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Optimal Steady-State Control for Isolated Traffic

Intersections
Jack Haddad, Bart De Schutter, David Mahalel, Ilya Ioslovich, and Per-Olof Gutman

Abstract—A simplified isolated controlled vehicular traffic
intersection with two movements is considered. A discrete-
event max-plus model is proposed to formulate an optimization
problem for the green-red switching sequence. In the case when
the criterion is a strictly increasing, linear function of the
queue lengths, the problem becomes a linear programming (LP)
problem. Also, in this case, the steady-state control problem
can be solved analytically. A sufficient and necessary condition
for steady-state control is derived, and the structure of optimal
steady-state traffic control is revealed. Our condition is the same
as the necessary condition in [5] for both queue lengths to be
non-increasing at an isolated intersection.

Index Terms—Optimal control, steady-state, isolated traffic
intersections

I. INTRODUCTION

WEBSTER [17] is probably the first researcher that

investigated the undersaturated conditions for isolated

traffic intersections, i.e. total flow entering the intersection

can pass through during the cycle length. Webster derived

an expression for the average delay per vehicle for a given

movement, based on theoretical analysis and empirical results.

The minimum and optimal fixed green split and cycle length

formulas were derived by minimizing the total delay for all

the approaches in the intersection. Other papers, e.g. [12],

[15], aimed to improve the delay estimation formula for over-

saturated conditions, while others proposed different models,

methods, and strategies for controlling oversaturated isolated

intersections [1], [2], [4]–[6], [9], [10], [13], [16] where the

aim was to minimize delays or to maximize the intersection

capacity.

With available sensors, it is easier to measure queue lengths

than to estimate delays. Therefore, in this paper the criteria

are functions of the queue lengths: inspired by Gazis et al.

[5] the time integral over the sum of all queue lengths at the

intersection, or the so-called “total delay”, is minimized.

Under the assumptions of a continuous differential equation

model for isolated intersection with only two movements,

constant total throughput, constant cycle length, constant sat-

uration flows, time varying arrival rates, and oversaturation

(signifying that the initial queue lengths are larger than zero),

Gazis et al. [5], found a necessary condition for not increasing

any queue length. In [6] the same problem as in [5] is treated
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under the assumptions that the arrival rates are constant, and

that, in addition, there are imposed maximum and minimum

green duration constraints that enable both the queue lengths

to be reduced to zero. As a consequence, the necessary and

sufficient condition in [6] for decreasing both queue lengths

to zero is different from the necessary condition in [5].

Under the assumption of a discrete-event model with con-

stant arrival and departure rates, in this paper we give a

necessary and sufficient condition for the existence of a

constant cycle length steady-state solution. The green duration

constraint is not imposed a priori, and steady-state queue

lengths are not necessarily equal to zero at any time of the

cycle which however turns out to be the case for the optimal

steady-state solution. Our condition turns out to be the same

as the necessary condition (19) in [5].

In the case when our optimization criterion is a strictly

increasing, linear function of the queue lengths, the under-

saturated problem can be solved by linear programming, and

the optimal solution has a simple form that can also be found

analytically. It is also shown how to bring initial oversaturated

non-optimal queue lengths to optimum, thus enabling an N-

stages control solution for the transient phase.

II. PROBLEM DEFINITION

A typical simplified isolated intersection is shown in Fig.

1. There are two movements (m1 and m2), defined as the sets

of vehicles having reached but not passed the intersection.

Each movement is governed by a traffic signal that each

can be either green or red. Since the two movements cannot

occupy the intersection area simultaneously, the traffic signals

will be opposite, i.e. when movement m1 has green light,

movement m2 sees red light, and vice versa. Each movement

will encounter intertwined green and red periods. A cycle is

defined as a pair of one green and one red period, whose

durations may be time-varying.

The queue length qi(t) [veh] for movement mi at time t,
is defined as the number of vehicles belonging to mi which

is behind the stop line, i.e. the queue does not include the

vehicles that are inside the intersection or have passed it. Let

ai(t) [veh/s], and di(t) [veh/s] be the arrival and departure

rates for queue i, respectively. The following assumptions are

made:

• A1: The arrival rates are known, non-negative constants

for each green or red period, and the departure rates are

known, non-negative constants within each green or red

period.

• A2: di(t) > ai(t), and di(t) = 0, i = 1, 2 for green and

red periods, respectively.
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m1

m2

Fig. 1. Simplified isolated controlled intersection with two movements, each
governed by a red-green traffic signal.

• A3: The queue lengths [veh] are approximated by non-

negative real numbers.

For the isolated controlled intersection with constant traffic

arrival and departure rates and constant cycle length T [s], we

determine the steady-state traffic signal control solution that

minimizes a given queue length dependent criterion. We also

formulate a necessary and sufficient condition for steady-state

control.

III. DISCRETE-EVENT MODELS FOR ISOLATED

CONTROLLED INTERSECTIONS

A variety of models (cf. [14]) are based on the store-

and-forward approach of modeling traffic networks that was

first suggested in [4], [5]. This approach makes it possible

to simplify the mathematical description of the traffic flow

process without the use of switching variables. In this paper

we consider the isolated controlled intersection as a switching

system, as was done in [2], [3], [7], [8], and the optimization

of the traffic signal switching sequences will be performed

with a discrete-event max-plus model.

A. Basic model

Let k be the cycle index. By definition, in a cycle, each

movement (m1 or m2) has only one green period. We want to

determine two decision variables: the cycle length, T (k) [s],

and g(k) ∈ [0, 1] defined as the fraction of the green period

time [s] of T (k) for movement m1.

The evolution of the system begins at time t0. This implies

that the state of the queue length i at time t is given by

qi(t) = qi(t0) +

∫ t

t0

(

ai(t)− di(t)
)

dt (1)

There are two switching times for cycle k: t2k+1 and t2k+2

(see Fig. 2). Without loss of generality, let the green light

for movement m1 start at t2k, which coincides with the start

of cycle k. Hence, t2k+1 is the end of the green light for

movement m1, and the start of the green light for movement

m2, while t2k+2 is the end of the green light for movement

m2, and the start of the green light for movement m1 in the

next cycle. Note that T (k) = t2k+2 − t2k. From Assumption

A1 it follows that the arrival and departure rates are known and

( ) ( + 1) ( + 2)

2 2 +1 2 +2

( ) · ( )

(m1)

(m2)

Green Red

Red Green

Time [s]

Movement 1

Movement 2

g k T k

T k

t kkt t k

T k T k

Fig. 2. Traffic signal switching sequences for movements m1 and m2

constant over each light period: for t2k ≤ t < t2k+1 it holds

that ai(t2k) = ai(t) and di(t2k) = di(t), and for t2k+1 ≤

t < t2k+2 it holds that ai(t2k+1) = ai(t) and di(t2k+1) =
di(t), i = 1, 2. The relations between the time variables are

as follows

t2k+1 = t2k + g(k) · T (k) (2)

t2k+2 = t2k + T (k) (3)

B. Formulation of an optimal discrete-event max-plus problem

The value of the queue length for movement m1 in cycle k
at the switching time instant t2k+1 is given by

q1(t2k+1) = max
(

q1(t2k) +
(

a1(t2k)− d1(t2k)
)

· g(k) · T (k), 0
)

(4)

and at the switching time instant t2k+2

q1(t2k+2) = q1(t2k+1) + a1(t2k+1) · (1− g(k)) · T (k) (5)

Recall that the signal light for movement m2 is opposite to that

of m1; therefore the value of the queue lengths for movement

m2 in cycle k are given by

q2(t2k+1) = q2(t2k) + a2(t2k) · g(k) · T (k) (6)

q2(t2k+2) = max
(

q2(t2k+1)+
(

a2(t2k+1)− d2(t2k+1)
)

· (1− g(k)) · T (k), 0
) (7)

We now consider the following problem: for a given number

of cycles N (not necessarily of equal lengths) and start-

ing time t0, compute an optimal switching time sequence

t1, t2, . . . , t2N that minimizes a given performance criterion J .

There are a variety of criteria that can be chosen, e.g. average

queue length, maximal queue length, and delay over all queues

[2]. Two new variables are now defined, T1(k) [s] and T2(k)
[s], where T1(k) = g(k) ·T (k) and T2(k) = (1−g(k)) ·T (k).
Substituting these variables into (4)–(7) leads to the following

Discrete-event Max-Plus (DMP) problem:

min
T1(0),T2(0),T1(1),T2(1),··· ,T1(N−1),T2(N−1)

J (8)

subject to

q1(t2k+1) = max
(

q1(t2k) +
(

a1(t2k)− d1(t2k)
)

· T1(k), 0
)

(9)

q1(t2k+2) = q1(t2k+1) + a1(t2k+1) · T2(k) (10)

q2(t2k+1) = q2(t2k) + a2(t2k) · T1(k) (11)

q2(t2k+2) = max
(

q2(t2k+1) +
(

a2(t2k+1)− d2(t2k+1)
)

· T2(k), 0
)

(12)

for k = 0, 1, 2, . . . , N − 1. Hence, the number of variables to

be determined is 2N .
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IV. STEADY-STATE CONTROL WITH CONSTANT CYCLE

LENGTH

Consider the steady-state control problem with constant

cycle length. It is assumed that all cycles and their flow rates

are identical, and hence only one cycle needs to be studied.

The decision variables are T1 [s] and T2 [s], and the cycle

duration is T = T1 +T2. Let the start time of the steady-state

cycle be 0. The switching times are τ1, and τ2, respectively,

whereby T = τ2, T1 = τ1, and T2 = τ2−τ1. In steady-state it

is postulated that the queue length for movement i at the start

of the cycle will be equal to the queue length at the start of

the next cycle:

q1(0) = q1(τ2) (13)

q2(0) = q2(τ2) (14)

Let the steady-state queue length vector q be defined as

[q1(τ1), q1(τ2), q2(τ1), q2(τ2)]
T. The criterion function J is

said to be strictly increasing, if, for all queue length vectors q̂,

q̃ with q̂ ≤ q̃ (elementwise) and q̂i < q̃i for at least one index

i, we have J(q̂) < J(q̃).
In the following, we consider the case when the criterion

J is a strictly increasing function of the queue lengths, such

as the average queue length, a positively weighted sum of

queue lengths, or the average travel time. We show that for

such a criterion, the optimal steady-state constant cycle length

switching sequence problem and its necessary and sufficient

condition can be formulated using a discrete-event max-plus

model, and solved analytically for a strictly increasing and

linear criterion.

A. Formulation of an optimal cyclic discrete-event max-plus

problem

The formulation is based on the DMP problem (8)–(12).

The cyclic queue lengths equations (13)–(14) are added to the

DMP problem and then optimized over only one cycle, i.e.

N = 1 and k = 0. The number of decision variables becomes

two: T1(0) and T2(0), for simplicity written as T1 and T2,

respectively. We also assume that a lower bound, Tmin > 0, for

the cycle duration is a priori given, i.e. T = T1 + T2 ≥ Tmin.

The Cyclic Discrete-event Max-Plus (CDMP) problem is then

defined as follows:

min
T1,T2

J (15)

subject to

q1(τ1) = max
(

q1(0) + (a1(0)− d1(0)) · T1, 0
)

(16)

q1(τ2) = q1(τ1) + a1(τ1) · T2 (17)

q2(τ1) = q2(0) + a2(0) · T1 (18)

q2(τ2) = max
(

q2(τ1) + (a2(τ1)− d2(τ1)) · T2, 0
)

(19)

T1 + T2 ≥ Tmin (20)

and (13), (14)

Note that for scalars a, b, c ∈ R we have that a = max(b, c)
implies a ≥ b and a ≥ c. In a similar way the CDMP problem

can be rewritten in such a way that the max equations are

“relaxed” to linear inequality equations. But first, the cyclic

queue lengths equations (13) and (14) are substituted into (16)

and (18), respectively:

q1(τ1) = max
(

q1(τ2) + (a1(0)− d1(0)) · T1, 0
)

(21)

q2(τ1) = q2(τ2) + a2(0) · T1 (22)

The max equations (21) and (19) can then be relaxed into

linear inequality equations as follows:

q1(τ1) ≥ q1(τ2) + (a1(0)− d1(0)) · T1 (23)

q1(τ1) ≥ 0 (24)

q2(τ2) ≥ q2(τ1) + (a2(τ1)− d2(τ1)) · T2 (25)

q2(τ2) ≥ 0 (26)

This leads to the “Relaxed” Cyclic Discrete-event Max-Plus

(R-CDMP) problem:

min
T1,T2

J (27)

subject to

(17), (20), (22), (23), (24), (25), (26)

Let q̃ = [q̃1(τ1), q̃1(τ2), q̃2(τ1), q̃2(τ2)]
T and T̃ = [T̃1, T̃2]

T be

an optimal solution of the R-CDMP problem.

Proposition 1: If the criterion J is a strictly increasing

function of the queue lengths, then any optimal solution of

the R-CDMP problem has the following properties:

1) it holds that q̃1(τ1) = 0,

2) it is also an optimal solution of the CDMP problem.

Proof: Let us denote the feasible set of the R-CDMP

problem as R and the feasible set of the CDMP problem as

C. Clearly it holds that C ⊂ R. Let us denote the optimal

value of J over C as JC and an optimal solution of the CDMP

problem as qC = argmin
q∈C

J . Correspondingly we shall denote

the optimal value of J over R as JR, and an optimal solution of

the R-CDMP problem as qR = argmin
q∈R

J . Clearly JR ≤ JC .

From Krotov’s lemma [11] it follows that if qR ∈ C, then

JC = JR.

Statement 2 follows from the fact that an optimal solution of

the R-CDMP problem with q̃1(τ1) = 0 belongs to C, because

in this case (16) and (17) are satisfied, whereby we note that

(16) and (17) are the only equations where q̃1(τ1) is present.

Thus, what remains is to prove statement 1. The analogous

proposition that q̃2(τ2) = 0 has a similar proof.

Statement 1 is proven by contradiction, where the idea of the

proof is that the steady-state queues can be shifted down until

q̃1(τ1) equals zero. Assume that q̃2(τ1), q̃2(τ2) satisfy (18) and

(19), and suppose that for q̃1(τ1) (21) is not satisfied,

q̃1(τ1) > max(q̃1(τ2) + (a1(0)− d1(0)) · T̃1, 0) (28)

or equivalently

q̃1(τ1) > q̃1(τ2) + (a1(0)− d1(0)) · T̃1 (29)

q̃1(τ1) > 0 (30)
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Now we choose q̂ = [q̂1(τ1), q̂1(τ2), q̂2(τ1), q̂2(τ2)]
T and T̂ as

follows

q̂1(τ1) = 0 (31)

q̂1(τ2) = q̃1(τ2)− q̃1(τ1) (32)

q̂1(0) = q̂1(τ2) (33)

The other variables stay the same, i.e. q̂2(τ1), q̂2(τ2), and T̂
are equal to q̃2(τ1), q̃2(τ2), and T̃ , respectively. We verify

that q̂, T̂ is also a feasible solution of the R-CDMP problem

by substitution in (29). Recall that the criterion J is a strictly

increasing function of the queue lengths. Since q̂ ≤ q̃ and q̂i <
q̃i for some i due to (31) and (32) (i.e. q̂1(τ1) < q̃1(τ1) and

q̂1(τ2) < q̃1(τ2)), this implies J(q̂, T̂ ) < J(q̃, T̃ ), which is in

contradiction with the fact that (q̃,T̃ ) is an optimal solution of

the R-CDMP problem. So the assumption (28) is not satisfied,

and (16) and in particular (31) hold.

Since the optimal solution of the R-CDMP problem satisfies

(16), the optimal solution of the R-CDMP problem is also an

optimal solution of the CDMP problem. Note that we consider

the case (29) and (30), and that the proof for the other cases

is similar.

B. Necessary and sufficient condition for steady-state control

In this section, a necessary condition for steady-state control

is derived based on the R-CDMP problem. We can eliminate

q1(τ2) and q2(τ1) from the constraint equations of the R-

CDMP problem (i.e. (17), (20), (22), (23), (24), (25), and (26))

by substituting (17) and (22) into (23) and (25), respectively,

resulting in

(d1(0)− a1(0)) · T1 ≥ a1(τ1) · T2 (34)

(d2(τ1)− a2(τ1)) · T2 ≥ a2(0) · T1 (35)

If T1 = 0, then (34) and (35) imply that T2 = 0, and vice

versa. But this is a contradiction to (20) and the fact that T1,

T2, and T are all positive. It follows from assumptions A1

and A2 that d1(0) − a1(0) > 0 and d2(τ1) − a2(τ1) > 0,

and also a1(τ1) > 0 and a2(0) > 0. The inequalities (34) and

(35) are divided by T2, and the fraction T1/T2 is eliminated

by substitution. Then the following necessary condition for a

steady-state solution is obtained:

a1(τ1)

d1(0)− a1(0)
≤

d2(τ1)− a2(τ1)

a2(0)
(36)

Conversely, assuming (36) it can be shown that the constraint

equations of the R-CDMP problem can be satisfied with

positive T1 and T2. Hence, the necessary condition (36) is

also a sufficient condition for steady-state control.

C. Analytic solution for linear criterion

In this section, it is shown that if the criterion J is a strictly

increasing linear function of the queue lengths, then the R-

CDMP problem can be solved analytically.

We define a “zero-queue-length period” (ZQLP) as the time

period (larger than zero) for which the queue length is equal

to zero, see Fig. 3. Given the assumptions, a movement can

encounter at most one ZQLP per cycle, and it may happen

2
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Fig. 3. Zero-queue-length period for movements m1 and m2.
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Fig. 4. Decreasing cycle time to the minimum by scaling multiplication.

only before the end of the green light, i.e. between 0 and τ1
for movement m1, and between τ1 and τ2 for movement m2.

Let us denote the start of the ZQLP for movements m1 and

m2 by τ e1 and τ e2 , respectively. Then the ZQLP for movement

m1 starts at time τ e1 and ends at time τ1, and the ZQLP for

movement m2 starts at time τ e2 and ends at time τ2.

Now we focus on a criterion J which is a strictly increasing

linear function of the queue lengths. Let J be the weighted

(w1, w2 > 0) sum of the queue lengths,

J = w1q1(τ1) + w1q1(τ2) + w2q2(τ1) + w2q2(τ2) (37)

Proposition 2: For the R-CDMP problem with a criterion J
that is a strictly increasing linear function of the queue lengths,

the optimal cycle time is equal to the given minimum cycle

time.

Proof: In the optimum we have q1(τ1) = q2(τ2) = 0 by

Proposition 1, which implies that in the optimum the criterion

J only depends on the maximum queue lengths,

J = w1q1(τ2) + w2q2(τ1) (38)

The general case when the cycle time is larger than the

minimum cycle time and each movement has a ZQLP is shown

in Fig. 4. The cycle time τ2 can be decreased to Tmin by

multiplying all the values by the coefficient γ = Tmin/τ2
as shown in Fig. 4. Decreasing the cycle time decrease the

maximum queue lengths from q1(τ2) and q2(τ1) to γq1(τ2)
and γq2(τ1), respectively. The value of J is decreased, i.e.

the maximum queue lengths decrease with the decrease of the

cycle time which proves that the optimal cycle time will be

equal to the minimum cycle time Tmin
1.

1Recall that Tmin is an endogenous and non-optimized design parameter.
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Fig. 5. Analytic solution for the linear programming problem.

According to Propositions 1 and 2, we obtain the following

linear programming (LP) problem when J is given by (38),

min
T1,T2

J = w2a2(0) · T1 + w1a1(τ1) · T2 (39)

subject to

(d1(0)− a1(0)) · T1 ≥ a1(τ1) · T2 (40)

(d2(τ1)− a2(τ1)) · T2 ≥ a2(0) · T1 (41)

T1 + T2 = Tmin (42)

In case the necessary condition (36) is satisfied strictly, i.e.
a1(τ1)/(d1(0)− a1(0)) < (d2(τ1)− a2(τ1))/a2(0), the solu-
tion of the problem depends on the slope of the linear isoclines
of J in the T1, T2-plane, see Fig. 5. If w2a2(0) < w1a1(τ1) the
optimal solution is found in point A, whereby the movement
m2 will not have a ZQLP. When w2a2(0) > w1a1(τ1) the
optimal solution is found in point B, and the movement m1
will not have a ZQLP. Points A and B are given by

(T1, T2)A =

(

Tmin · (d2(τ1)− a2(τ1))

a2(0) + d2(τ1)− a2(τ1)
,

Tmin · a2(0)

a2(0) + d2(τ1)− a2(τ1)

)

(43)

(T1, T2)B =

(

−Tmin · a1(τ1)

a1(0)− d1(0)− a1(τ1)
,
Tmin · (a1(0)− d1(0))

a1(0)− d1(0)− a1(τ1)

)

(44)

If w2a2(0) = w1a1(τ1) all points on the straight line between

A and B (i.e. the convex combination of α (T1, T2)A + (1−
α) (T1, T2)B , 0 ≤ α ≤ 1) are optimal. The inner points will

have two ZQLPs, one ZQLP for each movement. In the case

when the necessary condition (36) is satisfied with equality, i.e.

a1(τ1)/(d1(0)− a1(0)) = (d2(τ1)− a2(τ1))/a2(0), the two

points A and B are equal. In this case the optimal solution

will not have any movement with ZQLP. Based on the above

explanation the following proposition holds:

Proposition 3: There is always an optimal solution with at

most one ZQLP.

Remark 1: The solution to (39)–(42) can also be found

through direct substitution.

According to Proposition 1, the queue lengths q1(τ1) = 0
and q2(τ2) = 0 in the optimal cyclic solutions. Hence, the

problem arises how to bring the queue lengths to their optimal

values. N-stages control can be used to solve this problem, see

Section V.

D. Numerical examples for the steady-state control

In this section two numerical examples are shown. The

criterion J is the weighted sum of the queue lengths (39)
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Fig. 6. Example 1. Multiple optimal solutions

with w1 = w2 = 1, and the minimum cycle time is Tmin = 50
[sec].

1) Example 1. - Multiple optimal solutions: Given that the

arrival rates for movement m1 and m2, a1(t) = 0.2 [veh/s]
and a2(t) = 0.2 [veh/s], respectively, and the departure rates

for m1 and m2, d1(t) = 0.32 [veh/s] and d2(t) = 0.6 [veh/s],
respectively. The necessary and sufficient condition for the

steady-state control (36) is satisfied, 0.2/0.12 ≤ 0.4/0.2.

Since w2a2(0) = w1a1(τ1) is also satisfied, all points on the

straight line between A (43), (T1, T2)A = (33.33, 16.67), and

B (44), (T1, T2)B = (31.25, 18.75), are optimal. The queue

lengths over one cycle for three optimal solutions are shown

in Fig. 6.

2) Example 2. - Steady-state solution does not exist: Given

that the arrival rates for movement m1 and m2, a1(t) = 0.3
[veh/s] and a2(t) = 0.15 [veh/s], respectively, and the

departure rates for m1 and m2, d1(t) = 0.4 [veh/s] and
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d2(t) = 0.55 [veh/s], respectively. The steady-state solution

does not exist since the necessary condition (36) is not

satisfied, 0.3/0.1 � 0.4/0.15.

Remark 2: Congestion in isolated controlled intersections

is defined as the situation when the queue lengths at the

intersection are increasing over time. “Classic” congestion

occurs when, for one of the movements, the arrival rate is

larger than the departure rate during the green light period,

i.e. when assumption A2 does not hold. In this example we

have shown that another case of congestion will occur even

if assumption A2 holds, but when the necessary condition for

the steady-state control (36) is violated.

Note, however, that also for congested intersections, the

DMP problem formulation (8)–(12) can be used. Since the

queue lengths are increasing over time, the max equations (9)

and (12) become linear equations, and for a given N, given

starting time t0 with initial queue lengths, and linear criterion

the DMP problem can be solved by linear programming. The

final queue lengths will be at least as large as the initial ones.

V. N-STAGES CONTROL

In the N-stages control problem we consider a finite number

of switchings in the optimization procedure. Let us specifically

consider the following problem: for a given integer N and a

given starting time t0 with initial queue lengths q1,init, q2,init
we want to compute an optimal switching sequence consisting

of N cycles2. For the simplified isolated controlled intersection

the problem is formulated for the case when the criterion is

a strictly increasing function of the queue lengths. The DMP

problem (8)–(12) is used to solve the optimal problem for

N-stages control when the criterion J is a strictly increasing

function of the queue lengths. In this case, each max equation

can be relaxed to two inequality equations, which leads to the

“Relaxed” Discrete-event Max-Plus (R-DMP) problem

min
T1(0),T2(0),T1(1),T2(1),··· ,T1(N−1),T2(N−1),
q1(t1),q2(t2),q1(t3),q2(t4),··· ,q1(t2N−1),q2(t2N )

J (45)

subject to

q1(t2k+1) ≥ q1(t2k) + (a1(t2k)− d1(t2k)) · T1(k) (46)

q2(t2k+2) ≥ q2(t2k+1) + (a2(t2k+1)− d2(t2k+1)) · T2(k)
(47)

q1(t2k+1) ≥ 0 and q2(t2k+2) ≥ 0 (48)

q1(t0) = q1,init and q2(t0) = q2,init (49)

q1(t2N ) = T ∗

2 · a1(τ1) and q2(t2N ) = 0 (50)

T1(k) + T2(k) ≥ Tmin and T1(k) + T2(k) ≤ Tmax (51)

and (10), (11)

for k = 0, 1, 2, . . . , N − 1, where Tmax is an upper bound for

the cycle duration. Note the endpoint constraints (50) where

the endpoint queue lengths q1(t2N ), q2(t2N ) are equal to the

optimal queue lengths of the cyclic solution, T ∗

2 · a1(τ1), and

0, respectively, where T ∗

2 is the optimal cyclic solution for T2.

Proposition 4: If the criterion J is a strictly increasing

function of the queue lengths, then any optimal solution of

2In the N-stages control, the queue length vector q is defined as:
[q1(t1),q1(t2),q2(t1),q2(t2),··· ,q1(t2N−1),q1(t2N ),q2(t2N−1),q2(t2N )]T.

the R-DMP problem is also an optimal solution of the DMP

problem.

Proof: See the proof of Proposition 3.3 in [2] which also

applies here.

Hence, in order to bring initial queue lengths to the optimal

cyclic queue lengths, N-stages control can be solved by linear

programming. The endpoint queue lengths q1(t2N ), q2(t2N )
are equal to the optimal cyclic solutions and the condition

(36) has to be satisfied.

VI. CONCLUSIONS

For the simplified isolated controlled intersection, in the

case when the criterion J is a strictly increasing linear function

of the queue lengths, we can compute the optimal switching

sequence for the steady-state problem with constant cycle

length by solving a linear programming problem analytically.

A necessary and sufficient condition for the steady-state con-

trol with constant cycle length was also derived. The N-stages

control problem was formulated. It is shown that the N-stages

control problem can be solved by linear programming if the

criterion J is linear and strictly increasing. Furthermore, N-

stages control can be used to bring the queue lengths to

optimum.
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