
Delft University of Technology
Delft Center for Systems and Control

Technical report 10-060

Towards integrating water prediction and
control technology∗

P.J. van Overloop, R.R. Negenborn, D. Schwanenberg, and
B. De Schutter

If you want to cite this report, please use the following reference instead:
P.J. van Overloop, R.R. Negenborn, D. Schwanenberg, and B. De Schutter, “Towards
integrating water prediction and control technology,” Proceedings of the 2011 IEEE
International Conference on Networking, Sensing and Control, Delft, The Nether-
lands, pp. 80–85, Apr. 2011.

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/10_060.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/10_060.html


Towards Integrating Water Prediction and Control Technology

P.J. van Overloop, R.R. Negenborn, D. Schwanenberg, B. De Schutter, Member, IEEE

Abstract— In most countries, especially in deltas, there is a
long tradition in the management of water resource systems,
in particular related to structural measures such as the con-
struction of dikes and riverine/coastal hydraulic structures. We
discuss how this infrastructure can be supported and managed
in order to serve as non-structural measures. Therefore, we
present a review about technology for the prediction and control
of water resources. This covers techniques for flow and water
quality forecasting including modeling and data assimilation as
well as its combination with predictive controllers for managing
hydraulic structures. These techniques are discussed both from
a conceptual and technical perspective. Furthermore, we give
an overview about ongoing and future work in this field, which
is aimed at integrating the techniques from both the water
prediction and the water control community.

I. INTRODUCTION

For multiple reasons, such as the access to international

trade, the possibility to transport goods over inland waters,

and having irrigation water available all year round, people

tend to live close to water ways. Water ways in delta areas

on the one hand receive their flows from precipitation of

upstream areas and on the other can receive additional water

from high sea levels. Each of these influences is variable in

time and may result either in extremely high or extremely

low water levels, which consequently can lead to undesired

inundation and droughts, respectively. Inundation is undesir-

able due to loss of crops, damaging of houses and residential

areas, and in the extreme cases human casualties. Droughts

are undesirable, since they cause damage to potential crops,

non-navigable water ways, insufficient cooling water for

power plants, high water temperatures causing toxic algae

growth and fish mortality, and potential danger for securing

drinking water.

In order to deal with threats of these potential damages,

people implement measures. This is an ongoing process,
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mainly because the demands that society imposes on safety,

wealth, and well-being continue to increase. The measures

that are being implemented can be of a structural or of a non-

structural nature. On the one hand, non-structural measures

are measures that can be taken to adverse threatening situ-

ations in real-time, taking into account the actual situation.

On the other hand, structural measures are measures that do

not have this flexibility and that do not take into account

the actual situation. E.g., in order to avoid casualties due

to inundations, as a structural measure, the dikes protecting

the land from the water can be raised or, as a non-structural

measure, an evacuation plan can be developed, which aims

at moving out the people of the threatened area as quick as

possible.

Structural measures are usually seen as safer to most

people. However, this feeling of safety comes at a high price,

since structural measures are usually very costly. In fact,

guaranteeing 100% security against inundation and droughts

using only structural measures is simply unaffordable for

society. Moreover, structural measures are not flexible and

are therefore only prepared and optimized for dealing with

the contingencies and situations envisioned at design time.

Non-structural measures do not have these drawbacks.

To illustrate the potential of non-structural measures, con-

sider as an example a spillway used for filling an emergency

inundation area to relieve the pressure on the river dikes

due to high river flows. Figure 1 illustrates the non-optimal

filling of a system with a structural spillway. If the spillway

is designed as a structural measure without any control, it

would be designed to function autonomously. It would be a

fixed weir with a design width and a design height that are

based on a certain design high water wave passing through

the water way. For precisely this design wave the structural

spillway can top off the peak. However, for any wave with

a different shape, peak height, or duration the structural

spillway will either cause a not completely filled inundation

area or a fully inundated area before the actual peak of

the wave arrives. When the spillway measure is designed

as a non-structural measure, it can be implemented as an

undershot gate that can be opened or closed at the right time,

depending on the actual situation at hand. Due to this added

flexibility, the inundation area can be used in an optimal way

and the peak of the wave can be lowered as much as possible.

The operation of the gate, however, requires knowledge on

the future system behavior, i.e., a quantitative prediction of

the approaching flood event.

Presently consensus exists that both types of measures,

structural and non-structural, need to be considered when

upgrading water systems [28]. This raises the question of
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Fig. 1. Difference in timing for proper and improper timing of effectuating
an emergency inundation area. Qmax is the maximum flow to which the flow
in the river is reduced for this particular peak, shape, duration and timing,
Vstorage is the volume that can be stored in the emergency inundation area
and toutlet is the moment in time at which the spill from the river to the area
starts.

how such non-structural measures should be used and what

the role of prediction systems is in this. This paper strives

to give a state-of-the-art overview of research addressing

these questions. Particular attention is hereby given to the

contributions presented in the sessions on “Water Prediction

and Control Technology”, organized at the 2011 IEEE In-

ternational Conference on Networking Sensing and Control,

Delft, The Netherlands.

This paper is organized as follows. Section II gives a

state-of-the-art review on methods in forecasting and related

techniques such as data assimilation and uncertainty analysis.

In Section III the status of predictive control of water

resources system is summarized. Section IV reflects on the

combination of both disciplines. Current research in progress

and directions for future research are given in Section V.

II. PREDICTIONS IN WATER SYSTEMS

Operational predictions in water systems are traditionally

applied in the context of flood forecasting [2,16]. Mainly

driven by the progress in this field, the techniques became

also popular for general flow forecasting [31] or even water

quality applications [17]. We follow this path in our discus-

sion before highlighting more general, supporting techniques

such as data assimilation and uncertainty analysis, as well as

the evolution of technical systems.

Flood events across Europe, including the 1993 and 1995

events in the Rhine and Meuse basins, the summer floods

of 1997, 2002, and 2010 in the Oder, Elbe, and Danube

basins, the UK floods of 2000/2001, and widespread flooding

in the summer of 2005 in Southern Germany, Switzerland,

Hungary, Romania, and Bulgaria frequently raise the pub-

lic interest in flood protection. Besides classical structural

measures such as the construction of dikes, the provision of

timely flood warnings has become an accepted non-structural

measure to reduce losses of property and life due to large

floods [1,27].

Whilst the role of flood forecasting in the flood warning

process traditionally held a modest position in the chain

of detection, forecasting, warning, and response [13], its

potential in added effectiveness of warnings through an

increase of lead time means its significance is becoming

more and more relevant in state-of-the-art systems. This

lead time can be effectively used to implement measures

either to reduce the consequence of flooding through for

example evacuation, or to reduce flooding itself through

controlling dedicated hydraulic structures [9,29,31] or ad-

hoc interventions, such as placing sandbags.

Flow forecasting in general may serve various needs.

Applications are therefore diverse and range from low water

monitoring or water allocation purposes during droughts to

day-to-day flow forecasting for navigation or hydropower

needs. Whereas the type of hydrological model may change

significantly in these applications, the technological system

set-up is comparable to those of flood forecasting systems.

Water quality forecasting is a relative new discipline. Cur-

rent applications aim for example at the prediction of water

temperature [12]. It becomes, apart from ecological reasons,

relevant to cooling water requirements of thermal power

plants and therefore also affects the trading policy of energy

companies. Furthermore, the forecasting of salt concentration

in estuaries has been part of some coastal forecasting systems

[23] when salt intrusion endangers freshwater environments.

Even more complex water quality processes are covered in

new forecasting systems, see the examples of [23] on the

monitoring and forecasting of algae bloom and eutrophica-

tion events.

A discussion on the modeling techniques itself would

go beyond the scope of this paper. However, we would

like to address general techniques which typically come

along with models in operational applications. The most

important ones are aiming at data assimilation [2,16,17,29]

and uncertainty analysis. These techniques try to update the

inputs, parameters, states, or outputs of a model based on

historical observations for improving the lead time accuracy

of the model or for providing information of the probable

model error. Whereas historical applications directly build

into the models [19], state-of-the-art implementations such as

OpenDA, formerly COSTA [33] and DATools [35], decouple

the assimilation technique from the model itself. Uncertainty

analysis tools have become popular in combination with

ensemble forecasts. We refer to the international HEPEX

initiative for a state-of-the-art overview in flow forecasting

[32].

From a technical point of view, most forecasting systems



in the past have been developed as an interface around

a hydrological or hydraulic model, thus concentrating on

the model rather than the data process [1]. Increasing

availability of observed data through online telemetry and

from technologies such as weather radar and quantitative

precipitation forecasting are, however, requiring attention to

shift to the complete process of information and data in

forecasting. This has led to the development of software

packages such as Delft-FEWS [36] with an open systems

approach for integration of arbitrary data and models in the

forecasting process. The modular approach has the advantage

that many of the components used, such as the underlying

models can be easily adapted or exchanged, without the

need to change how the forecasting system is operated by

its users. This allows for a much more rapid adaptation to

advances in modeling techniques, without the added effort

in organizational change.

One of the technical efforts that needs to be made in

order to improve the predictions of water systems that are

influenced by human interactions (operators) or automatic

control loops, is to somehow include the control dynamics

of these entities. Here, the knowledge of control theory can

play a role that is until now in many prediction systems

somewhat underexposed.

III. CONTROL OF WATER SYSTEMS

Non-structural measures in water systems, such as ad-

justable structures like gates, pumps, and sluices, are op-

erated in order to keep water levels [9,11,29,31], flows

[5,14,24,31], or water quality variables [1,17,18] in a desired

state. There are many ways in which these adjustable struc-

tures can be controlled. Several successful implementations

of control systems on water systems are described in [21]. In

increasing order of information usage, three possible types

of control for water systems are feedback control [5,11,18],

feed-forward control [17,31], and model predictive control

[1,8,9,14,24,29].

To achieve a simple feedback controller, at least a mea-

surement of the current situation, i.e., a defined system state,

is necessary for a controller that determines the required

actions for a non-structural measure. Feed-forward control

requires that also measurements or estimates of the distur-

bance that is bringing the actual system state away from the

desired state are known. A combination of feed-forward and

feedback control is achieved using so-called model predictive

control [4,7,26]. The control approach model predictive

control can, in addition, take into account constraints when

calculating the required actions. This is especially useful for

control of water systems, as many constraints are present,

e.g., in the form of limits on water variables and adjustable

structures, and due to imposed water management regula-

tions. Another feature of MPC is that, through optimization,

conflicting subobjectives can be satisfied as much as possible.

Consider as example control of pumps in a storage canal

system. The pumps in this canal system together have a

maximum capacity of 60 m3/s. The disturbance inflow due

to runoff from an extreme storm event is higher than this
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Fig. 2. Difference in control methodologies for a water system with
constraints on pump outflow and water level.

capacity plus the storage capacity between set-point and the

maximum allowed water level. Hence, adequate control is

required. Considered is feedback, combined feedback and

feedforward, and model predictive control for such a system.

A feedback controller for this system only reacts when the

disturbance causes the water level to rise. As this controller

only reacts after a deviation occurs, its reaction is always

late. Once the control flow becomes larger than the maximum

capacity of the pumps, the outflow is limited and eventually,

the water level rises much higher than the maximum allowed

water level, as is also seen in Figure 2.

A feedforward controller with which the feedback con-

troller can be extended uses the prediction of the effect that

the disturbance has on the water level and counteracts on

this in order to keep the water level as close as possible

to set-point. This works well as long as the control flow

does not exceed the maximum pump capacity. Also with this

control method, the maximum allowed water level constraint

is violated, as is also seen in Figure 2.

A model predictive controller can use the same predic-

tion of the disturbance as the feed-forward controller. In

addition, it uses an objective function in which the water

level deviation from set-point is penalized over a prediction

horizon. The controller also explicitly takes into account the

constrained control flow, so it can predict the high water

levels at the end of the prediction horizon. To minimize the

water level deviations over the entire prediction horizon, the

model predictive controller starts earlier (i.e., it anticipates)

with pumping out water to lower the water level before

the disturbance inflow even takes place. In this way, the



maximum allowed water level is violated to a much lower

extent, as Figure 2 illustrates.

From this, we can observe that by using predictions of the

upcoming event, the model predictive controller is capable of

much better satisfying the objectives, while not significantly

violating the operational constraints.

In addition to anticipating on predicted disturbances, there

is another axes along which gains in improved water man-

agement can be achieved: coordination among several water

systems. Problems never occur at the same location with the

same intensity. One part of a water system can be flooded,

while another part still has significant storage available.

If these parts are linked and the flow is controllable, the

potential flood problems can be diverted in order to lead

to the lowest overall damage. This promotes the idea of not

only controlling relatively small-scale water systems, but also

for coordinating the non-structural measures in large-scale

water systems (entire catchments). Issues with optimization

for large-scale water systems can then be addressed with

the emerging technology of distributed or coordinated model

predictive control [25,1].

It is important to note that due to the limitations on

calculation time, the optimizations in model predictive con-

trol schemes can only be applied using reduced models,

such as a simple (delayed) reservoir models [5,8,9,14,24].

In [3,15,26,30,29], model predictive control utilizing more

accurate, hydraulic models ranging from kinematic wave

models to full Saint-Venant based models are implemented.

These non-linear models are still significantly reduced by

using a large spatial discretization. In [38,1,17], the water

quantity model is combined with a water quality model. It

is clear, however, that ideally the most advanced prediction

tools discussed in Section II would be used for providing the

predictions.

IV. COMBINING PREDICTION AND CONTROL

As the prediction tools need to be run in real-time using

controller and operation modeling and as controllers are

becoming more powerful when using advanced predictions,

the disciplines of water systems prediction and water systems

control are approaching one another. It therefore seems

obvious to start combining the technologies and tools from

both fields. Prediction models can benefit from knowledge of

tuning fast controllers (feedback and feed-forward) that can

represent the operation of the non-structural measures over

the prediction horizon. Predictive control can benefit from

the accurate predictions of future disturbances and input con-

straints, the most probable behavior of the water system when

no anticipation is implemented, and the accurate evaluation

of the water system’s behavior resulting from the optimal

control actions.

We see two implementation approaches in which predic-

tion tools can be used in control schemes in a rather straight-

forward way. The first approach uses, in each iteration, two

separate modules, one for generating control actions over the

prediction horizon and the other for actually evaluating the

consequences of these control actions using the prediction

model. This is the most straightforward approach, but it also

requires a large number of expensive evaluations of the high

resolution, detailed prediction model. So, presently, the non-

linear prediction models need to be reduced considerably

in order to be tractable [30,8,9]. The second approach uses

the prediction model to generate time-variant bounds of

the control inputs (inequality constraints) and the trajectory

along which the non-linear model is linearized and reduced.

Next, an efficient linear model predictive controller is formu-

lated using this simplified model. Usually, due to the non-

linearities in the system dynamics, the steps of generating

the bounds, linearizing, and solving the simply optimization

problem have to be iterated a number of times before the

final solution is found [4].

V. CONCLUDING REMARKS

In this paper, we reason that over the next decades we

expect water prediction and control technologies to become

accepted and powerful approaches for determining non-

structural measures that should be implemented next to struc-

tural measures. We promote the idea of optimal control of

large scale water systems and the construction of adjustable

structures in these water systems to increase the flexibility

required for control.

Future work lies in bridging the gap between prediction

and control technologies. To improve control, further im-

provements of predictions are necessary both in accuracy

and suitability for optimization-based control. To improve

predictions, it is necessary to investigate in more detail the

modeling of present human-induced decision making and

the way in which advanced automatic controllers can be

represented in prediction tools.
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