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Abstract: State-of-the-art baggage handling systems transport the baggage at high speeds, on
a network of tracks, using destination coded vehicles (DCV). In order to ensure the optimal
routing of DCVs, in this paper we propose a hierarchical control framework. In this framework
switch controllers provide position instructions for each switch in the network. The switch
controllers are then supervised by a so-called network controller that mainly takes care of flows
of DCVs. The routing control problem for the network controller is a nonlinear, mixed integer
optimization problem, with high computational requirements, which makes it intractable in practice.
Therefore, we present an alternative approach for reducing the complexity of the computations
by approximating the nonlinear optimization problem and rewriting it as a mixed integer linear
programming (MILP) problem. The advantage is that for MILP problems solvers are available that
allow us to efficiently compute the global optimal solution. The solution of the MILP problem is
then used for computing optimal switch control actions. For a benchmark case study we compare
the hierarchical route control with switch control approaches that have been developed previously.
Results indicate that the proposed hierarchical control offers a balanced trade-off between optimality
and computational efficiency.
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1 Introduction

The state-of-the-art technology used by baggage handling

systems at airports to transport the bags in an automated way

incorporates:

1. scanners that scan the (electronic) baggage tags on each

piece of luggage,

2. baggage screening equipment for security scanning,

3. networks of conveyors equipped with junctions that

route the bags through the system,

4. destination coded vehicles (DCVs). These vehicles are

used in large airports only, where the distances between

the check-in desks and the end points towards which

the baggage has to be transported are too large (for

these airports the conveyor systems are too slow, and

therefore, a faster carrier is required for each bag).

As illustrated in Figure 1, a DCV is a metal cart with a plastic

tub on top. These carts are propelled by linear induction

motors mounted on the tracks. The DCVs transport the bags

at high speed on a network of tracks.

In this paper we consider a DCV-based baggage handling

system. Higher-level control problems for such a system

are route assignment for each DCV (and implicitly the

switch control of each junction), line balancing (i.e. route

assignment for each empty DCV such that all the loading

stations have enough empty DCVs at any time instant), and

prevention of buffer overflows. The velocity control of each

DCV is a low-level control problem. Low-level controllers

determine the velocity of each DCV so that a minimum safe

distance between DCVs is ensured and so that the DCVs

are held at switching points, if required. So, a DCV runs at

maximum speed, vmax, unless overruled by the local on-board

collision avoidance controller (for more details see Section

3). Other low-level control problems are coordination and

synchronization when loading a bag onto a DCV (in order to

avoid damaging the bags or blocking the system), and when

unloading it to its end point (an end point of the baggage

handling system is the final part of the system where the

bags are lined up, waiting to be loaded into containers and

from there to the plane). Note that we assume the low-level

controllers already present in the system.

Figure 1 DCVs running on a network of tracks. Photo courtesy of
Vanderlande Industries.

In the remainder of this paper we focus on higher-level

control problems of a DCV-based baggage handling system.

Currently, the track networks on which the DCVs transport

the baggage have a simple structure, with the loaded DCVs

being routed through the system using routing schemes based

on preferred routes. These routing schemes adapt to respond

to the occurrence of predefined events. However, the load

patterns of the system are highly variable, depending on, e.g.,

the season, time of the day, type of aircraft at each gate,

or the number of passengers for each flight (de Neufville,

1994). Also note that the first objective of a baggage handling

system is to transport all the checked-in or transfer bags

to the corresponding end points before the planes have to

be loaded. However, due to the airport’s logistics, an end

point is allocated to a plane only within given span time

before the plane’s departure. Hence, the baggage handling

system performs optimally if each of the bags to be handled

arrives at its given end point within a specific time window.

So, predefined routes are far from optimal. Therefore, in

this paper we will not consider predefined preferred routes,

but instead we will develop and compare efficient control

methods to determine the optimal routing in case of dynamic

demands.

In the literature, the route assignment problem has

been addressed to a large extent for automated guided

vehicles (AGVs), see e.g., (Taghaboni and Tanchoco, 1995;

Langevin et al., 1996). Typically the AGV routing problem

is written as an integer programming problem. Hence, the

computational complexity increases exponentially with the

number of vehicles to be routed. But in baggage handling

systems the number of DCVs used for transportation is

large (typically airports with DCV-based baggage handling

systems have more than 700 DCVs). Also, we do not deal

with a shortest-path or shortest-time problem, since, due

to the airport’s logistics, we need the bags at their end

points within given time windows. The routing problem for a

DCV-based baggage handling system has been presented by,

e.g., Fay (2005) where an analogy to data transmission via

internet is proposed, and by, e.g., Hallenborg and Demazeau

(2006) where a multi-agent hierarchy has been developed.

However, the analogy between routing DCVs through a track

network and transmitting data over internet has limitations,

see (Fay, 2005), while Hallenborg and Demazeau (2006) do

not focus on control approaches for computing the optimal

route of DCVs, but on designing a multi-agent hierarchy for

baggage handling systems and analyzing the communication

requirements. But the multi-agent system of Hallenborg and

Demazeau (2006) is faced with major challenges due to the

extensive communication required. The goal of our work

is to develop and compare efficient control approaches for

controlling the route of each DCV on the track network.

Theoretically, the maximum performance of such a DCV-

based baggage handling system would be obtained if one

computes the optimal routes using optimal control (Lewis,

1986). However, as shown by Tarău et al. (2008), this control

method becomes intractable in practice due to the heavy

computation burden. Therefore, in order to make a trade-

off between computational effort and optimality, in (Tarău

et al., 2009a) and in (Tarău et al., 2009b), we have developed
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and compared centralized, decentralized, and distributed

predictive control approaches (MPC), and decentralized and

distributed heuristic approaches to determine the routes of

loaded DCVs — if the local control actions are computed

without any communication or coordination between the

local controllers, the control approach is said to be

decentralized; if the local control actions are computed

considering also communication and coordination between

the local controllers, the control approach is said to be

distributed. In (Tarău et al., 2008) the results confirmed

that centralized MPC requires a high computation time to

determine a solution. Furthermore, in (Tarău et al., 2009a) we

have shown that the use of decentralized control approaches

lowers the computation time, but at the cost of suboptimality.

Moreover, the results of Tarău et al. (2009b) indicate that the

distributed approaches typically improve the performance of

the system when compared to decentralized methods, but at

the cost of larger total computation time due to the required

synchronization when computing the control actions.

The goal of this work is therefore to develop a control

approach that will offer a good trade-off between the

computational effort required to compute the optimal routing

and the total performance of the system. To this aim we

propose a hierarchical control framework where the higher-

level controllers use MPC. Note that the large computation

time obtained in previous work comes from solving the

nonlinear, nonconvex, mixed integer optimization problems.

Typically, such problems have multiple local minima; are NP

hard, and therefore, difficult to solve. So, in this paper we

investigate whether the computational effort required by the

optimal routing approaches developed so far can be lowered

by using mixed integer linear programming (MILP) since for

MILP problems efficient solvers are available. Moreover, we

expect that using a hierarchical route control framework can

improve the efficiency of the routing approaches previously

developed.

The paper is organized as follows. In Section 2 we briefly

introduce the DCV-based baggage handling systems. Next, in

Section 3 we propose the hierarchical control framework that

we will use to determine the optimal routing of loaded DCVs.

Furthermore, in Section 4, we focus on the routing tasks of

the network controller and we present a simplified nonlinear

flow model for the DCV-based baggage handling system that

can be recast as an MILP model, and the corresponding

predictive routing problems for both the nonlinear and the

MILP models. In the hierarchical approach the resulting

optimal flows become targets to be achieved by optimal

switch control. In Section 5 we briefly present how the

switch controller computes its control signals. Then, for a

benchmark case study we compare the results obtained when

using the proposed hierarchical control framework and the

switch control approaches that have proved to give good

performance in (Tarău et al., 2009b) and (Tarău et al., 2009a):

centralized MPC, distributed MPC with a single round of

downstream and upstream communication, and distributed

heuristics. The analysis of the simulation results is reported

in Section 6. Section 7 concludes the paper.

2 System description and model

incomingincoming
link 0 link 1

(a) switch-in

outgoingoutgoing
link 0 link 1

(b) switch-out

Figure 2 Incoming and outgoing links at a junction.

The track network of a DCV-based baggage handling

systems consists of a set of loading stations as origin nodes,

a set of unloading stations as destination nodes, and a set

of junctions as internal nodes. Note that without loss of

generality we can assume each junction to have maximum 2

incoming links and maximum 2 outgoing links (as illustrated

in Figure 2). This assumption of a network corresponds to

current practice in state-of-the-art baggage handling systems.

Let us call the switch that makes the connection between a

junction and its incoming links switch-in, and the switch that

makes the connection between a junction and its outgoing

links switch-out. Note that a switch-in is required only if

the junction has 2 incoming links, otherwise the connection

between the one incoming link and the junction is fixed. A

similar remark is valid for a switch-out.

Consider the general DCV-based baggage handling

system with L loading stations and U unloading stations

sketched in Figure 4.

The DCV-based baggage handling system operates as

follows: given a demand of bags and the network of tracks

as a directed graph, the route of each DCV in the network

has to be determined subject to the operational and safety

constraints detailed in (Tarău et al., 2008) such that all the

bags to be handled arrive at their end points within the

corresponding time window. Note that in this paper we focus

on optimally routing the loaded DCVs — from a loading

station (origin) to an unloading station (destination). As a

consequence, we assume that a sufficient number of DCVs

are present in the system so that when a bag is at the loading

station there is a DCV ready for transporting it.

The model of the baggage handling system we have

developed in (Tarău et al., 2008) consists of a continuous

part describing the movement of the individual vehicles

transporting the bags through the network, and of the

following discrete events:

• loading a new bag onto a DCV,

• unloading a bag that arrives at its end point,

• updating the position of the switches into and out of a

junction,

• updating the speed of a DCV.

According to the discrete-event model of Tarău et al.

(2008), as long as there are bags to be handled, the system

evolves as follows: we shift the current time to the next event

time, take the appropriate action, and update the state of the

system. The state of the DCV-based baggage handling system
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consists of the link on which each of the DCVs travel, their

speed and their position on that link, and the position of the

switch-in and switch-out at each junction. Furthermore, the

input of the system consists of the demand of bags together

with their arrival times at the loading stations and of the

control variables. Note that, depending on the control method,

the control variables can be the switch positions or the time

periods after which we toggle the position of the switch as

presented later on. Finally, the output of the system consists

of the time instants when we load and unload each of the

bags to be handled (these time instants will be collected into

a vector denoted by t; they will be derived via simulation and

will be used later on when measuring the performance of the

system). The event-driven model presented above will later

on be used in computing optimal switch movements (for more

details see Section 5).

The operational constraints derived from the mechanical

and design limitations of the system are the following:

the speed of each DCV is bounded between 0 and vmax,

while a switch at a junction has to wait at least τswitch

time units between two consecutive toggles in order to

avoid the quick and repeated back and forth movements of

the switch, which may lead to mechanical damage. These

operational constraints are taken into account when choosing

the sampling time for the proposed controllers.

3 Proposed control framework

In order to efficiently compute the route of each DCV we

propose a hierarchical control framework that consists of a

multi-level control structure as shown in Figure 3.

The layers of the framework can be characterized as

follows:

• The network controller considers flows of DCVs

instead of individual DCVs. Moreover, the network

controller determines reference DCV flow trajectories

over time for each link in the network. These flow

trajectories are computed so that the performance of

the DCV-based baggage handling system is optimized.

Then the optimal reference flow trajectories are

communicated to switch controllers.

• The switch controller present in each junction receives

the information sent by the network controller and

determines the sequence of optimal positions for its

ingoing and outgoing switches at each time step so that

the tracking error between the reference flow trajectory

and the actual flow trajectory is minimal.

• The DCV controller present in each vehicle detects the

speed and position of the vehicle in front of it, if any,

and the position of the switch into the junction the

DCV travels towards to. This information is then used

to determine the speed to be used next such that no

collision will occur and such that the DCV stops in

front of a junction the switch of which is not positioned

on the link that the DCV travels on.

The lower-levels in this hierarchy deal with faster time

scales (typically in the milliseconds range for the DCV

controllers up to the seconds range for the switch controllers),

whereas for the higher-level layer (network controller) the

frequency of updating is up to the minutes range.

In (Tarău et al., 2009b) and (Tarău et al., 2009a) we have

developed heuristic and predictive control methods for a 2-

level control framework that consists of switch controllers

and DCV controllers only. These switch controllers

determine optimal switch positions and consequently

“optimal” routes by solving local optimization problems or

by using heuristic rules. In the remainder of the paper we will

focus on the network control level of the hierarchy illustrated

in Figure 3 and in particular on how the optimal routes can

be determined for the DCVs transporting bags through the

network.

4 Route control

In this section we focus on the network controller.

4.1 Preliminaries

Since later on we will use the model predictive control (MPC)

approach for determining the routes of the DCVs in the

network, in this section we briefly introduce the basic MPC

concept.

MPC is an on-line model-based predictive control design

method for discrete time models, see, e.g., (Camacho and

Bordons, 1995), (Maciejowski, 2002), (Rawlings and Mayne,

2009), that uses the receding horizon principle. In the basic

Network controller

Switch controllerSwitch controller

DCV controller DCV controller DCV controller DCV controller

Figure 3 Hierarchical control for DCV-based baggage handling systems. Recall that we assume the low-level DCV controllers already
present in the system.
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MPC approach, given an horizon N, at step time k, the

future control sequence u(k + 1),u(k + 2), . . . ,u(k + N) is

computed by solving a discrete-time optimization problem

over a prediction period [kτs,(k+N)τs) with τs the sampling

time. The optimization problem is defined so that a cost

criterion is optimized over the prediction period subject to the

operational constraints. After computing the optimal control

sequence, only the first control sample is implemented, and

subsequently the horizon is shifted. Next, the new state of

the system is measured or estimated, and a new optimization

problem at step k+1 is solved using this new information. In

this way, a feedback mechanism is introduced.

4.2 Approach

If we would consider each DCV individually, the

predictive switch control problem in DCV-based baggage

handling systems results in a huge nonlinear integer

optimization problem with high computational complexity

and requirements, making the problem in fact intractable

in practice (Tarău et al., 2009a). So, since considering each

individual switch is too computationally intensive we will

consider streams of DCVs instead (characterized by real-

valued demands and flows expressed in vehicles per second).

The routing problem will then be recast as the problem of

determining the flows on each link. Once these flows are

determined, they can be implemented by switch controllers

at the junctions. So, the network controller provides flow

targets to the switch controllers, which then have to control

the position of the switch into and out of each junction in

such a way that these targets are met as well as possible. This

corresponds to blocking flows before a junction whenever

necessary and possible, and routing the DCVs towards the

outgoing links.

4.3 Set-up

We consider the following set-up. We have a transportation

network with a set of origin nodes O consisting of the

loading stations, a set of destination nodes D consisting of the

unloading stations, and a set of internal nodes I consisting

of all the junctions in the network, see Figure 5. We define the

set of all nodes as V = O ∪I ∪D . The nodes are connected

by unidirectional links. Let L denote the set of all links.

Furthermore, let the time instant tk be defined as

tk = t0 + kτnc

with t0 that time when we start the simulation and τnc the

sampling time for the network controller. Then, for each

bags

on

conveyor

belts
planes

onto

loaded

to be

bags

conveyors end points

network

of tracks

L1

L2

LL

U1

U2

UU

Figure 4 Baggage handling system using DCVs.

O

D

I

L1 LL

S1

Ss

U1 UU

Figure 5 Set-up for the DCV-based baggage handling system.
The transportation network has a set of origin nodes
O = {L1,L2, . . . ,LL}, a set of destination nodes
D = {U1,U2, . . . ,UU}, and a set of S internal nodes
I = {S1,S2, . . . ,SS}.

pair (o,d) ∈ O ×D , there is a dynamic, piecewise constant

demand pattern Do,d(·) as shown in Figure 6 with Do,d(k)
the demand of bags at origin o with destination d in the

time interval [tk, tk+1) for k = 0,1, . . . ,Ksim −1 with Ksim the

simulation horizon (we assume that beyond tKsim the demand

is 0).

...

...

Do,d

tt0 tKsimt1 t2 tKsim−2 tKsim−1

Do,d(0)

Do,d(1)

Do,d(K
sim −2)

Do,d(K
sim −1)

Figure 6 Piecewise constant demand profile Do,d .

Next, let Ld be the set of links that belong to some

route going to destination d, Ld ⊆ L . We denote the set

of incoming links for node v ∈ V by L in
v , and the set of

outgoing links of v by L out
v . Note that for origins o ∈ O we

have L in
o = /0 and for destinations d ∈ D we have L out

d = /0.

Also, assume each origin node to have only one outgoing link

and each destination node to have only one incoming link

— if a loading station would have more than one outgoing

link, then one can virtually expand a loading station into a

loading station connected via a link of length 0 to a junction

with a switch-out and 2 outgoing links, etc.; similarly, one

can virtually expand an unloading station with more than one

incoming link. Then |L out
o |= 1 and |L in

d |= 1.

Next, for each destination d ∈ D and for each link ℓ ∈
Ld in the network we will define a real-valued flow uℓ,d(k).
The flow uℓ,d(k) denotes the number of DCVs per time unit

traveling towards destination d that enter link ℓ during the

time interval [tk, tk+1).
The aim is now to compute using MPC, for each time

step k, flows uℓ,d(k) for every destination d ∈ D and for

every link ℓ ∈ Ld in such a way that the capacity of the

links is not exceeded and such that the performance criterion

is minimized over a given prediction period [tk, tk+N). Later

on we will write a model of the baggage handling system
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to be used by the network controller, and show that this

model can be rewritten as an MILP model. Therefore, in order

to obtain an MILP optimization problem one has to define

a linear or piecewise affine performance criterion. Possible

goals for the network controller that allow linear or piecewise

affine performance criteria are reaching a desired outflow at

destination d or minimizing the lengths of the queue in the

network.

4.4 Model

We now determine the model for the DCV flows through the

network. Let τℓ denote the free-flow travel time on link ℓ.

Note that the free-flow travel time of link ℓ represents the time

period that a DCV requires to travel on link ℓ when using

maximum speed. In this subsection we assume the travel time

τℓ to be an integer multiple of τnc, say

τℓ = κℓτ
nc with κℓ an integer. (1)

In case the capacity of a loading station is less than the

demand, queues might appear at the origin of the network. Let

qo,d(k) denote the length at time instant tk of the partial queue

of DCVs at origin o going to destination d. In principle, the

queue lengths should be integers as their unit is “number of

vehicles”, but we will approximate them using reals.

For every origin node o ∈O and for every destination d ∈
D we now have:

uℓ,d(k)6 Do,d(k)+
qo,d(k)

τnc
for ℓ ∈ L

out
o ∩Ld (2)

with Do,d(k) = 0 for k > K. Moreover,

qo,d(k+1) = max

(

0, qo,d(k)+
(

Do,d(k)−

∑
ℓ∈L out

o ∩Ld

uℓ,d(k)
)

τnc

)

(3)

But queues can form also inside the network. We assume

that the DCVs run with maximum speed along the track

segments and, if necessary, they wait before crossing the

junction in vertical queues. Let qv,d(k) denote the length at

time instant tk of the vertical queue at junction v ∈ I , for

DCVs going to destination d ∈ D .

Taking into account that a flow on link ℓ has a delay of

κℓ time steps before it reaches the end of the link, for every

internal node v ∈ I and for every d ∈ D we have:

Fout
v,d (k)6 F in

v,d(k)+
qv,d(k)

τnc
(4)

where F in
v,d(k) is the flow into the queue at junction v, being

defined as:

F in
v,d(k) = ∑

ℓ∈L in
v ∩Ld

uℓ,d(k−κℓ) (5)

and where Fout
v,d (k) is the flow out of the queue at junction v,

defined as:

Fout
v,d (k) = ∑

ℓ∈L out
v ∩Ld

uℓ,d(k) . (6)

The evolution of the length of the queue for every internal

node v ∈ I and for every d ∈ D is given by:

qv,d(k+1) = max
(

0,qv,d(k)+
(

F in
v,d(k)−Fout

v,d (k)
)

τnc
)

(7)

Moreover, for each origin o ∈O and for each junction v ∈
I we have the following constraints:

∑
d∈D

qo,d(k+1)≤ qmax
o (8)

∑
d∈D

qv,d(k+1)≤ qmax
v (9)

where qmax
o and qmax

v express (respectively) the maximum

number of DCVs the conveyor belt transporting bags towards

loading stations can accommodate and the maximum number

of DCVs the track segments of the incoming links of that

junction can accommodate.

We also have the following constraint for every link ℓ:

∑
d∈D

uℓ,d(k)6Umax
ℓ (10)

where Umax
ℓ is the maximum flow of DCVs that can enter link

ℓ. In this paper we do not consider flow restrictions on links

directly connected to a destination; so, Umax
ℓd

=∞ for each link

ℓd directly connected to destination d.

Then, at time step k, the model of the DCV flows through

the network of tracks describing (2)–(10) can be written as a

system of equalities and a system of inequalities as follows:

qk+1 = M
eq(qk,uk)

M
ineq(qk+1,uk)≤ 0

where
• qk is the vector consisting of all the queue lengths

qo,d(k), for all o ∈ O and for all d ∈ D , and of all the

queue lengths qv,d(k), for all v ∈ I and for all d ∈ D ,

• uk is the vector consisting of all the flows uℓ,d(k), for

all d ∈ D and for all ℓ ∈ Ld .

4.5 Performance index

Next we define the performance index to be used for

computing the optimal routing at step k for a prediction period

of N time steps.

The objective is to have each bag arriving at its end point

within a given time interval [tclose
d − τ

open
d , tclose

d ) where tclose
d

is the time instant when the end point d closes and τ
open
d is the

time period for which the end point d stays open for a specific

flight. We assume tclose
d and τ

open
d to be integer multiples of τs.

Hence, one MPC objective that allows a piecewise

affine performance criterion is to achieve a desired flow at

destination d during the prediction period. Let udesired
d denote

the desired piecewise constant flow profile at destination d as

sketched in Figure 7, where the area under udesired
d equals the

total number of bags out of the total demand that have to be

sent to destination d. Note that udesired
d (k) = 0 for all k < k

open
d

and all k ≥ kclose
d with k

open
d =

tclose
d − τopen

τnc
and kclose

d =
tclose
d

τnc
.
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tclose
d − τ

open
d tclose

d

t

udesired
d

τnc

Figure 7 Desired arrival profile at destination d.

Let κℓd
=

τℓd

τnc
. Hence, one can define the following

penalty for flow profiles corresponding to destination d ∈ D :

J
pen
d,k =

∣

∣

∣
udesired

d (k)−uℓd ,d(k+κℓd
)
∣

∣

∣

where ℓd is the incoming link of destination d.

Later on we will include the penalty term

k+N−1−κℓd

∑
i=k

J
pen
d,i

into the MPC performance criterion for each destination d

and for each time step k. Note that we make the summation of

these penalization indices only up to k+N−1−κℓd
since for

i > k+N − 1−κℓd
the variable uℓd ,d(k+κℓd

) is not defined

at MPC step k.

Moreover, note that using ∑
k+N−1−κℓd
i=k J

pen
d,i for each

destination d and for each time step k as MPC performance

criterion, could have adverse effects for small prediction

horizons. Therefore, to counteract these effects, we also

consider as additional controller goal maximizing the flows of

all links that are not directly connected to unloading stations.

To this aim, let τ link
ℓ,d,k be the typical time required for a DCV

that entered link ℓ in [tk, tk+1) to reach destination d, with

τ link
ℓ,d,k an integer multiple of τs. Note that these durations are

determined based on historical data. Also, let κl,d =
τ link
ℓ,d,k

τnc
.

Then one can define the following penalty:

Jflow
ℓ,d,k =

{

uℓ,d(k) if k
open
d −κl,d ≤ k < kclose

d −κl,d

0 otherwise

This penalty will be later on used in the MPC performance

criterion.

Next, in order to make sure that all the bags will

be handled in finite time, we also include in the MPC

performance criterion the weighted length of queues at each

junction in the network as presented next. Let τ
junc
v,d be the

typical time required for a DCV in the queue at junction v to

reach destination d, with τ
junc
v,d (k) an integer multiple of τnc.

Also, let κv,d =
τ

junc
v,d (k)

τnc
. Then we define the new penalty:

Joverdue
v,d,k =

{

dmin
v,d qv,d(k) if k ≥ kclose

d −κv,d

0 otherwise

where dmin
v,d represents the length of the shortest route from

junction v to destination d. Note that Joverdue
v,d,k is nonzero

only for steps that are larger than or equal to kclose
d − κv,d .

Moreover, for these steps Joverdue
v,d,k is proportional to dmin

v,d . The

reason for this is that we want to penalize more the queues

at junctions that are further away from destination d because

the DCVs in those queues will need a longer time to travel to

destination d.

Finally, let L dest denote the set of links directly connected

to unloading stations. Then the MPC performance index is

defined as follows:

Jk,N = ∑
d∈D

( k+N−1−κℓd

∑
i=k

λdJ
pen
d,i +β

k+N−1

∑
i=k

∑
v∈I

Joverdue
v,d,i −

α
k+N−1

∑
i=k

∑
ℓ∈(L \L dest)∩Ld

Jflow
ℓ,d,i

)

(11)

with λd > 0 a weight that expresses the importance of the

flight assigned to destination d, α ≪ 1 and β ≪ 1 nonnegative

weighting parameters.

Then the nonlinear MPC optimization problem is defined

as follows:

min
uk,...,uk+N−1,qk+1,...,qk+N

Jk,N(qk,uk)

subject to

qk+1 = M
eq(qk,uk)

... (12)

qk+N = M
eq(qk+N−1,uk+N−1)

M
ineq(qk+1,uk)≤ 0

...

M
ineq(qk+N ,uk+N−1)≤ 0

The nonlinear MPC optimization problem defined above

is typically complex and it requires a large computational

effort to solve. Therefore, in the next section we will recast

this problem into an MILP one for which efficient and fast

solvers are available.

4.6 MILP optimization problem for the network

controller

Mixed integer linear programming (MILP) problems are

optimization problems with a linear objective function,

subject to linear equality and inequality constraints. The

general formulation for a mixed-integer linear programming

problem is the following:

min
xMILP

c⊤xMILP

subject to

AeqxMILP = beq

AxMILP ≤ b

xlow ≤ xMILP ≤ xup

where c, xMILP, xlow, xup, beq, and b are vectors, with xlow

the lower bound of xMILP and xup its upper bound, and where

Aeq and A are matrices (all these vectors and matrices have

appropriate size). Note that MILP solvers compute solutions
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xMILP for the problem above, where some of the elements of

xMILP are restricted to integer values.

Next we transform the dynamic optimal route choice

problem presented above into an MILP problem, for which

efficient solvers have been developed (Fletcher and Leyffer,

1998). To this aim we use the following equivalences, see

(Bemporad and Morari, 1999), where f is a function defined

on a bounded set X with upper and lower bounds M and m

for the function values, δ is a binary variable, y is a real-

valued scalar variable, and ε is a small tolerance (typically

the machine precision):

P1: [ f (x)6 0] ⇐⇒ [δ = 1] is true if and only if

{

f (x)6 M(1−δ )
f (x)> ε +(m− ε)δ ,

P2: y = δ f (x) is equivalent to















y 6 Mδ
y > mδ
y 6 f (x)−m(1−δ )
y > f (x)−M(1−δ ) .

As example we will show how equation (3) of the nonlinear

route choice model presented in the previous section can be

transformed into a system of linear equations and inequalities

by introducing some auxiliary variables. For the other

equations of the route choice model we apply a similar

procedure.

We consider now (3). This is a nonlinear equation and thus

it does not fit the MILP framework. Therefore, we will first

introduce the binary variables δo,d(k) such that

δo,d(k) = 1 if and only if

qo,d(k)+
(

Do,d(k)− ∑
l∈L out

o ∩Ld

uℓ,d(k)
)

τnc
6 0 (13)

and rewrite (3) as follows:

qo,d(k+1) =
(

1−δo,d(k)
)

·
(

qo,d(k)+
(

Do,d(k)−

∑
l∈L out

o ∩Ld

uℓ,d(k)
)

τnc
)

. (14)

Condition (13) is equivalent to (cf. Property P1):

{

f (k)6 (qmax
o +Dmax

o,d τnc)(1−δo,d(k))

f (k)> ε +(−Umaxτnc − ε)δo,d(k) ,

where f (k) = qo,d(k)+
(

Do,d(k)− ∑
l∈L out

o ∩Ld

uℓ,d(k)
)

τnc, qmax
o

is the maximal queue length at origin o, and where Dmax
o,d =

maxk Do,d(k) is the maximal demand for origin-destination

pair (o,d).
However, (14) is still nonlinear since it contains a

multiplication of a binary variable δo,d(k) with a real-

valued (linear) function. However, by using Property P2

this equation can be transformed into a system of linear

inequalities.

The rest of the model equations can be transformed, in a

similar way, into a system of MILP equations. Next we will

transform the MPC performance index into its MILP form.

The problem

min
k+N−1

∑
i=k

∑
d∈D

λd

∣

∣

∣
udesired

d (i)−uℓd ,d(i+κℓd
)
∣

∣

∣

can be written as:

min
k+N−1

∑
i=k

∑
d∈D

λdudiff
d (i)

s.t.

udiff
d (i)> udesired

d (i)−uℓd ,d(i+κℓd
)

udiff
d (i)>−udesired

d (i)+uℓd ,d(i+κℓd
)

for i = k, . . . ,k+N −1.

which is a linear programming problem that has as optimal

solution

u
diff,∗
d (i) = max

(

udesired
d (i)−u∗l,d(i+

τdest
d

τnc
),

−udesired
d (i)+u∗l,d(i+

τdest
d

τnc
)
)

= |udesired
d (i)−u∗l,d(i+

τdest
d

τnc
)|

with u∗l,d(i) the optimum flow on link l for destination d

during the time window [ti, ti+1).
If we add the MILP equations of the model, the nonlinear

optimization problem of Section 4.5 can be written as an

MILP problem.

Several efficient branch-and-bound MILP solvers

(Fletcher and Leyffer, 1998) are available for MILP

problems. Moreover, there exist several commercial and free

solvers for MILP problems such as, e.g, CPLEX, Xpress-MP,

GLPK, or lp solve, see (Atamtürk and Savelsbergh, 2005) for

an overview. In principle, — i.e., when the algorithm is not

terminated prematurely due to time or memory limitations,

— these algorithms guarantee to find the global optimum.

This global optimization feature is not present in the other

optimization methods that can be used to solve the original

nonlinear, nonconvex, nonsmooth optimization problem (12).

Moreover, if the computation time is limited (as is often the

case in on-line real-time control), then it might occur that the

MILP solution can be found within the allotted time whereas

the global and multi-start local optimization algorithm still

did not converge to a good solution As a result, the MILP

solution may even give a better system performance than the

solution returned by the prematurely terminated global and

multi-start local optimization method (as will be illustrated

in Section 6.4).

5 Switch control

We now focus on the switch controller for the proposed

hierarchy, and on how optimal switch positions can be

determined.
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Recall that at each control step k, the network controller

provides optimal flows for each link in the network and for

each destination. Let these flows be denoted by u
opt
ℓ,d(k), . . . ,

u
opt
ℓ,d(k+N−1) with d ∈D , ℓ ∈L ∩Ld and N the prediction

horizon of the network controller. Then the switch controller

of each junction has to compute optimal switch-in and

switch-out positions such that the tracking error between

the reference optimal flow trajectory and the flow trajectory

obtained by the switch controller is minimal for each network

controller time step k = 0, . . . ,Ksim.

Recall that the optimal flows u
opt
ℓ,d(k), . . . ,u

opt
ℓ,d(k+N − 1)

are determined for the time window [tk, tk+N) with tk = t0 +
kτnc. In order to determine the switch control action during

the time window [tk, tk+N) we will use again MPC. Next we

will refer to one junction v ∈ I only. For all other junctions,

the switch control actions are determined similarly.

Let τsc be the switch controller sampling time. We select

the sampling time τsc to be an integer multiple of τswitch

(τswitch is the minimum duration between consecutive toggles

imposed as an operational constraint). Moreover, we select

the sampling time τnc of the network controller and the

sampling time τsc of the switch controller such that τnc is an

integer multiple of τsc.

Let ksc be an integer that expresses the number of switch

control actions determined until now. At tk, ksc is defined as

ksc =
τnc

τsc
k. Then let tsw

ksc denote the time instant corresponding

to the time step ksc of the switch controller, tsw
ksc = t0 + kscτsc

with t0 the time instant when we start the simulation.

Furthermore, let sin
v (k

sc) denote the position of the switch-

in at junction v during the time interval
[

tsw
ksc , t

sw
ksc+1

)

and let

sout
v (ksc) denote the position of the switch-out at junction v

during
[

tsw
ksc , t

sw
ksc+1

)

.

We want to determine the switch control sequence during

the time window [tk, tk+N) while using MPC with a prediction

period of Nsc steps. Hence, at each MPC step ksc, the switch

controller solves the following optimization problem:

min
sv,ksc,Nsc

Jsw
v,ksc,Nsc (15)

with sv,ksc,Nsc = [sin
v (k

sc) . . . sin
v (k

sc +Nsc −1) . . . sout
v (ksc) . . .

sout
v (ksc + Nsc − 1)]⊤ if junction v has 2 incoming and 2

outgoing links (sv,ksc,Nsc contains only switch-in or only

switch-out positions if junction v has only 1 outgoing or only

1 incoming link respectively) and with Jsw
v,ksc,Nsc the local MPC

performance index defined as:

Jsw
v,ksc,Nsc = ∑

ℓ∈L out
v

∣

∣

∣
X

opt
ℓ,k,ksc,Nsc(u

opt
ℓ )−Xℓ,ksc,Nsc(sv,ksc,Nsc)

∣

∣

∣

+ γ
(

nsw in
ksc,Nsc(sv,ksc,Nsc)+nsw out

ksc,Nsc(sv,ksc,Nsc)
)

where

• X
opt
ℓ,k,ksc,Nsc(u

opt
ℓ ) denotes the optimal number of DCVs

to enter the outgoing link ℓ of junction v during

the period
[

tsw
ksc , t

sw
ksc+Nsc−1

)

, where u
opt
ℓ is the vector

consisting of all the flows u
opt
ℓ,d(k), . . . ,u

opt
ℓ,d(k+N) with

d ∈D and ℓ∈L ∩Ld . The variable X
opt
ℓ,k,ksc,Nsc(u

opt
ℓ ) is

derived later on (see (16)).

• Xℓ,ksc,Nsc(sv,ksc,Nsc) is the actual number of DCVs

entering link ℓ during the prediction period. The

variable Xℓ,ksc,Nsc is determined via simulation for a

nonlinear (event-based) model similar to the one of

Tarău et al. (2009a) (the difference is that now the

switch positions sv,ksc,Nsc are given for each period

[tsw
ksc , t

sw
ksc+1), . . . , [tsw

ksc+Nsc−1, t
sw
ksc+Nsc) instead of for each

of the next Nsc DCVs to cross a junction);

• nsw in
ksc,Nsc(sv,ksc,Nsc) and nsw out

ksc,Nsc(sv,ksc,Nsc) represent the

number of toggles of the switch-in and of the

switch-out respectively during the prediction window
[

tsw
ksc , t

sw
ksc+Nsc

)

, which are obtained from simulation;

• γ is a nonnegative weighting parameter.

Next we derive the variable X
opt
ℓ,k,ksc,Nsc(u

opt
ℓ ). To this aim,

we first determine how many steps pksc of the network

controller will be involved in solving (15) as follows: pksc =
⌈Nscτsc

τnc

⌉

where ⌈x⌉ denotes the smallest integer larger than

or equal to x (so, pksc ≥ 1). Furthermore, note that the index

k of the time instant tk for which tk ≤ tsw
ksc < tk+1 can be

computed as follows: k =
⌊kscτsc

τnc

⌋

where ⌊x⌋ denotes the

largest integer less than or equal to x. Figure 8 illustrates

the prediction window
[

tsw
ksc , t

sw
ksc+Nsc−1

)

with respect to the

window [tk, tk+pksc ).

The variable X
opt
ℓ,k,ksc(u

opt
ℓ ) is given by:

X
opt
ℓ,k,ksc,Nsc(u

opt
ℓ ) =τ left

1,ksc ∑
d∈D

u
opt
ℓ,d(k)+ τnc

k+pksc−2

∑
i=k+1

∑
d∈D

u
opt
ℓ,d(i)+

τ left
2,ksc ∑

d∈D

u
opt
ℓ,d(k+ pksc −1) (16)

where ∑
k+ j
i=k+1 x(i) = 0 by definition for j < 1 and where

τ left
1,ksc =min(tk+1, t

sw
ksc+Nsc−1)− tsw

ksc ,

τ left
2,ksc =

{

tsw
ksc+Nsc−1 − tk+pksc−1 if pksc > 1

0 otherwise.

6 Case study

In this section we present a benchmark case study involving

a basic set-up to illustrate the network-level control approach

for DCV-based baggage handling systems proposed in this

paper. First, we will describe the set-up and the details of the

scenarios used for our simulations. Next, we will discuss and

analyze the obtained results.

tk tk+1 tk+2 tk+pksc−1 tk+pksc

τ left
1,ksc (p−2)τnc τ left

2,ksc
tsw
ksc tsw

ksc+Nsc−1
Figure 8 Prediction window

[

tsw
ksc , t

sw
ksc+Nsc−1

)

over which we
solve the MPC optimization problem (15) illustrated
with respect to the window [tk, tk+pksc ) for pksc > 2.
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6.1 Set-up

We consider the network of tracks depicted in Figure 9 with

4 loading stations, 2 unloading stations, 9 junctions, and

20 unidirectional links, where the free-flow travel time is

provided for each link. This network allows more than four

possible routes to each destination from any origin point

(e.g., d1 can be reached from o1 via junctions v1,v4,v8;

v1,v4,v8,v9,v8; v1,v2,v5,v4,v8; v1,v2,v6,v7,v9,v8, and so

on). We consider this network because on the one hand it is

simple, allowing an intuitive understanding of and insight in

the operation of the system and the results of the control, and

because on the other hand, it also contains all the relevant

elements of a real set-up.

L1 L2 L3 L4

S1

S2

S3

S4
S5 S6 S7

S8 S9

U1 U2

τnc

τnc
τnc

τnc

2τnc 2τnc

3τnc τnc τnc

3τnc

2τnc 2τnc

τnc

τnc

3τnc
3τnc

2τnc

2τnc

τnc τnc

Figure 9 Case study for a DCV-based baggage handling system.

We assume that the velocity of each DCV varies between

0 m/s and 10 m/s. In order to faster assess the efficiency of

our control method we assume that we do not start with

an empty network but with a network already populated by

DCVs transporting bags.

6.2 Scenarios

In order to assess the performance of the proposed

hierarchical control framework we define six scenarios where

2400 bags will be loaded into the baggage handling system

(600 bags at each loading station). We consider three classes

of demand profiles called “dp1”, “dp2”, and “dp3” hereafter.

According to these classes, the bags arrive at each loading

station in the time interval [t0, t0 + 180s), the arrival times at

a loading station being allocated randomly, using a uniform

distribution according to the following cases:

dp1: the 600 bags arrive at the loading station with a constant

rate of 3.3 bags/s;

dp2: 100 bags arrive at the loading station during the time

window [t0, t0 + 60s), 100 bags arrive during [t0 +

120s, t0+180s), and the rest of 400 bags arrives during

[t0 +60s, t0 +120s);

dp3: 100 bags arrive during the time interval [t0, t0 + 120s)
and the rest of the bags, i.e., 500 bags, arrives after t =
t0 +120s, i.e., during [t0 +120s, t0 +180s).

We also consider two different initial states of the

system where 60, and respectively 120 DCVs are already

transporting bags in the network, running from origins

o1, . . . ,o4 to junctions v1 and v3, from v1 to v2, and from v3

to v2. Their positions at t0 are assigned such that between

each 2 consecutive DCVs we have a minimum safe distance

of 2 m, and between the DCV closest to the next to be passed

junction and the junction we again have 2 m. Later on, when

comparing the control methods in Section 6.4, we will also

use as criterion the static priorities (the flight priorities) of

all the bags to be handled. These priorities are assigned

randomly in the set {1,2} using a uniform distribution.

We assume that we have only two flights assigned to

the unloading stations d1 and d2 (one flight assigned to one

unloading station). Furthermore, we assume that the time

windows within which we need the bags at their end points

are [t0 +800s, t0 +1400s) for d1 and [t0 +1000s, t0 +1600s)
for d2.

We simulate a period of 40 minutes. The control time step

for the network controller is set to 60 s, while the control

time step for the switch controller is set to 2 s. Moreover, the

minimum duration between two consecutive switches is set

to 2 s (recall that this is an operational constraint).

6.3 Control approaches

In the next section we will compare the results obtained when

using the proposed hierarchical route control framework and

the switch control approaches that have shown to give good

performance in (Tarău et al., 2009a) and (Tarău et al., 2009b):

centralized MPC, distributed MPC with a single round of

downstream and upstream communication, and distributed

heuristics.

In order to solve the MILP optimization of the network

controller we have used the CPLEX solver of the Matlab

optimization toolbox Tomlab, while to solve the nonlinear

optimization problem of the switch controller we have chosen

the genetic algorithm implemented in Matlab via the function

ga with multiple runs (for these simulations we run the

genetic algorithm three times for each optimization). Note

that in order to keep the total computation time low, for

both approaches — hierarchical MPC and centralized MPC

— we shift the horizon with N, respectively Nsc samples at

each MPC step. Also, due to the same reason (computational

requirements), we allow a limited amount of time for solving

the optimization problem corresponding to the centralized

route control and distributed MPC with a single round of

downstream and upstream communication (the computation

time allowed for each optimization is of 1 hour for centralized

MPC and 80 seconds for distributed MPC).

As prediction horizon we consider N = 6 for the network

controller and Nsc = 30 for the switch controller of the

hierarchical control, N = 40 for the centralized MPC switch
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control, and N = 5 for the distributed MPC. We have

chosen these values since simulations indicate that they give

a good trade-off between the total computation time and

performance.

As model of the real system (i.e. the simulation model)

we use the event based model of (Tarău et al., 2009a) while

the prediction model is either the model of the hierarchical

control proposed in this paper (when we refer to this control

approach) or the event based model of (Tarău et al., 2009a)

when we refer to centralized MPC and distributed heuristics,

or a local event based model when we refer to distributed

MPC with a single round of downstream and upstream

communication.

6.4 Results

Based on simulations we now compare, for the given

scenarios, the results obtained for the proposed control

frameworks. The simulations were performed on a 3.0 GHz

P4 with 1 GB RAM. The results of the simulations are

reported in Figure 11. For this comparison we consider the

total performance of the system used in both papers (Tarău

et al., 2009b) and (Tarău et al., 2009a). As illustrated in

Figure 10 this performance index penalizes both the overdue

time for each bag to be handled and its additional storage

time. This goes as follows. Assume that bag index i with i ∈
{1,2, . . . ,Nbags} (where Nbags is the total number of bags to

be handled) arrives at its endpoint at time instant t
bag,unload
i ,

then the penalization of bag index i is given by:

J
pen
i (t

bag,unload
i ) =σi max(0, t

bag,unload
i − t

bag,close
i )+

λ1 max(0, t
bag,close
i − τ

bag,open
i − t

bag,unload
i )

where t
bag,close
d is the time instant when the end point d closes

for bag index i, τ
bag,open
i is the maximum possible length of

the time window for which the end point corresponding to bag

index i is open for that specific flight, the weighting parameter

σi represents the static priority of bag index i (the priority of

the flight), and the weighting parameter λ1 > 0 expresses the

penalty for the additionally stored baggage.

The total performance index of the baggage handling

system that we use when comparing the methods is defined

σi

λ1

t
bag,unload
it

bag,close
it

bag,close
i − τ

bag,open
i

J
pen
i

Figure 10 Objective function J
pen
i .

as:

Jtot(t) =
Nbags

∑
i=1

J
pen
i (t

bag,unload
i )

with t the vector that consists of time instants when

each of the bags to be handled is actually unloaded t =

[t
bag,unload
1 t

bag,unload
2 . . . t

bag,unload

Nbags ]⊤. Note that in Figure 11(a)

the lower the total performance index corresponding to one

scenario is, the better the efficiency of the baggage handling

system.
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Figure 11 Comparison of the results obtained for the total
closed-loop simulation when using (1) the hierarchical
control framework, (2) the centralized switch control
approach of Tarău et al. (2009a), (3) the distributed MPC
switch control with a single round of downstream and
upstream communication presented in (Tarău et al.,
2009a), and (4) the distributed heuristic switch control
of Tarău et al. (2009b).

Moreover, let Japproach,avg denote the average performance

index:

Japproach,avg =
1

|∆| ∑
j∈∆

J
tot,approach
j

with ∆ the set of considered scenarios and J
tot,approach
j the total

performance corresponding to the specific control approach

and scenario index j. Then in Table 1 we list the average

results.

The simulation results indicate that using the hierarchical

control framework typically yields a better system
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Table 1 Comparison of average performance of the system and
total computation time.

Control approach Japproach,avg(s) total CPU time (s)

Centralized MPC 1.70 ·106 2.92 ·105

Distributed MPC 2.27 ·107 4.44 ·104

Distributed HR 3.09 ·105 6.89 ·103

Hierarchical MPC 9.55 ·105 1.07 ·102

performance than using centralized MPC or distributed

MPC with a single round of downstream and upstream

communication. But, note that the solutions of centralized

MPC or distributed MPC were returned by the prematurely

terminated global and multi-start local optimization method.

However, even with the computational restrictions mentioned

above (we allow a limited amount of time for solving

an optimization problem), the total computation time of

centralized MPC and of distributed MPC with a single round

of downstream and upstream communication is much larger

(over 40 hours) than the one of the hierarchical control (an

average of 102 s per junction, plus 6 s for solving the MILP

optimization problems).

The performance index Jtot obtained when using the

distributed heuristics (for a prediction window of 5 s) is a

bit lower than the one obtained when using the hierarchical

control framework, but the total computation time required

to determine the solution is also much larger. Also note that

typically the heuristic approaches give worse performance

than the predictive methods (see, e.g., Tarău et al. (2009b)).

But for this we have to allow sufficient time for the

computations for the predictive methods.

Hence, the hierarchical control with MILP solutions offers

a balanced trade-off between the performance of the system

and the total computation time required to determine the route

choice solution.

7 Conclusions

In this paper we have proposed a hierarchical control

framework for efficiently computing routes for destination

coded vehicles (DCVs) that transport bags in an airport on

a railway network. In the proposed control framework the

network controller computes reference flow trajectories over

time for each link in the network so that the performance of

the DCV-based baggage handling system is optimized. Then

the switch controllers determine the sequence of optimal

positions for their ingoing and outgoing switches so that

the tracking error between the reference trajectory and the

future flow trajectory is minimized. In general, the problem

of computing optimal routes for a collection of DCVs is a

nonlinear, nonconvex, mixed integer optimization problem,

and very expensive to solve in terms of computational efforts.

Therefore, we have considered flows of DCVs and then

used an alternative approach for reducing the complexity

of the computations by rewriting the nonlinear optimization

problem of the network controller as a mixed integer linear

programming (MILP) problem. The advantage is that for

MILP optimization problems solvers are available that allow

us to efficiently compute the global optimal solution. The

solution of the MILP problem is then used in computing

optimal switch control actions. For a benchmark case

study we have compared the hierarchical route control with

switch control approaches that have proved to give good

performance in previous work. The obtained results indicate

that the proposed hierarchical route control offers a balanced

trade-off between efficiency and total computation time when

compared to distributed heuristics and to predictive switch

control approaches where the multi-start local optimization

method has been terminated prematurely.

In future work we will perform extensive simulations

in order to assess the efficiency of the hierarchical route

control approach. Furthermore, in order to better assess the

performance of the proposed approach, we will study in more

depth the quality of the approximation used at the higher level

of the proposed framework. Moreover, we will also consider

the line balancing problem (i.e. route assignment for each

empty DCV such that all the loading stations have enough

empty DCVs at any time instant). Finally, in future work we

will also use the concept of platooning and develop efficient

control methods for optimally creating the platoons.
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