
design

Control software
design

Systems
integration

Design phase Gaps Used tools

Figure 1: Common current design practice phases and tools

• Early testing and verification [5,7,9].

• Persistence of a sequential design process [2,4,10].

• Lack of tools and methods supporting multidisciplinary design [2,4,5,11].

• Support of the design of control software [3,5].

Examining these challenges, three core issues can be identified, which influence many of the

problems in the development of mechatronic systems. These challenges relate to design integration,

design verification, and generation of control software. In the next subsections, these will be discussed

in more detail.

2.1 Design integration

Modern mechatronic systems provide an increasing number of functionalities [1,6], while available

energy, space, weight, and time remain constant or even decrease. Specialists from various fields must

combine their expertise to develop a single product. A need for tighter integration, which encompasses

diverse factors related to design tools and practices, design methods, and members of the design team

and their interactions, arises from such trends.

Figure 1 shows a representation of the current mechatronic design process, where spaces represent

common gaps between the different design phases and the tools used in the design. Design teams are

often composed separately according to their area of expertise and often work at different locations.

The integration phase is postponed until the moment when physical prototypes are available. Even

in cases where a certain level of automation in the design has been reached, integration problems can

still be found; e.g., to use linked domain-specific libraries of components, it is necessary to verify

consistency and completeness of such libraries. These points are elaborated in Section 3.

Integration has been directly identified as an important research direction and a key element in

the design of mechatronic systems by industry [9] and by authors like Craig [7], Schöner [6], and

Wikander [4]. Tomizuka [3] and Wang et al. [2] identify the importance of aspects closely related

to integration, such as cooperative work of designers, data sharing, knowledge management, design

project management, and simultaneous design in different domains (e.g., design of the control algo-

rithm and of the system to be controlled). A recent report on industrial practices [5] shows that the

leading mechatronic product manufacturers opt for integration oriented towards management of spe-

cialist designers and tools that support such an approach, rather than using tools that encompass all

3

detailed design aspects. The desired tools, as identified by these manufacturers, should handle infor-

mation at the system level and track requirements and design changes to efficiently support integration

of design activities. Apart from the need for tools as identified by industry, it is also necessary to con-

sider the design methods supporting these tools and their users to get close to an integrated design

approach.

Appropriate methods and tools to support design integration are required, both in the conceptual

phase as well as in the detailed design phase, as has been identified by academia [2] and by the

engineering community [9,10,12]. The role of the human actors is also important, as communication

of ideas and information between designers from different domains is necessary [5,7]. These three

factors will be discussed in the next subsections.

2.1.1 Design methods

Despite many research contributions aimed at providing a theoretical framework for the design, this

goal has not been achieved yet [13]. As depicted in Figure 1, design activities might be separated

in the sense that parts of the design might depend on data provided by other parts (e.g., the design

of a controller may require knowledge of certain physical characteristics of the system). Traditional

methods in engineering design broadly exhibit either a sequential or a concurrent flow of activities.

As reported by Wang et al. [2], sequential design has proven to be unsuitable because of its lack

of flexibility, which increases design cost and development time. This perception is supported by

engineers in industry [10]. Rzevski [14] recommends stepping out of the conventional end-to-end

(i.e., sequential) design process in favor of a concurrent approach to deal with design of mechatronic

systems.

The core of traditional concurrent engineering approaches (see e.g., [15]) is to consider all phases

of the life cycle of the product as early as possible in the design in order to deal with issues related

to later life-cycle phases, such as production and disposal [16]. But even traditional concurrent ap-

proaches have proven to be limited when dealing with complex design situations, in the sense that

strong interdependencies might have unpredicted effects on the overall performance [4]. As men-

tioned by Wikander et al. [4] and Rzevski [14], a typical approach for the design of mechatronic

systems is to build the system by assembling single-domain subsystems and by paying special atten-

tion to the design of interfaces among them. Wikander et al. remark that such traditional methods

can merely achieve a sound integration of the components (i.e., “something that works”), but not a

synergetic integration. Therefore, research on mechatronics should also focus on the interactions of

the different engineering disciplines [4] rather than only on the interactions between the subsystems

that are being designed.

Dealing concurrently with the interactions of designers and of their designs is of paramount im-

portance for the early detection of problems in product development.

2.1.2 Design tools

Recent reports on industrial practices confirm the use of different tools to manage design data, and

state that the lack of tools that allow integration and shared use of such data is one of the main

challenges in mechatronic product development [5,11]. As illustrated in Figure 1, a current tendency

is that designers from different design domains rely on specialized tools. Similar to Wang et al. [2],

we denote a tool as domain-specific if it supports the design in a single domain, e.g., mechanical or

electrical. Examples are tools like SolidWorks in the mechanical design domain, Synopsys and OrCad

in the electrical domain, and Matlab/Simulink in the control domain. Furthermore, there are not many

4

specialized tools that support the first stages of design and that also extend efficiently to the subsequent

stages, although this limited reach is probably due to misuse of the existing tools. Examples of such

tools are requirement management tools like Rational DOORS, and tools that support approaches to

capture requirements like Quality Function Deployment (QFD) [17] or Integration DEFinition for

function modeling (IDEF0) [35].

Mono-domain tools perform well within their own domains, but their specialization often makes

it difficult to consider information from other domains. The tools used in the control design domain in

general prove to be more flexible as they use mathematical models as modeling primitives, e.g., in the

form of block diagrams or bond graphs [19]. Additional insights on tool integration can be found in

the works of Cutkosky et al. [20] and Dolk et al. [21]. The varied nature of the different design tools

interferes with a direct integration (i.e., direct mapping of the modeled objects) using a single tool or

design environment. Examples that illustrate such variety are:

• In mechanical design, dimensions, shapes, and materials that correspond to the physical objects

are the main interest. Thus, representing abstract concepts and grouping parts according to

other criteria than physical proximity become problematic.

• In the design of controllers, the physical system, also referred as the plant, is often abstracted

to a black box model. From such point of view it is difficult to find the explicit connection

between the behavior and its physical causes.

• Electronics deals with the physical implementation of the control. The software packages for

electronic design support predictions of behavior and execution time through logical and phys-

ical simulations.

• Electric engineering commonly designs “bridge” objects from electronic and mechanical do-

mains, and tools related to it focus on the connectivity of components and the communication

among them.

• Requirement management and capture tools focus on representing textual requirements infor-

mation. The link to other design domains is mainly made through document referring, and it is

the job of the user to (informally) connect such documents with the current design data.

2.1.3 Human factors

In part, the integration problem can be traced back to the early phases of design of a system in which

its architecture is defined. In the conceptual design phase, the designers choose the solution principles,

decomposition, interfaces, and design process planning that will guide the detailed design phases and

the way in which designers will cooperate [14]. The selection of an architecture influences the choice

of detailed solutions and the integration of those solutions in a rather straightforward manner; e.g.,

actuating an axis of a machine tool with a linear motor or with a precision ball screw completely

changes the configuration of the machine at both the hardware and the software level, and therefore,

different groups of specialists will need to interact in each case.

Human communication and cooperation are additional factors that affect design integration. One

issue is to communicate the goals and requirements of the design and how they relate to the chosen

solution, and to assign responsibilities for such requirements. In order to enable monitoring the re-

quirements throughout the design process it must be possible to decompose and the requirements and

to make budgets of resources for them, down to the interfaces of the individual designers. Another

issue is to inform the designers on how their part of the solution in the design affects other parts.

5

Individual designers make choices that can inadvertently affect the system as a whole. The design

should therefore be tested for consistency and validity throughout the design process.

Both issues strongly relate to the fact that there are currently few methods and tools that support

systems engineering and architecting activities and that capture the information produced in these

activities in order to facilitate the exchange of information between designers.

2.2 Lack of interdisciplinary verification

The four classical verification methods are demonstration, test, inspection, and analysis [16]. Of these,

the first three require physical prototypes to be developed, while the latter is based on a mathematical

representation of the system, also known as a model. Developing appropriate models for analysis and

a platform to verify various aspects of the system, including control software, represents a challenge.

In practice, specific models are developed to perform tests at different stages of the design. Due to

the use of domain-specific modeling tools, such models usually correspond to a specific point of view

on the system, like either the electrical or mechanical aspects, or continuous dynamics and discrete,

sequential behavior [22]. With the expected synergetic effects that characterize mechatronic systems,

these separate views cannot capture the overall system behavior. Even more, the analysis of changing

operation modes, defined in terms of state machines, requires reconfigurable multi-domain models,

which are often not supported.

Schemes of co-simulation and model sharing incorporate data generated in other domain-specific

analysis tools into control design models, for example, as implemented in the de-facto industry

standard [23] Matlab/Simulink. However, often these dynamic models can be considered as an in-

put/output box in the form of a transfer function, and the explicit relation with the original design

input is lost. On the other hand, control and hardware co-simulations also require coordination among

different specialists, and as discussed in Section 2.1.3, many challenges remain in that area.

For these reasons, verification and testing of control software still relies heavily on the use of

hardware prototypes or breadboards, requiring considerable investment in terms of time and money.

In a way, complete system prototypes allow a concurrent, multidisciplinary verification that can reduce

overall development time. On the other hand, besides their cost, the use of prototypes becomes less

viable as the mechanical design has to be relatively well specified for their construction. An approach

typically used in the aerospace industry is the ‘Iron Bird’ concept, in which a combination of part of

the final hardware and software is used to test and verify the behavior of on-board systems, such as the

electrical and hydraulic actuation devices. In this way, system verification does not require building a

fully operational system, but it still requires significant investment and the detailing of portions of the

design.

2.3 Lack of automation in control software design

In practice, the control system development effort is around 20% to 40% of the total software devel-

opment effort [25]. Modern Computer Aided Control System Design (CACSD) tools such as Mat-

lab/Simulink or dSPACE, and software development tools such as Rational Rose provide means to

translate control algorithms, in the form of block diagrams and state transition diagrams, to machine-

executable code. These code generators eradicate human coding errors, increase reliability and reusabil-

ity, and reduce development time and effort. Nonetheless, a major part of the control system design is

spent obtaining “working” formal models like block diagrams and the values for the parameters that

configure each block. The aforementioned tools only help to transform those formal descriptions into

control code.

6

Generating code from a model (e.g., a block diagram or a description in the Unified Modeling

Language (UML) [24]) of the structure and logic of the software system is part of what is known as

model-based software development. Only some of the top-level companies that design mechatronic

systems take this approach and it is not a common practice [5]. In such cases, the primitives used for

building such models usually represent objects clearly defined for certain specialists. To obtain a more

transparent model that aids integration, it is desirable that the objects used in the model are familiar

to the parties involved in the control design, which transcend the control engineers.

To arrive at a formal description that can be transformed into code, the designer must define a

control structure and strategy, and think about the implementation of functions for the measurement

and filtering of system signals and for the application of the control outputs to the system. Here,

‘control structure’ refers to the selection of groups of control inputs and outputs that will be handled

by a software or hardware control unit, and the term ‘control strategy’ refers to the type of control

algorithm to be used in a particular situation and the control sequences derived from the system’s

characteristics and the required behavior. Once the control structure and strategy are chosen, design

rules and optimization routines can be applied to determine the controller parameters, provided that

the requirements are given in a suitable form. Often, however, these requirements have to be derived

by the experts first, as system requirements specifications are defined at a higher level of abstraction.

There is still much to be gained by supporting and automating the control design tasks in the early

stages of design mentioned earlier in this section.

3 Review of available approaches

Both academia and industry have come up with methods and tools to deal with the challenges iden-

tified above. In this section we discuss a selection of these methods and tools, grouping them in the

same way as in the previous section.

3.1 Design integration

3.1.1 Design methods

Various methods consider the modeling of functions, requirements, and other information that is usu-

ally defined at the conceptual stage of the design. Documenting such information helps the designer to

maintain an overview of the system and to keep track of the evolution of the design. Multiple authors

have proposed models that contain functional descriptions of systems, like Function-Behavior-State

(FBS) [26], Functional Representation [27], Schemebuilder [28], and MACE [29], to guide and im-

prove choices made in the first phases of product design. These models represent knowledge about

the functions of the system, complemented with information about how the function is accomplished

and which objects, both hardware and software, are involved. For example, some functional mod-

eling approaches complement this information with qualitative (e.g., Qualitative Process Theory and

Qualitative SIMulator [30]) or quantitative (e.g., differential equations, bond graphs) data. Example

applications are mentioned by Erden et al. [31]. The FBS methodology has been implemented in the

software framework KIEF [32] to integrate tools from various domains and to facilitate the transfer of

information, as discussed in Section 3.1.2. Other approaches use functional flow and block diagrams,

and they model functions as transformation stages of matter, energy, or information [1,33-36]. So the

functionalities of the system are then documented separately from other models. The IDEF0 method

[35] offers a formalization for functional flow diagrams and various IDEF languages [18] model de-

tails of the system that could be connected more directly than the functions to other domain-specific

7

models, but they do not provide a clear connection between the different IDEF models. The functions

and key drivers method (FunKey) [37] proposes allocating budgets of resources to the functions of a

system. In this way, FunKey pursues its goal of documenting the architecting process and of providing

a means to compare product architectures.

The implementation of these methods is a challenge. As in the case of other theories related

with design, either the approaches are not implemented in a tool, or the developed tools are not part

of common industrial practice [13]. Furthermore, functional descriptions are mainly used to aid the

designer in the identification of related information, but not to classify or identify such information

with the help of an automated system. This stems from the fact that these abstract representations

have proven to be hard to formalize. Another important factor is that there is not even a consensus for

definitions and formalisms in the field of design research [13]. Additionally, requirements information

is not included in most of these methods. An exception is FunKey, which mainly focuses on the system

budgeting aspect. In particular, QFD specializes in capturing user requirements and connecting them

to characteristics of the system that can be used to measure the fulfillment of those requirements.

Muller has proposed the Customer objectives, Application, Functional, Conceptual, Realization

model (CAFCR) to decompose the product architecture into the five views its name indicates [38].

This allows for independently capturing the needs of the customer, the functions the product performs,

and the design of the product from the conceptual and realization standpoints. Its main purpose is to

provide mechanisms to keep track of stakeholder concerns, like safety, usability or performance, in

order to maintain integrated goals throughout the whole design process. The work of Muller mentions

what relevant information should be considered to obtain a proper description of the architecture of a

product, and suggests methods to capture such information. However, these methods are not strongly

linked to each other. The large variety and number of methods mentioned in CAFCR brings more

flexibility, but leaves to the systems architect or designer the, sometimes difficult, task of choosing the

most appropriate method out of all the presented methods.

The V-model [39] sets a general flow for the development process of a product. It indicates

that each stage of the product definition should be used to systematically test the implementation as

subsystems are integrated to arrive to the final product. Different stages of development and testing are

defined depending on the source, but in general, requirements analysis, architecting, detailed design,

and the corresponding verification/validation stages are defined. The model provides a structured base

for the development process, but it is very general, and does not provide details for its implementation;

there are no tools to fully support it, and companies have to carefully develop a framework of tools to

model each definition phase and to put the test phases into practice. Though not explicitly specified

in the V-model references, analysis verification methods (cf. Section 2.2) are crucial to support the

definition stages and to obtain correct models that can be used for verification. At this point it is worth

mentioning the spiral model [40], which has similar goals as the V-model, but which considers several

iterations using prototypes to verify the design at one stage and to produce a base for the next one.

The axiomatic design method, presented by Suh [41] states that functional independence of the

system constituents leads to an optimal design. To attain this, the method provides guidelines, namely,

the axioms of independence and information, to compare and evaluate early design choices. Suh and

other authors also report that the method has been applied successfully in multiple situations [41]. A

crucial point from the axiomatic design method is the importance of linking high-level information

(functional requirements) to implementation specific information (design parameters). On the other

hand, modern mechatronic products implement an increasing number of functionalities while main-

taining constraints on space and costs, and thus, a tight integration of the subsystems is desirable,

which makes it harder to obtain functional independence.

Capturing and integration of information is important to deal with the challenges discussed here.

8

The Knowledge and Information Management project [42] has proposed principles that describe the

characteristics of engineering information that should be captured and kept for reuse.

In this section we have shown how several methods deal with one or more aspects related to

integration, but gaps exist between early design phases and the detailed design phases.

3.1.2 Tool integration

According to Citherlet [43], there are four different approaches to multi-disciplinary tool integration:

stand-alone, interoperable, coupled or linked, and integrated programs. The first one is the least de-

sirable, as the tools are unrelated and communication is not possible. Interoperable programs provide

means to exchange or share models. Towards these goals, additional frameworks have been developed

to streamline or automate the model exchange. This second approach will be treated in more detail

later on in this section. Coupled or linked tools can communicate at run-time. Due to the flexibility

of their modeling primitives (cf. Section 2.1.2) some tools used in the control design domain have

taken the second or third approach. Finally, integrated programs facilitate work in different domains

within a single tool. Vendors, especially those of mechanics CAD tools, have used this approach,

integrating tools from other domains into their software suites. As an example, the latest version of

CATIA also supports electronics, systems and control modeling, and incorporates embedded control

code generation for the latter. Though the existing coupled and integrated programs provide a way of

predicting the behavior of a system, they specialize in running models used in detail design and lack

a direct connection with information from earlier phases of the design process (e.g., goals, functions).

Within the interoperable integration approaches we can mention the pluggable metamodel mecha-

nism implemented in KIEF [45] and the framework of the Virtual Reality Ship (VRS) systems project

[44]. The VRS project reference indicates that several tools used in the European ship building indus-

try, including a physical testing platform, have been integrated, but unfortunately no details of how

this is done could be extracted from the available material.

The core of KIEF is a knowledge base in which objects from different modeling tools are mapped

to each other using “physical phenomena” as connecting points [32,46], in what is known as the

process-centered approach [31]. This knowledge base also contains information about modeling tools

to support their integration into the framework. A metamodel of the system is built according to

the ontology underlying the knowledge base and KIEF manages the data transfer and consistency

between the domain specific modelers. An ontology can be defined as a formal representation of a set

of concepts within a domain and the relationships between those concepts, and as such can define a

language for communication between domains.

The software suite CORE [47] offers integration through a model-based systems engineering ap-

proach. The tool allows to make models to capture requirements, to model function decomposition

and flows, and to map them to models of system components and their interfaces. It implements

a concurrent design process called ‘the onion model’ [48] to validate the product definition stages

subsequently within its models. Such a tool can support a good portion of the ‘left arm’ of product

specification of the V-model (see Section 3.1.1), but lacks a direct link to the models and tools used

in the detailed design and the subsequent testing phases (verification). Nonetheless, the models pro-

vided by this tool can be related manually by the designer, outside the CORE tool, at the level of

components.

A component-oriented approach that also corresponds to interoperable integration is proposed

by Peak et al. [49,50]. A framework based on the Systems Modeling Language (SysML) [51] is

used to integrate information from different tools (e.g., CATIA, Ansys, Matlab/Simulink). Using a

combination of SysML and the Composable Object (COB) [52] paradigm it is shown how to represent

9

Figure 2: Design and Engineering Engine [52]

knowledge about a system and to link such knowledge to tools that can use it to build other models.

COBs combine the structural and behavioral descriptions of a system. In this object-oriented approach

the models can be built in such a way that they are both human- and machine-readable. COBs also

form a basis for the integration of different views on a system, as shown by Peak [49].

In support of multi-disciplinary design and optimization a framework called a Design and Engi-

neering Engine (DEE) has been developed by La Rocca [53], see Figure 2. Relying on a knowledge-

based engineering platform, a DEE is a domain-independent tool suitable for the design of a variety

of systems from multiple domains. The core of a DEE is the ‘Multi-Model Generator’ (MMG), which

is responsible for the instantiation of a product model built from a set of parametric, object-oriented

modeling primitives. Furthermore, the MMG processes the product model to generate input for do-

main specific analysis tools, which are responsible for the evaluation of one or several aspects of the

design. In this way, aspects such as aerodynamic performance and structural stiffness can be analyzed,

all based on the same product model. Data sharing between the various tools is enabled by using an

agent-based network [54].

Although the approach of the two methods discussed above is different, both rely on a prod-

uct model based on components to integrate multiple views on the system. The models from the

CORE tool can also be manually integrated to other design information at the component level. This

originates in the fact that most parameters and data are directly related to these components. The

object-oriented properties ensure that components sharing parameters or data can be easily grouped

into a new composite component. The component-oriented approach may be intuitive and fast at the

moment of building models, but each modeling object can only be used in a specific situation. For

example, a “gear pair” component used in a transmission must be defined in a completely different

way than a gear pair used to grind material. A process-oriented approach can help to deal with these

kinds of situations, by separating behavior and modeling primitives. The metamodel in KIEF uses

10

Figure 3: Metamodel mechanism in KIEF [26]

such an approach. It relates all concepts of the system through their attributes to physical phenomena

and laws, giving more applicability to each modeling object (cf. Figure 3).

Recent interviews with mechatronic product development companies [11] reveal a problem with

the fact that different disciplines use separated design tools and data, which hampers communication

among them. The same interviews show that better results can be achieved when using specialist engi-

neers working in well-coordinated groups rather than mixed groups with cross-disciplinary managers.

Based on this, we conclude that a promising approach is to provide different modeling environments

tailored to each domain, while integration is handled at the “back side” of the tools as a communica-

tion support mechanism. The next section treats efforts to overcome the communication issue in more

detail.

3.1.3 Human factors

As argued in Section 2.1.3, it is important to consider human factors involved in the design if one

wants to achieve an integrated design approach. The communication between the people involved

in the design of a system, including stakeholders, is of special interest. Tomizuka [3] mentions that

effective communication with others is a necessary requirement for the engineering practice, even

more when considering that nowadays engineers must work in teams in design mechatronic systems.

Industry also recognizes the importance of the communication among engineers [9,10].

Pahl et al. [1] identify communication and exchange of information between designers as one of

the fundamental aspects of their systematic design approach that relates to division of work and col-

laboration. They mention methods like brainstorming and group evaluation to support the information

exchange activities. As Pahl et al. comment, these methods are especially helpful for the search of

solutions in the conceptual phase, and thus are focused towards that end in their work. Unfortunately,

such methods seem less appropriate for being extended to later stages of design, because they have

11

been conceived to deal with less detailed information than the one required for such design phases.

Although the importance of communication among engineers and information exchange has been

widely recognized, to the best knowledge of the authors, there are no tools supporting the design activ-

ity while extensively considering these aspects, e.g., integrating the individual work of the engineers

using their own tools together with an overview of the system and its goals.

3.2 Lack of interdisciplinary verification

As discussed in Section 2.2, in practice the use of domain-specific modeling tools limits the design

and the verification to a specific point of view on the system. FEM models are used to verify strength

and stiffness of the mechanical design, CACSD tools are used to develop and verify controllers, and

data is transferred from one tool/domain to the other when required. Following an analysis method

for verification plays an essential role in early multidisciplinary verification of the design; the onion

model discussed in Section 3.1.2 is an example of this. Often, real multi-disciplinary verification

can only take place at late stages in the design process, when hardware prototypes are available. In

relation to controller design, the use of hardware-in-the-loop and rapid control prototyping relies on

these hardware prototypes. Though this is common practice, the reliance on prototypes makes this

approach less suitable in a concurrent design environment. Our focus is to find alternatives to the use

of physical prototypes, also to avoid the other disadvantages presented in Section 2.2.

The multi-domain dynamics models used in control design are often transfer functions, modeled

with block diagrams in tools as Matlab/Simulink. Two other types of simulation models can be iden-

tified for this purpose: models of the first type are based on ’physical modeling’ methods, which rely

on differential equations and energy flows to describe the behavior of systems; models of the second

type are based on geometric modeling, either in combination with finite-element meshes and solvers,

or with multi-body dynamics solvers.

A drawback of the use of controller design tools to integrate multi-domain effects in system design

is that the user often focuses on the design of the controller for the given model of the system. The

‘black-box’ nature of the plant models used supports that statement. In order to shift from controller

design to system design, physical modeling languages like bond graphs [14], Modelica [55], and

SimScape [56] provide the user with graphical modeling elements representing physical components

from various domains, such as electrical motors, resistors, and mechanical gears. The obtained system

of differential equations is subsequently solved by the supporting tool. These tools often also allow

for the modeling of signals and discrete events [57,58]. Due to the port-based approach, simplified

models which are used early on in the design process can be replaced with more detailed models as

the design matures.

The bond graph language from Karnopp et al. [19] has been promoted for the modeling of mecha-

tronic systems by authors like Van Amerongen [59,60]. The bond graph tool 20-sim consists of a

block modeler, a set of control analysis methods, and a basic 3D modeler which can be used to link

the block diagram representation to a mechanical model. Ferretti et al. [61] state that mutual inter-

action between domains, modular and object-oriented modeling, and reuse of modeling components

using libraries and customization are required for a modeling and simulation tool for mechatronic

systems. Their conclusion is that the combination of the Modelica language and the tool Dymola sat-

isfies most of these requirements. There are various similar modeling and simulation tools available,

both commercial and academic. These tools include gPROMS [62], SABER [63], HyBrSim [64], and

Smile [65].

A disadvantage of these multi-physics modeling tools is that the model is based on assumptions

about the expected behavior, such that a significant experience is required to know which assumptions

12

are valid. For example, thermal effects can have a considerable influence on electronic components,

but the designer needs to know the relative position of the heat source and the electronics to decide

whether or not to take this into account. The use of first-principle based simulations, i.e., using finite-

element analysis, is a way to (partially) circumvent this.

Simulation based on finite-element methods relies on 2D/3D CAD models. Various commercial

CAD tools are available nowadays, and their use is a well-established industrial practice. Vendors of

these tools often provide additional tool suites for finite-element analysis, covering domains such as

mechanics and thermodynamics. Specialized multi-physics simulation tools, e.g., COMSOL, allow

for simultaneous analysis of phenomena from different domains. To prevent consistency problems,

often the geometry models developed in dedicated CAD tools are imported in the specialized tools,

instead of being developed only for this purpose [22].

Results from these various analysis tools can subsequently be used in models that are used in the

controller design, albeit via manual data transfer. The direct use of finite-elements tools in combina-

tion with controller design tools for verification purposes is computer-intensive and time-consuming,

but might, however, in the long term be faster and cheaper than physical prototype-based testing.

To prevent the manual transfer of data, Voskuijl [66] has used a combination of a Simulink-based

aircraft dynamics model and computational fluid dynamics (CFD) analysis for the design and opti-

mization of a blended-wing body aircraft. Albeit custom-developed, it shows that domain-specific

analysis can be integrated in a multi-domain analysis and optimization tool. The DEE concept dis-

cussed in Section 3.1.2 applies a similar approach, in which multi-disciplinary analysis, optimization,

and verification are supported by an integration framework.

With respect to the verification of discrete, event-driven control algorithms, there are various

methods available, depending on the formalism in which the algorithm is defined. These methods are

used for checking the existence of dead-lock situations, unreachable states and transitions that do not

occur, among others. For realistic model-based verification, the model of the system should reflect the

changes in operation mode, e.g., by reconfiguring the active actuators.

3.3 Lack of automation in control design

It must be stressed that in this work the automation of control software covers more than just the gen-

eration of control code out of a detailed control software model, and extends to obtaining such model

(cf. Section 2.3). There are various commercial code generators available, both for Matlab/Simulink-

like environments and UML-based modeling tools. The Gene-Auto project has developed methods

for automatic model transformations, focusing on a “correct by construction” approach [67], such that

the code can be implemented on critical embedded systems in the aerospace and automotive industry.

By verifying the code generator itself, it can be used without the need to verify the generated code. To

integrate design formalisms for continuous and discrete-event control, an integrated design notation

is used in both the PiCSi [22] and the Flexicon project [68]. UML is used as a common language,

into which both Simulink models and Sequential Flow Charts are transformed. From the combined

control system, platform-independent Java code can be generated. Again, the use of proven, domain-

specific tools and methods in combination with a translation to an integrated model is preferred above

a new and integrated ”do it all” language. In contrast to this, the application of domain-specific mod-

eling (DSM) languages to raise the level of abstraction of control software design relies on specific

modeling elements. It removes the need to map elements to domain-independent languages as UML

before code generation can be applied and as such decreases development time [69]. For DSM to

work, however, the language and code generation tools have to be developed by one or more domain

experts.

13

In terms of automation of the control design much can be gained in the early phase when require-

ments are translated into control structure and logic. Message Sequence Charts and UML sequence

diagrams can be used to specify required behavior, but these specifications are considered to have a

weak expressiveness [70]. Instead, Live Sequence Charts have more expressive power. By formalizing

communication between actors over a timeline, live sequence charts provide means to automatically

derive control software logic and structure from them, e.g., in the form of UML. As discussed in

Section 2.3, the generation of code from the latter description is possible, but not widely applied yet.

To get from requirements to control software, a method based on Requirements-Based Program-

ming (RBP) is proposed by Rash et al. [71]. RBP should increase development productivity and

the quality of the generated code by automatically performing verification of the software, which is

supported by an approach that ensures that the application can be fully traced back to the initial re-

quirements of the system. A more direct link between (functional) requirements and software has been

achieved by the use of the Functional Block computer-aided design environment [72]. The prototype

tool can be used to design and analyze reusable high-level control software components and to gener-

ate run-time code for distributed control systems. The applicability of such a direct approach, where

functions and software code are directly linked, to continuous feedback control software is however

not straightforward, because of the strong dependency on the system properties.

Another approach that starts from high level specifications is presented by Sakao et al. [73]. The

input specifications are modeled in FBS [26] using qualitative descriptions. Qualitative reasoning

techniques are used to derive a sequence of activations from the actuators, and quantitative information

can be added to the resulting sequence. The method is only implemented for a specific case, but a

patent [74] shows aspects of the control sequence derivation that could be used in generic cases.

Partial automation of the control development process can be obtained by instantiating pieces

of pre-developed control code from databases linked to specific system components, e.g., sensors or

actuators. For example, this approach has been implemented on a large scale by a company specialized

in handling and transport systems of goods. In that company, around 80% of a the PLC controller code

in a system can be generated from component descriptions and associated code elements. These code

elements, stored in company-specific libraries, contain routines to execute most of the low-level tasks

for each type of component; e.g., start up, shut down, and emergency handling sequences for an

electric motor. Service functions and irregular situations have to be predicted by the engineers and

programmed manually. Integrating generated code with manually written or existing library code

removes part of the advantages of automatic code generation in this case.

4 An integrated approach for control software development

The need for a revised concurrent engineering design approach was identified in Section 2. The use

of domain-specific design methods and tools to develop an integrated, multi-disciplinary system has

inherent drawbacks, related to multi-domain modeling and the communication between designers and

tools. The review in Section 3 has shown that methods based on higher abstraction levels play an

important role, but that implementation is an issue, and that multi-disciplinary design, optimization,

and verification of both hardware and software require suitable modeling paradigms and tool support.

The framework proposed here is intended as a support for such a design approach. There are two

important reasons not to develop a single tool for mechatronic system design to tackle the identified

challenges. First, the design information of an entire system is too big and complex. On the one

hand, creating a model that contains design information with the necessary detail would increase the

model size, and create a bottleneck to access it [20]. On the other hand, providing the operations to

14

model and handle the different kinds of design data in a single tool constitutes another barrier. Second,

existing tools are designed and optimized for specific domains, and the designers are proficient with

these tools. In practice, each designer is responsible for creating and maintaining the models related

to her or his discipline [75].

As an alternative to the single tool approach, we propose an integration framework to support

mechatronic system development, and in particular, the design of control software. Figure 4 depicts

an overview of the framework, with existing, domain-specific tools represented as dashed-line boxes.

For clarity, design iteration loops are not included in this figure. This approach can be classified

as an architecture framework, as defined by Browning in [75], and similarly, it aims at supporting

the communication among developers and model transformations between tools. This addresses the

challenges related to cooperation and communication discussed in Section 2.

A high-level or abstract functional information model appears in the upper part of Figure 4. The

intention is to obtain a backbone to navigate, give an overview, and classify detailed design infor-

mation, by capturing functions, requirements, and the architecture of the system. In this aspect, the

proposal follows the line of reasoning of the methods presented in Section 3.1.1, additionally aiming

towards integration. The basic hypothesis for the use of functions as integration elements is that from

the functional point of view it is possible to describe a system at different levels of detail, focusing

on the points of interest to the user while maintaining coherence of the model. To that end, the initial

design is specified using the FBS modeling scheme [76,77]. System-level choices related to con-

trol design are also included in this system model, at the level of strategies and goals. Quantitative

requirements and constraints can also be incorporated at this stage, using a formal specification lan-

guage. The architecture is initially specified in terms of objects, which can correspond to software,

hardware, mechanical components, etc. Since this information is beyond the scope of the original

FBS scheme, the proposed model will use an extended version of it.

Besides high-level information, a model of the system requires information of the analysis (e.g.,

controller simulations) and descriptive models (e.g., manufacturing blueprints) necessary for imple-

mentation, as indicated by the block of “mechatronic feature product definition” in Figure 4. For

this purpose we propose the use of the object- and component-oriented techniques discussed in Sec-

tion 3.1.2. Such techniques allow for the building of models in an intuitive and fast manner once

the modeling elements have been developed. The main difference between our proposal and the

component-oriented tools presented in Section 3.1.2 is that we aim at building a hybrid representation

in the knowledge base that merges the component- and process-oriented modeling paradigms.

Information needs to be exchanged between different domain specific design tools, like mechan-

ical CAD or CACSD software, in order to integrate the different design activities and to automate

analysis, synthesis, and model transformation. An information manager should provide means to nav-

igate, visualize, and ensure consistency of the system model and the associated modeling data. The

integrated results obtained from the domain-specific tools are labeled as “quantitative behavior” in

Figure 4.

At the architectural level, multiple views on the overall system can be discerned. These views

can be used to capture and trace the concerns and requirements of stakeholders [78,79]. System-level

requirements must be decomposed or budgeted and tracked back to the various subsystems and the

different domain specific design processes.

Our proposal addresses the challenges from Section 2.3 and complements many of the approaches

presented in Section 3.3 by obtaining the control structure and strategy, starting from the models

presented before. For the controller design, the requirements defined at the architectural level are

transformed into control design specifications, both for sequential-supervisory control as well as for

continuous-feedback control. For the first, these specifications may be state machines defining oper-

15

Figure 4: Architecture of integration framework. White blocks represent tools to be further developed.

Dashed-line blocks correspond to existing commercial software tools.

16

ation modes; the second often contains requirements in terms of allowable overshoot or rise time, or

the used power. From these, a cost function can be derived, and subsequently the controller (e.g., PID

or Model Predictive Control) can be (semi) automatically designed and tuned using existing software

tools, e.g., the control system toolbox in Matlab. Our proposed approach is similar to the Control

Design Method (CDM) [72], which fills the gap between the functional design and the final imple-

mentation. In the framework proposed here, however, the control system and the plant model are

developed in parallel, as appears in Figure 4 labeled as “control code generation” and “control model

generation”.

For developing the plant model, the concept of the “Multi-Model Generator” introduced in Section

3.2 is extended to include views containing simulation and verification models based on physical

modeling principles, which can be used to interact with control algorithm design and analysis tools.

Linearization and model reduction methods ensure that the order of the model is suitable for the

control design algorithms. The use of a knowledge-based engineering platform allows the software to

reason about the interaction of components from various domains.

The generated control software can be verified using non-linear, high-fidelity models incorporat-

ing finite-element analysis results. For this, the formal representation of the requirements specified

at the start of the design process is used. Once the software code has been generated and tested on

virtual models, it can be tested on real prototypes. Recent benchmarks show that this has been an

advantageous practice for the top-level mechatronic product developing companies [5].

In order to support and eventually automate the aforementioned tools and processes, and to col-

lect, structure and communicate the generated information and data, it is required to create a common

understanding of related concepts in the associated design domains. For this, it is necessary to have a

formal definition of the different types of models supported by the framework, the element primitives

and domains that are used to build the model, and a vocabulary of the domain-specific languages to

give meaning to the abstractions of the primitives in the model [80]. These three elements form the

basis for an ontology: a formal representation of a set of concepts within a domain and the relation-

ships between those concepts. The developed ontology will be the foundation of the knowledge bases

on which the (custom) tools and processes are built.

5 Conclusions

The design of integrated mechatronic systems requires a paradigm shift towards cooperation between

design teams/paradigms, paying special attention to the early phases of design. To obtain tighter

integration, the design of mechatronic systems demands a holistic approach that considers interactions

and interrelations among design domains. Tools to support such an approach are necessary and, at the

moment, scarce.

The authors have identified a set of challenges related to the design of mechatronic systems. These

challenges are related to the integration of tools, models, and human actors in the design process,

the lack of multi-disciplinary verification, and the lack of automation in control software develop-

ment. The review shows that current methods and tools attacking these challenges focus on specific

points and that developed implementations are not available. Model and data sharing is a key issue

to progress towards an overall solution. Furthermore, formalization of architecture, function descrip-

tions, and requirements needs to be addressed.

Regarding the efforts to overcome the identified challenges, industry tends to focus on tool-

level integration, while academia focuses on underlying integration methods. Methods proposed by

academia are hard to implement due to the abstract system descriptions, but have a promising future.

17

To address the challenges, some basic concepts for an integration framework supporting mecha-

tronics design are proposed. The framework contains both existing and to be developed tools, with

which a multi-disciplinary design team can automatically generate and verify control software. Based

on the FBS modeling scheme, the designer can create a requirements-specifications model that gives a

high-level overview of the system under development. By integrating existing domain-specific design

and analysis tools, the model data can be used to build simulation and verification models. The ap-

plication of high-level function models as a base to the framework to support communication through

tool and model integration is a promising approach.

The proposed framework has many similarities with the CORE tool [47]. The fundamental dif-

ference is that the proposed framework aims at the integration of software tools used by the designers

for detailed design. To support this, the main mechanism will be an information model that links the

attributes present in the system components and in the phenomena (specified in the domain-specific

models) that rule their behavior. Another fundamental difference is that the proposed framework

leaves analysis, verification, and simulation to the specialized tools that can be integrated instead of

dealing with such computations directly as in the case of CORE.

A high degree of automation can be obtained by applying knowledge-based techniques, to carry

out non-creative and repetitive tasks, resulting in a decrease in development time and development

costs and an increase in reliability. Various methods and tools are supported by an automated infor-

mation manager that enables the integration of models using the central, high-level system model.

Acknowledgments

The authors gratefully acknowledge the support of the Dutch Innovation Oriented Research Program

‘Integrated Product Creation and Realization (IOP-IPCR)’ of the Dutch Ministry of Economic Affairs.

References

[1] Pahl G, Beitz W, Feldhusen J, Grote KH. Engineering Design: A Systematic Approach, 3rd ed.

London, UK: Springer London Limited; 2007.

[2] Wang L, Shen W, Xie H, Neelamkavil J, Pardasani A. Collaborative conceptual design - state of

the art and future trends. Computer-Aided Design 2002; 34:981-996.

[3] Tomizuka M. Mechatronics: from the 20th to the 21st century. Control Engineering Practice

2002; 10:877-886.

[4] Wikander J, Törngren M, Hanson M. The science and education of mechatronics engineering.

IEEE Robotics & Automation Magazine 2001; 8(2):20-26.

[5] Boucher M, Houlihan D. System design: new product development for mechatronics. Boston,

MA, USA: Aberdeen Group; 2008.

[6] Schöner HP. Automotive mechatronics. Control Engineering Practice 2004; 12:1343-1351.

[7] Craig K. Mechatronic system design. ASME newsletter; 2009. http://files.asme.org/

asmeorg/NewsPublicPolicy/Newsletters/METoday/Articles/17845.pdf

[8] Ziegler JG, Nichols NB. Process lags in automatic control circuits. Transactions of the ASME

1943; 65:433-444.

18

http://files.asme.org/asmeorg/NewsPublicPolicy/Newsletters/METoday/Articles/17845.pdf
http://files.asme.org/asmeorg/NewsPublicPolicy/Newsletters/METoday/Articles/17845.pdf

[9] Perrin K. Digital prototyping in mechatronic design. Project Mechatronics (web-

site); 2009. http://www.projectmechatronics.com/2009/07/13/

digital-prototyping-in-mechatronic-design/

[10] Mathur N. Mechatronics – Five design challenges and solutions for machine builders. Instru-

mentation Newsletter 2007; 19(2):6-7. http://zone.ni.com/devzone/cda/pub/p/

id/145

[11] Jackson CK. The mechatronic system design benchmark report. Boston, MA, USA: Aberdeen

Group; 2006.

[12] Shapiro J. Mechatronics design faces two challenges – and two solutions. Electronic design

(website); 2008. http://electronicdesign.com/Articles/Index.cfm?AD=1&

ArticleID=18068

[13] Blessing LTM, Chakrabarti A. DRM, a design research methodology. London, UK: Springer-

Verlag; 2009.

[14] Rzevski G. On conceptual design of intelligent mechatronic systems. Mechatronics 2003;

13:1029-1044.

[15] Sohlenius G. Concurrent Engineering. CIRP Annals 1992; 41(2):645-655.

[16] Martin JN. Systems Engineering Guidebook – A Process for Developing Systems and Products.

Boca Raton, FL, USA: CRC Press; 1997.

[17] QFD Institute. QFD Institute home page. http://www.qfdi.org/

[18] Knowledge Based Systems Inc. IDEF Family of Methods website.http://www.idef.com/

[19] Karnopp DC, Margolis DL, Rosenberg RC. System Dynamics: Modeling and Simulation of

Mechatronic Systems, 4th ed. New York, NY, USA: Wiley; 2006.

[20] Cutkosky MR, Engelmore RS, Fikes RE, Genereseth MR, Gruber TR, Mark WS, et al. PACT:

An experiment in integrating concurrent engineering systems. Computer 1993; 26(1):28-37.

[21] Dolk DR, Kotterman JE. Model integration and theory of models. Decision Support Systems

1993; 9(1):51-63.

[22] Jackson CK. Simulation Driven Design Benchmark Report. Boston, MA, USA: Aberdeen

Group; 2006.

[23] Ramos-Hernandez DN, Fleming PJ, Bass JM. A novel object-oriented environment for dis-

tributed process control systems. Control Engineering Practice 2005; 13:213-230.

[24] Object Management Group. Unified Modeling Language, V2.2; 2009. http://www.omg.

org/spec/UML/2.2/

[25] Heck B, Wills L, Vachtevanos G. Software technology for implementing reusable, distributed

control systems. IEEE Control Systems Magazine 2003; 23(1):21-35.

[26] Umeda Y, Ishii M, Yoshioka M, Tomiyama T. Supporting conceptual design based on the

function-behavior-state modeler. AI EDAM 1996; 10(4):275-288.

19

http://www.projectmechatronics.com/2009/07/13/digital-prototyping-in-mechatronic-design/
http://www.projectmechatronics.com/2009/07/13/digital-prototyping-in-mechatronic-design/
http://zone.ni.com/devzone/cda/pub/p/id/145
http://zone.ni.com/devzone/cda/pub/p/id/145
http://electronicdesign.com/Articles/Index.cfm?AD=1&ArticleID=18068
http://electronicdesign.com/Articles/Index.cfm?AD=1&ArticleID=18068
http://www.qfdi.org/
http://www.idef.com/
http://www.omg.org/spec/UML/2.2/
http://www.omg.org/spec/UML/2.2/

[27] Chandrasekaran B. Functional representation: A brief historical perspective. Applied Artificial

Intelligence 1994; 8:173-197.

[28] Bracewell R, Sharpe J. Functional descriptions used in computer support for qualitative scheme

generation - “Schemebuilder”. AI EDAM Journal - Special Issue: Representing Functionality in

Design 1996; 10:333-346.

[29] Hunt J. MACE: A system for the construction of functional models using case-based reasoning.

Expert Systems with Applications 1995; 9(3):347-360.

[30] Barr A, Cohen PR. The Handbook of Artificial Intelligence. Vol. 4, Chapter 21. Los Altos, CA,

USA: William Kaufmann, Inc.; 1989.

[31] Erden MS, Komoto H, Van Beek TJ, D’amelio V, Echavarria E, Tomiyama T. A review of

function modeling: Approaches and applications. Artificial Intelligence for Engineering Design,

Analysis and Manufacturing 2008; 22(2):147-169.

[32] Tomiyama T, Umeda Y, Ishii M, Yoshioka M, Kirayama T. Knowledge systematization for a

knowledge intensive engineering framework. In: Tomiyama T, Mantyla M, Finger S, editors.

Knowledge Intensive CAD: Volume 1, Chapman & Hall; 1996, p. 55-80.

[33] European Cooperation for Space Standardization. Space engineering – Functional analysis (E-

10-05A); 1999. http://esapub.esrin.esa.it/pss/ecss-ct05.htm

[34] Stone R, Wood K. Development of a functional basis for design. ASME Journal of Mechanical

Design 2000; 122(4):359-370.

[35] National Institute of Standards and Technology. Integration definition for function modeling

(IDEF0); 1993. http://www.idef.com/pdf/idef0.pdf

[36] Wood W, Dong H, Dym C. Integrating functional synthesis. AI EDAM 2004; 19(3):183-200.

[37] Bonnema GM. FunKey architecting - An integrated approach to system architecting using func-

tions, key drivers and system budgets. Ph.D. thesis. University of Twente. Enschede, The Nether-

lands, 2008.

[38] Muller GJ. CAFCR: A multi-view method for embedded systems architecting, Ph.D. thesis.

Delft University of Technology. Delft, The Netherlands. 2004.

[39] Stevens R, Brook P, Jackson. System Engineering: Coping With Complexity. Prentice Hall Eu-

rope, 1998.

[40] Boehm B. A Spiral Model of Software Development and Enhancement. ACM SIGSOFT Soft-

ware Engineering Notes 1986; 11(4):14-24.

[41] Suh NP. The Principles of Design. Oxford, UK: Oxford University Press; 1990.

[42] Mcmahon CA, Caldwell NHM, Darlington MJ, Culley SJ, Giess MD, Clarkson PJ. The

Development Of A Set Of Principles For The Through-Life Management Of Engineer-

ing Information. 2009. http://www.bath.ac.uk/idmrc/themes/projects/kim/

kim40rep007mjd10.doc

20

http://esapub.esrin.esa.it/pss/ecss-ct05.htm
http://www.idef.com/pdf/idef0.pdf
http://www.bath.ac.uk/idmrc/themes/projects/kim/kim40rep007mjd10.doc
http://www.bath.ac.uk/idmrc/themes/projects/kim/kim40rep007mjd10.doc

[43] Citherlet S, Clarke JA, Hand J. Integration in building physics simulations. Energy and Buildings

2001; 33:451-461.

[44] VRS ROPAX. Virtual Reality Ship systems project webpage. http://www.vrs-project.

com/index.phtml

[45] Yoshioka M, Sekiya T, Tomiyama T. An integrated design object modeling environment - plug-

gable metamodel mechanism -. Turkish Journal of Electrical Engineering and Computer Sci-

ences 2001; 9(1):43-62.

[46] Yoshioka M, Umeda Y, Takeda H, Shimomura Y, Nomaguchi Y, Tomiyama T. Physical concept

ontology for the knowledge intensive engineering framework. Advanced Engineering Informat-

ics 2004; 18(2):69-127.

[47] Vitech corporation. CORE software website. http://www.vitechcorp.com/

products/Index.html

[48] Childers SR, Long JE. A concurrent methodology for the system engineering design process.

Unpublished green paper; 1994. http://www.vitechcorp.com/support/papers.

php

[49] Peak RS, Burkhart RM, Friedenthal SA, Wilson MW, Bajaj M, Kim I. Simulation-based design

using SysML part 1: A parametrics primer. In: Proceedings of INCOSE International Sympo-

sium, San Diego, CA, USA; 2007

[50] Peak RS, Burkhart RM, Friedenthal SA, Wilson MW, Bajaj M, Kim I. Simulation-based de-

sign using SysML: Celebrating diversity by example. In: Proceedings of INCOSE International

Symposium, San Diego, CA, USA; 2007.

[51] Object Management Group. OMG Systems Modeling Language, V1.0; 2001. http://www.

omg.org/cgi-bin/apps/doc?formal/07-09-01.pdf

[52] Paredis C, Diaz-Calderon A, Sinha R, Khosla PK. Composable models for simulation-based

design. Engineering with Computers 2001; 17:112-128.

[53] La Rocca G, Van Tooren MJL. Enabling distributed multi-disciplinary design of complex prod-

ucts: A knowledge-based engineering approach. Journal of Design Research 2007; 5(3):333-

352.

[54] Berends JPTJ, Tooren MJL van, Schut EJ. Design and implementation of a new generation

multi-agent task environment framework. In: 49th AIAA/ASME/ ASCE/AHS/ASC Structures,

Structural Dynamics, and Materials Conference, 4th AIAA Multidisciplinary Design Optimiza-

tion Specialist Conference. Schaumburg, IL, USA; 2008.

[55] The Modelica Association. Modelica and the Modelica Association; 2008. http://www.

modelica.org

[56] The MathWorks. Simscape; 2009. http://www.mathworks.com/products/

simscape/?s_cid=HP_FP_SL_Simscape

[57] Dynasim A.B. Dymola – Dynamic modeling laboratory; 2008. http://www.dynasim.se/

index.htm

21

http://www.vrs-project.com/index.phtml
http://www.vrs-project.com/index.phtml
http://www.vitechcorp.com/products/Index.html
http://www.vitechcorp.com/products/Index.html
http://www.vitechcorp.com/support/papers.php
http://www.vitechcorp.com/support/papers.php
http://www.omg.org/cgi-bin/apps/doc?formal/07-09-01.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/07-09-01.pdf
http://www.modelica.org
http://www.modelica.org
http://www.mathworks.com/products/simscape/?s_cid=HP_FP_SL_Simscape
http://www.mathworks.com/products/simscape/?s_cid=HP_FP_SL_Simscape
http://www.dynasim.se/index.htm
http://www.dynasim.se/index.htm

[58] Controllab Products B.V. 20-sim. http://www.20sim.com

[59] Amerongen J van. Mechatronic Design. Journal of Mechatronics 2003; 13(10):1046-166.

[60] Amerongen J van, Breedveld P. Modeling of Physical Systems for the Design and Control of

Mechatronic Systems. Annual Reviews in Control 2003; 27:87-117.

[61] Ferretti G, Magnani GA, Rocco P. Virtual Prototyping of Mechatronic Systems. Annual Reviews

in Control 2004; 24:192-206.

[62] Process Systems Enterprice Limited. gPROMS Advanced Process Modeling and Process Simu-

lation. http://www.psenterprise.com/gproms/index.html

[63] Synopsys. Saber Mixed-Signal, Mixed-Technology Simulation. http://www.synopsys.

com/Tools/SLD/MECHATRONICS/Saber/Pages/default.aspx

[64] Mosterman PJ. HyBrSim – A Modeling and Simulation Environment for Hybrid Bond Graphs.

http://moncs.cs.mcgill.ca/people/mosterman/papers/jsce01/p.pdf

[65] Technical University of Berlin. SMILE - The Simulation Environment for Scientific Computing.

http://www.smilenet.de

[66] Voskuijl M, La Rocca G, Dircken F.. Controllability of blended wing body aircraft. In: Pro-

ceedings ICAS of the Intern.council of the Aronaut.Sciences including the 8th AIAA Aviation

Techn., Integr. and Operations Conf. Edinburg, UK: 2008.

[67] Toom A, Naks T, Pantel M, Gandriau M, Indrawati. Gene-Auto: an automatic code generator for

a safe subset of Simulink/Stateflow and Scicos. In: 4th European Congress on Embedded Real

Time Software. Toulouse, France; 2008.

[68] Thompson HA, Ramos-Hernandez DN, Fu J, Jiang L, Choi I, Cartledge K, et al. A flexible envi-

ronment for rapid prototyping and analysis distributed real-time safety-critical systems. Control

Engineering Practice 2007; 15:77-94.

[69] Kelly S, Tolvanen J-P. Domain-Specific Modeling: Enabling Full Code Generation. Hoboken,

NJ, USA: Wiley-IEEE Computer Society Press; 2008.

[70] Harel D. From play-in scenarios to code: an achievable dream. IEEE Computer 2001; 34(1):53-

60.

[71] Rash JL, Hinchey MG, Rouff CA, Gracanin D, Erickson J. A requirements-based programming

approach to developing a NASA autonomous ground control system. Artificial Intelligence Re-

view 2006; 25(4):285-297.

[72] Ferrarini L, Carpanzano E. A structured methodology for the design and implementation of con-

trol and supervision systems for robotic applications. IEEE Journal of Control Systems Technol-

ogy 2002; 10(2):272-9.

[73] Sakao T, Umeda Y, Tomiyama T, Shimomura Y. Generation of sequence-control programs from

design information. IEEE Expert, 1997; 12.

22

http://www.20sim.com
http://www.psenterprise.com/gproms/index.html
http://www.synopsys.com/Tools/SLD/MECHATRONICS/Saber/Pages/default.aspx
http://www.synopsys.com/Tools/SLD/MECHATRONICS/Saber/Pages/default.aspx
http://moncs.cs.mcgill.ca/people/mosterman/papers/jsce01/p.pdf
http://www.smilenet.de

[74] Umeda Y, Tomiyama T, Yoshikawa H, Sakao T, Shimomura Y, Tanigawa S; Mita Industrial

Co., Ltd., assignee. Method of automatically creating control sequence software and apparatus

therefore. US patent 194,064. 1994 Feb 9.

[75] Browning TR. The many views of a process: Toward a process architecture framework for prod-

uct development processes. Systems Engineering 2009; 12(1):69-90.

[76] Umeda Y, Tomiyama T. FBS modeling: Modeling scheme of function for conceptual design.

In: Workshop on Qualitative Reasoning about Physical Systems. Amsterdam, The Netherlands;

1995, pp. 271-278.

[77] Tomiyama T, Umeda Y. A CAD for functional design. Annals of the CIRP93 1993; 42(1):143-6.

[78] Institute of Electrical and Electronics Engineers Standards Association. IEEE Std 1471–2000:

Recommended Practice for Architectural Description of Software-intensive Systems; 2000.

[79] Muller G. System Architecting. Eindhoven, The Netherlands: Embedded Systems Institute;

2009.

[80] Guizzardi G. On ontology, ontologies, conceptualizations, modeling languages, and

(meta)models. In: Vasilecas O, Edler J, Caplinskas A, editors. Frontiers in Artificial Intelli-

gence and Applications, Databases and Information Systems IV. Amsterdam, The Netherlands:

IOS Press; 2007.

23

	Introduction
	Challenges in mechatronic design
	Design integration
	Design methods
	Design tools
	Human factors

	Lack of interdisciplinary verification
	Lack of automation in control software design

	Review of available approaches
	Design integration
	Design methods
	Tool integration
	Human factors

	Lack of interdisciplinary verification
	Lack of automation in control design

	An integrated approach for control software development
	Conclusions

