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Stackelberg Equilibria for Discrete-Time Dynamic Games

Part I: Deterministic Games

Kateřina Staňková, Bart De Schutter

Abstract— We consider a two-person discrete-time dynamic
game with the prespecified fixed duration. Each player maxi-
mizes her profit over the game horizon, taking decisions of the
other player into account. Our goal is to find the Stackelberg
equilibria for such a game. The solution approach differs
with respect to the information available to individual players.
While in the game with open-loop information structure the
solution procedure is straightforward and already reported
in the literature, the problem with the closed-loop problem
information structure is difficult to solve, especially if twice
differentiability of the leader’s strategy is not imposed a priori.
In this paper we focus on deterministic problems. We review
classical optimization methods that can be used to solve the
games with open-loop information structure. Additionally, we
propose new methods for solving the games with the closed-
loop information structure. Application of such methods is
shown on specific examples. In the companion paper (Stackel-
berg Equilibria for Discrete-Time Dynamic Games – Part II:
Stochastic Games with Deterministic Information Structure) we
will consider a stochastic variant of the problem.

Keywords: discrete-time infinite dynamic games, Stackelberg
games, information structure, team problems

I. INTRODUCTION & LITERATURE OVERVIEW

This paper deals with a deterministic variant of a two-

person discrete-time infinite dynamic game with a prespeci-

fied duration. The game is referred to as infinite, because the

decision spaces of the players comprise an infinite number of

alternatives. We focus on the noncooperative variant of this

game [1], [2], in which the goals of individual players might

be conflicting. More specifically, we deal with Stackelberg

problems [1]–[6], in which there exists hierarchy between

individual players, as opposed to Nash problems [7], [8].

The open-loop Stackelberg solution concept in the infinite

discrete-time dynamic games was first treated in [9]. Some

other references that discuss the open-loop and the feedback

Stackelberg solutions in discrete-time infinite dynamic games

are [3], [10], [11]. Applications of this concept in microeco-

nomics can be found in [12]. In this paper we review existing

approaches applicable to solve the problem and relate them

to other concepts, like dynamic programming [13] or the

maximum principle [14].

Derivation of the global closed-loop Stackelberg solution

of infinite discrete-time dynamic games remains a chal-

lenge. The global closed-loop Stackelberg solution for a

specific classes of games with linear state dynamics and

quadratic cost functional were found in [15], [16], while it
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was assumed a priori that such a solution is continuously

differentiable. In this paper we concentrate on problems

whose solutions may be non-differentiable or even discontin-

uous and we propose methods solving such problems. More

specifically, we focus an indirect approach involving the team

maximum of the game, similar to the approach proposed for

linear-quadratic problems in [2], [17].

Due to space limitations we will not focus on another

interesting problem: finding the solution of the game under

feedback information structure [11]. Similarly the extension

into the direction of the so-called inverse Stackelberg games

[6], [18]–[20] is omitted in this paper, while this extension

is discussed in the companion paper.

This paper is composed as follows. In Section II basic

notions are introduced. In Section III the open-loop variant

of the game is dealt with. In Section IV we study the closed-

loop variant of the game. In Section V the conclusions and

possibilities for future research are discussed.

II. PRELIMINARIES

A. Basics

Let us consider a two-player Stackelberg game, in which

P1 is the leader and P2 is the follower. Let K = {1, . . . ,K},

K ∈ N denote the stages of the game. Let X
def
= X (1)×X (2)

be the state space of the game with nonempty closed real

intervals X (1), X (2). The state of the game for the k-th stage

is then referred to as xk =
(
x
(1)
k ,x

(2)
k

)T
, with P1’s state x

(1)
k

and P2’s state x
(2)
k . Let U

(1)
k ⊂R (for each k ∈K ) be a closed

interval called the P1’s decision space. Its elements are P1’s

permissible decisions u
(1)
k at stage k, announced by P1 at the

beginning of each stage. Let U
(2)
k ⊂ R (k ∈ K ) be the P2’s

decision space. Its elements are P2’s permissible decisions

u
(2)
k at stage k. The state of the game evolves according to

the equation

xk+1 = fk

(
xk,u

(1)
k ,u

(2)
k

)
, k ∈ K , (1)

with the initial state x1 ∈ X and the state function fk :

X ×U
(1)
k ×U

(2)
k →X . Let the information gained and recalled

by Pi at stage k of the game be determined by η
(i)
k , an

a priori known selection from
(
x
(1)
1 , . . . ,x

(1)
k ; x

(2)
1 , . . . , x

(2)
k

)
.

Specifications of η
(i)
k for all k ∈ K characterize the infor-

mation structure of the game for Pi. Let N
(i)
k

def
=

{(
η
(i)
k

)T}
.

Let Γ
(i)
k be a prespecified class of measurable mappings

γ
(i)
k : N

(i)
k → U

(i)
k , called Pi’s permissible strategies at stage

k. The aggregate mapping γ(i) =
(
γ
(i)
1 ,γ

(i)
2 , . . . ,γ

(i)
K

)
is Pi’s



strategy, and the class Γ(i) of all such mappings γ(i) so that

γ
(i)
k ∈ Γ

(i)
k , k ∈K , is Pi’s strategy set. We will refer to a P2’s

strategy based on the P1’s strategy as the P2’s response to

the P1’s strategy.

Definition 2.1: (Information structure) In a two-person

discrete time dynamic game, we say that Pi’s (i ∈ {1,2})

information has (for all k ∈ K )

(a) an open-loop structure if η
(i)
k = x1,

(b) a closed-loop structure if η
(i)
k = (x1, . . . ,xk) ,

(c) a feedback structure if η
(i)
k = xk.

In this paper we will consider cases (a) and (b), while case

(c) is a subject of the future research.

Let L(i) :
(
X ×U

(1)
1 ×U

(2)
1

)
×

(
X ×U

(1)
2 ×U

(2)
2

)
× . . . ×(

X ×U
(1)
k ×U

(2)
k

)
→ R be called Pi’s profit function. Each

player maximizes L(i), taking into account possible actions

of the other player.

B. Assumptions on state and profit functions

In order to simplify the analysis, we will mostly as-

sume (unless stated differently), the following: The functions

fk

(
·,u

(1)
k ,u

(2)
k

)
, fk

(
xk, ·,u

(2)
k

)
, and fk(·,u

(1)
k , ·) are continu-

ously differentiable on R
2
+, U

(1)
k , and U

(2)
k , respectively.

The profit functions are stage-additive, i.e., there exists g
(i)
k :

X2 ×U
(1)
k ×U

(2)
k → R, for all k ∈ K , so that1

L(i)
(
u(1),u(2)

)
=

K

∑
k=1

g
(i)
k

(
xk,u

(1)
k ,u

(2)
k ,xk+1

)
, (2)

i ∈ {1,2}, and continuously differentiable on U (1) ×U (2).

Furthermore, g
(i)
k

(
·,u

(1)
k ,u

(2)
k , ·

)
and g

(i)
k

(
xk,u

(1)
k , ·,xk+1

)
are

continuously differentiable on R
2 and U

(2)
k , respectively.

These assumptions might be too restrictive for real-world

applications, but they assure us the existence and with some

additional assumptions also uniqueness of the solutions of the

problems dealt with in this paper. However, we will discuss

how to proceed in more general situations when applicable.

C. Game formulation

An extensive form description of the game contains the

set of players, the index set defining the stages of the

game, the state space and the decision spaces, the state

equation, the observation sets, the state-observation equation,

the information structure of the game, the information spaces,

the strategy sets, and the profit functionals.

Similarly as it is done in [2] for a general N-person

discrete-time game, we can transform the game into a

normal-form game. For each fixed initial state x1 and for each

pair
(
γ(1),γ(2)

)
, where γ(i) ∈ Γ(i), i ∈ {1,2}, the extensive

form description leads to the unique vector sequence

(
u
(i)
k

def
= γ

(i)
k

(
η
(i)
k

)
, i ∈ N, k ∈ K

)
. (3)

Then, substitution of (3) into L(1) and L(2) leads to a pair of

functions reflecting the corresponding profits of the players.

1For the sake of notation convenience we refer to the profit functions as

L(i)
(
u(1),u(2)

)
, with u(i)

def
=

(
u
(i)
1 , . . . ,u

(i)
K

)T
.

This further implies existence of a composite mapping J(i) :

Γ(1) ×Γ(2) → R for each i ∈ {1,2}, which is the strategy-

dependent profit function. The permissible strategy spaces(
Γ(1),Γ(2)

)
and the pair

(
J(1)(γ(1),γ(2)),J(2)(γ(1),γ(2))

)
con-

stitute the normal form description of the game for each fixed

initial state x1. Under the normal form description there is no

essential difference between infinite discrete-time dynamic

games and finite games. This means that techniques used for

finding solutions of finite games, such as saddle-point, Nash,

and Stackelberg equilibrium solution concepts, introduced

originally for finite games, can be used for solving infinite

discrete-time dynamic games [2].

III. OPEN-LOOP GAME

In this section we summarize and generalize already

known results on Stackelberg equilibria for games with the

open-loop information structure, which can be found in [2],

[3], [10], [11], [21]. To solve such problems, the classical

techniques of optimal control theory, i.e., the maximum

principle [14], [22] and dynamic programming [2], [13], [23],

can be used. By recursive substitution of (1) into (2), the

profit functions can be made dependent only on u(1) and

u(2), and x1, which is known a priori. Then the game can be

viewed as a static game.

Definition 3.1: (P2’s optimal response) The set

R(2)
(
γ(1)

)
⊂ Γ(2) defined for each γ(1) ∈ Γ(1) by R(2)

(
γ(1)

)
={

ζ ∈ Γ(2)|J(2)
(
γ(1),ζ

)
≥ J(2)

(
γ(1),γ(2)

)
, ∀γ(2) ∈ Γ(2)

}
is

P2’s optimal response to a strategy γ(1) ∈ Γ(1) of P1.

Definition 3.2: (Stackelberg equilibrium strategy) In a

Stackelberg game with P1 as the leader and P2 as the follower,

a strategy γ(1)∗ is P1’s Stackelberg equilibrium strategy, if

minγ(2)∈R(2)(γ(1)∗) J(1)(γ(1)∗,γ(2))

= maxγ(1)∈Γ(1) minγ(2)∈R(2)(γ(1)) J(1)(γ(1),γ(2))
def
= J(1)∗. The

quantity J(1)∗ is P1’s profit when she plays the Stackelberg

strategy.

Definition 3.3: (Stackelberg equilibrium solution) Let

γ(1)∗ ∈ Γ(1) be P1’s Stackelberg strategy. Then, any γ(2)∗ ∈
R(2)(γ(1)∗) is P2’s optimal strategy that is in equilibrium with

γ(1)∗. The pair
(
γ(1)∗,γ(2)∗

)
is a Stackelberg game with

P1 as the leader, and
(
J(1)

(
γ(1)∗,γ(2)∗

)
, J(2)

(
γ(1)∗,γ(2)∗

))

represents the corresponding Stackelberg outcomes.

When the conditions stated in Section II-B hold, the solution

of the game always exists, but might be nonunique. The

following proposition follows directly from Definition 3.2.

Proposition 3.1: If conditions stated in Section II-B

hold, the Stackelberg equilibrium of the open-loop discrete

dynamic game defined by (1) and (2) is a singleton if

L(2)
(
u(1), ·

)
is strictly concave on U (2) for all u1 ∈U (1) and

L(1)
(
·,u(2)

)
is strictly concave on U (1) for all u2 ∈U (2)

Let us focus on the approaches which lead to finding a

Stackelberg solution of the game defined by (1) and (2).

Approach 1

The standard way to find the optimal strategy for P1 is to

determine P2’s optimal response to P1’s decision by maximiz-

ing L(2)
(
u(1),u(2)

)
for every fixed u(1) ∈U (1) [2]. Denoting



this mapping by D : U (1) →U (2), the optimization problem

faced by P1 is then maximization of L(1)
(
u(1),D

(
u(1)

))
over

U (1), yielding P1’s Stackelberg strategy in this open-loop

game. With an increasing number of stages the dimension

of vectors u(1), u(2) increases as well. Therefore, such a

derivation of the P1’s strategies is not considered applicable

if K is high.

Approach 2

Another option, more applicable for problems with high

K, is to first determine P2’s optimal response to every

strategy γ(1) ∈ Γ(1) of P1. If the functions fk and gk satisfy

the conditions from Section II-B, there exists an optimal

response γ(1)(x1) = u(2) of P2 to any announced strategy

u(1) = γ(1) ∈ Γ(1) of P1, satisfying

xk+1 = fk

(
xk,u

(1)
k ,u

(2)
k

)
, x1 = x1,

u
(2)
k = arg max

u
(2)
k

∈U
(2)
k

H
(2)
k (λk+1,u

(1)
k ,u

(2)
k ,xk),

λk = ∇xk
fk

(
xk,u

(1)
k ,u

(2)
k

)T

·
[
λk+1 +

( ∂

∂ xk+1

g
(2)
k

(
xk,u

(1)
k ,u

(2)
k ,xk+1

))T ]

+
[
∇xk

g
(2)
k

(
xk,u

(1)
k ,u

(2)
k ,xk+1

)]T
; λK+1 = 0,

H
(2)
k

(
λk+1,u

(1)
k ,u

(2)
k ,xk

) def
= g

(2)
k

(
xk,u

(1)
k ,u

(2)
k , fk(xk,u

(1)
k ,u

(2)
k )

)

+λ T
k+1 fk

(
xk,u

(1)
k ,u

(2)
k

)
.

The sequence λ1, . . . ,λK+1 is a sequence of two-dimensional

costate vectors. To obtain P1’s optimal Stackelberg strategy,

one has to maximize L(1)
(
u(1),u(2)

)
, taking into account P2’s

optimal response. Player P1 is then faced with the problem

max
u(1)∈U(1)

L(1)
(
u(1),u(2)

)
, subject to

xk+1 = fk

(
xk,u

(1)
k ,u

(2)
k

)
, x1 given,

λk = Fk

(
xk,u

(1)
k ,u

(2)
k ,λk+1

)
, λK+1 = 0,

∂

∂ u
(2)
k

H
(2)
k

(
λk+1,u

(1)
k ,u

(2)
k ,xk

)
= 0 (k ∈ K ),

where Fk
def
= ∇xk

fk

(
xk,u

(1)
k ,u

(2)
k

)T
λk+1+

+
[
∇xk

g
(2)
k

(
xk,u

(1)
k ,u

(2)
k , fk

(
xk,u

(1)
k ,u

(2)
k

))]T

.

Proposition 3.2: If
(
γ
(1)∗
k

(
x1

)
= u

(1)∗
k ∈ U

(1)
k , k ∈ K

)

denotes an open-loop Stackelberg equilibrium in the dy-

namic game, there exist finite vector sequences λ1, . . . ,λK ,

µ1, . . . ,µK , ν1, . . . ,νK , that satisfy the following relations:

x∗k+1 = fk

(
x∗k ,u

(1)∗
k ,u

(2)∗
k

)
, x∗1 = x1,

∂

∂ u
(1)
k

H
(1)
k

(
λk,µk,νk, p∗k+1,u

(1)∗
k ,u

(2)∗
k ,x∗k

)
= 0,

∂

∂ u
(2)
k

H
(1)
k

(
λk,µk,νk, p∗k+1,u

(1)∗
k ,u

(2)∗
k ,x∗k

)
= 0,

λ T
k−1 = ∇xk

H
(1)
k

(
λk,µk,νk, p∗k+1,u

(1)∗
k ,u

(2)∗
k ,x∗k

)
, λK = 0,

µT
k+1 =

∂

∂λk+1

H
(1)
k

(
λk,µk,νk, p∗k+1,u

(1)∗
k ,u

(2)∗
k ,x∗k

)
, µ1 = 0,

∂

∂ u
(2)
k

H
(2)
k

(
λ ∗

k+1,u
(1)∗
k ,u

(2)∗
k ,x∗k

)
= 0.

λ ∗
k = Fk

(
x∗k ,u

(1)∗
k ,u

(2)∗
k ,λ ∗

k+1

)
, λ ∗

K+1 = 0,

where H
(1)
k = g

(1)
k

(
xk,u

(1)
k ,u

(2)
k , fk

(
xk,u

(1)
k ,u

(2)
k

))

+µT
k Fk

(
xk,u

(1)
k ,u

(2)
k ,λk+1

)
+λ T

k fk

(
xk,u

(1)
k ,u

(2)
k

)

+νT
k

( ∂

∂ u
(2)
k

H
(2)
k

(
λk+1,u

(1)
k ,u

(2)
k ,xk

))T
.

Furthermore,
(
u
(2)∗
k |k ∈ K

)
is the corresponding unique

open-loop Stackelberg strategy of P2 and
(
x∗k+1|k ∈ K

)
is

the state trajectory associated with the Stackelberg solution.

Proof. The problem can be transformed into a finite nonlinear

programming problem [11]. The proof then follows from

application of the dynamic programming principle [2], [23],

[24] to such a problem. �

Using Proposition 3.2, a closed-form solution of the open-

loop Stackelberg problem can be found recursively.

Remark 3.1: (Closed-loop information structure for P2) It

can be shown that if P2 has a closed-loop information, her

optimal response will be any closed-loop representation of

the open-loop policy
(
u
(2)
k |k ∈K

)
, i.e., any strategy that will

generate the same unique state trajectory and that will have

the same open-loop value on this trajectory. However, P1’s

unique optimal strategy will remain the same, whereas P2’s

corresponding optimal response strategy may be nonunique.

Discussion

Proposition 3.1 discusses a very specific situation in which

L(2)(u(1), ·) is strictly concave on U (2). In such a situation

the optimal response of P2 to any P1’s decision is unique.

Even if P1 has multiple sequences of decisions yielding the

same profit for her, the decision among them yielding the

lowest profit to P2 is unique. Strict concavity of L(1) then

yields the unique game solution.

Without assumptions defined in Section II-B the game

does not need to have a classical solution, even if the

Hamiltonians H
(1)
k and H

(2)
k are smooth. In such situations

the problem can be approached by looking for generalized

solutions, satisfying the conditions in Proposition 3.2 almost

everywhere. Existence results for general Hamilton-Jacobi-

Bellman equations have been obtained by several authors,

e.g., [25]–[27], with the most general results being given by

[28]. Carrying the steps equivalent to the steps introduced in

this section to find a classical solution can then be carried

out to find the class of generalized solutions. The question

of uniqueness of the generalized solution is more complex.

The notion of viscosity solution [29], [30], which may be

nondifferentiable and for which uniqueness (and even sta-

bility and general existence) theorems are available, should

be introduced if we wish to obtain the unique generalized

solution.

IV. CLOSED-LOOP GAME

In this section we will first show the way how to find

the feedback Stackelberg equilibrium and the problem of



finding the (global) Stackelberg solution of the closed-loop

Stackelberg game, the main problem dealt with in this paper.

A. Feedback Stackelberg equilibrium

With the closed-loop information structure the feedback

solution of the game can be obtained recursively, using

dynamic programming and solving a static Stackelberg game

at each stage. Our aim is to obtain the feedback Stackelberg

solution valid for all possible initial states x1 ∈ X . A pair(
γ(1)∗,γ(2)∗

)
constitutes a feedback Stackelberg solution if

for all appropriate xk

max
γ
(1)
k

∈Γ
(1)
k

max
γ
(2)
k

∈R
(2)
k

(
γ
(1)
k

)Ψ̂
(1)
k

(
γ
(1)
k ,γ

(2)
k ,xk

)
= Ψ̂

(1)
k

(
γ
(1)∗
k ,γ

(2)∗
k ,xk

)
,

where R
(2)
k

(
γ
(1)
k

)
is a singleton set defined by R

(2)
k

(
γ
(1)
k

)
={

χ ∈ Γ
(2)
k : Ψ̂

(2)
k

(
γ
(1)
k ,χ ,xk

)
= max

γ
(2)
k

∈Γ
(2)
k

Ψ̂
(2)
k

(
γ
(1)
k ,γ

(2)
k ,xk

)

∀xk ∈ R+ × [0,1]
}
, Ψ̂

(i)
k

(
γ
(1)
k ,γ

(2)
k ,xk

) def
= Ψ

(i)
k

(
fk

(
xk,

γ
(1)
k

(
xk

)
, γ

(2)
k

(
xk

))
, γ

(1)
k

(
xk

)
,γ

(2)
k

(
xk

)
, xk

)
, i ∈

{1,2}, k ∈ K , and Ψ
(i)
k can be defined recursively

as Ψ
(i)
k

(
xk+1,γ

(1)
k

(
xk

)
,γ

(2)
k

(
xk

)
,xk

)

= Ψ
(i)
k+1

(
fk+1

(
xk+1,γ

(1)∗
k+1

(
xk+1

)
,γ

(2)∗
k+2

(
xk+1

))
,γ

(1)∗
k+1

(
xk+1

)
,

γ
(2)∗
k+1

(
xk+1

)
,xk+1

)
+ g

(i)
k

(
xk,γ

(1)
k

(
xk+1

)
,γ

(2)
k

(
xk

)
,xk+1

)
;

Ψ
(i)
k+1 = 0. With Ψ̂

(2)
k

(
γ
(1)
k , ·,xk

)
strictly concave on U

(2)
k

(k ∈ K ) and a singleton set R
(2)
k the recursive definition

of Ψ
(i)
k provides an easily implementable procedure for

computation of feedback Stackelberg strategies.

B. (Global) Stackelberg equilibrium

The (global) Stackelberg equilibrium in closed-loop deci-

sion problems cannot be found by utilizing standard optimal

control techniques, as the reaction set of P2 cannot be gen-

erally determined in a closed form for all possible strategies

of P1. To show the difficulties encountered when solving

the problem in which P1 has access to dynamic information

and to motivate the solution approach that we propose, we

will consider two case studies: In Section IV-B.1 we will

deal with a 2-stage game with each P1 and P2 acting only

once. If, additionally, P2 acts in the last stage of the game,

the problem becomes more difficult to solve. Therefore, in

Section IV-B.2 such a problem will be dealt with. On the

basis of these examples we propose the methodology to solve

the general closed-loop games (Section IV-C).

1) First motivation problem: Let

L(1) =−3x3
2 +

(
u
(1)
2

)2
−α

(
u
(2)
1

)2
, 1 > α ≥ 0,

L(2) =−5x3
2 −

(
u
(2)
1

)2
,

x2 = x1 +u
(2)
1 , x3 = x2 +u

(1)
2 . (4)

We assume that P1, acting at stage 2, has access to both x1

and x2, while P2 has access to x1 only.

To any strategy γ(1) ∈ Γ(1) announced by P1 an optimal

reaction of P2 equals

arg max
u
(2)
1 ∈R

(
−5

(
x1 +u

(2)
1 + γ(1)

(
x2,x1

))2
−
(
u
(2)
1

)2)
.

Writing such a strategy symbolically as γ(2)
(
x1;γ(1)

)
, the

goal of P1 is to find2

arg max
γ(1)∈Γ(1)

(
−3

(
γ(2)

(
x1;γ(1)

)
+ γ(1)

(
x1 + γ(2)

(
x1;γ(1)

)
,x1

)

+ x1

)2
+
(
γ(1)

(
x1 + γ(2)

(
x1;γ(1)

)
,x1

))2

−α
(
γ(2)

(
x1;γ(1)

))2
). (5)

This is a constrained optimization problem with the con-

straint in the form of the maximum of a function. If we

restricted the permissible strategies of P1 to C2-functions of

the first argument, we could obtain the first-order and the

second-order conditions implicitly determining γ(2)
(
x1,γ

(1)
)

[31]. However, depending on α, P1’s optimal strategy may

be nondifferentiable. Therefore, we are interested in methods

not relying on the twice differentiability of P1’s optimal

strategy.

The problem can be approached by looking for generalized

solutions, satisfying (4) and (5) almost everywhere [28].

However, the class of generalized solutions can be large

and choosing the appropriate elements of this class may

require nontrivial analysis. The notion of viscosity solution

[29], [30] should be introduced if we wish to obtain the

unique generalized solution. However, this approach may

cause difficulties if there exist multiple classical solutions

of the problem [30]. We need to adopt an approach which

leads to finding both classical and generalized solutions.

Therefore, in this paper we propose another approach,

involving the so-called team maximum

max
γ(1)∈Γ(1)

max
γ(2)∈Γ(2)

J(1)
(
γ(1),γ(2)

)
. (6)

This value is clearly an upper bound on the profit of P1.

Finding (6) is referred to as the team problem [2], [6]. To find

strategies that imply (6) we utilize a dynamic programming

approach [13], [23]. The pair of feedback strategies

γ(1),†(x2) =−
3x2

2
, γ(2),†(x1) =−

3x1

3−2α
(7)

provides the unique globally maximizing solution within the

class of feedback strategies. The corresponding optimal state

trajectory is described by

x
†
2 =−

2x1α

3−2α
, x

†
3 =−

x
†
2

2
. (8)

and the team maximum for P1 is

J(1)
(
γ(1),†,γ(2),†

)
=−

3α x1
2

3−2α
. (9)

If a game extension, in which P1 knows x1, is considered,

γ(1) becomes a nonunique optimal strategy for P1, but any

representation of this strategy on the state trajectory (8) also

constitutes an optimal strategy. More generally, if we denote

the class of such strategies by Γ(1),†, any pair

γ(1),† ∈ Γ(1),†
, γ(2),†

(
x1

)
=−

3x1

3−2α
(10)

2If such a solution is nonunique, we take a supremum of all such
solutions.



constitutes a team-maximum solution. For each such pair, the

state trajectory and the corresponding profit are still given by

(8) and (9), respectively.

For (6) to be realized, there should exist an element of

Γ(1),†, which we will denote by γ(1)∗, which forces P2 to

choose γ(2),† even though she is maximizing her own profit,

i.e., γ(2),†
def
= argmaxγ(2)∈Γ(2) J(2)

(
γ(1)∗,γ(2)

)
. Moreover, the

maximum of J(2)
(
γ(1),†, ·

)
on Γ(2) has to be obtained

uniquely at γ(2),†.1 Intuitively, an optimal strategy for P1 is

the one that implies γ(1),† from (7) if P2 plays γ(2),† from (7)

and that penalizes P2 otherwise. One of such strategies is

γ(1),†
(
x1,x2

)
=

{
ρ x1, if

x2
x1

6=− 2α
3−2α ,

− 3x2
2
, if

x2
x1

=− 2α
3−2α .

(11)

Therefore, (11) constitutes a (discontinuous) Stackelberg

strategy for P1, with the unique optimal response of P2

being γ(2),† from (7). It can be shown that for this game

under the closed-loop information structure a Stackelberg

solution exists for all α ≥ 0. The Stackelberg strategy of

P1 is nonunique, but the optimal response of P2 is unique.

Lemma 4.1: The Stackelberg solutions of the game from

Example IV-B.1 constitute Nash equilibrium solutions.

Proof. A Stackelberg solution satisfies J(2)
(
γ(1),†,γ(2),†

)
≥

J(2)
(
γ(1),†,γ(2)

)
, ∀γ(2) ∈ Γ(2). The inequality

J(1)
(
γ(1),†,γ(2),†

)
≥ J(2)

(
γ(1),γ(2),†

)
, ∀γ(1) ∈ Γ(1) also

holds, since the Stackelberg solution is also team-optimal in

this case. �

We can recapitulate the outcomes of the example:

• The Stackelberg profit of P1 is equal to her team

maximum.

• A Stackelberg solution exists for all α > 0.

• The Stackelberg strategy of P1 is nonunique (depends,

in this example, on ρ), but the optimal response of P2 to

all those strategies is nonunique (and independent of ρ).

• Optimal P1’s strategy may be discontinuous.

Team-maximum based approach led to finding a closed-

loop solution. This approach can be recursively applied to

games with more stages and more complex dynamics, but

the related team problem is not always the one determined

by (6), especially if P2 acts in the last stage of the game.

In the following example we show how to deal with such

situations.

2) Second motivation problem: Let

L(1) =−3x3
2 +

(
u
(1)
2

)2
−α

(
u
(2)
1

)2
, 1 > α ≥ 0,

L(2) =−5x3
2 −

(
u
(2)
1

)2
−
(
u
(2)
2

)2
,

x2 = x1 +u
(2)
1 , x3 = x2 +u

(1)
2 +u

(2)
2 . (12)

We assume that P1 acting at stage 2 has a single decision

variable u
(2)
1 , while P2 acting in both stages 1 and 3 has

decision variables u
(2)
1 and u

(2)
2 . The optimal reaction of P2 to

any announced strategy γ(1) of P1 is γ
(2)
2

(
x2;γ(1)

)
=− 5

6

(
x2+

γ(1)
(
x2,x1

))
. Substituting this expression into J(1) and J(2)

derived from L(1) and L(2), respectively, gives

J̃(1) =−
1

12
x2

2 −
1

6
x2 γ(1)

(
x2,x1

)
+

11

12

(
γ(1)

(
x2,x1

))2

−α
(
γ(2)

(
x1

))2
,

J̃(2) =−
5

6
x2

2 −
5

3
x2γ(1)

(
x2,x1

)

−
5

6

(
γ(1)

(
x2,x1

))2
−
(
γ(2)

(
x1

))2
.

The maximum that P1 can achieve is then

max
γ(1)∈Γ(1)

max
γ(2)∈Γ(2)

J̃(1)
(
γ(1),γ(2)

)
. (13)

By this way we have converted the problem into a different

problem in which P1 does not act in the last stage, similar to

the example in Section IV-B.1, with the corresponding team

problem (13). The problem solution in feedback strategies is

γ(1),† =
x2

11
, γ(2),† =−

x1

11α +1
, (14)

with the corresponding unique trajectory being

x
†
2 =

11x1α

11α +1
, x

†
3 =

2x
†
2

11
. (15)

The associated team maximum is − α x1
2

1+11α , which is an

upper bound on the P1’s profit and which is lower than the

team maximum of the original game (12). We proceed as in

Example IV-B.1 and obtain a strategy for P1 that forces P2

to strategy γ(2),† from (14):

γ(1),†
(
x1,x2

)
=

{
ρ x1, if

x2
x1

6= 11α
11α+1

,

x2
11
, if

x2
x1

= 11α
11α+1

,
(16)

with ρ > 0. The optimal response of P2 to such a strategy is

γ
(2)∗
1

(
x1

)
= − x1

11α+1
, γ

(2)∗
2

(
x1,x2

)
= − 5

6

(
x2 + γ(1)∗

(
x2,x1

))
,

bringing to P1 profit (13).

It can be shown that for α = 0 no continuously differ-

entiable Stackelberg equilibrium exists. Moreover, because

P2 acts at the last stage of the game, there does not exist

a Stackelberg solution that would be a Nash equilibrium

solution.

C. General approach

Let us now consider a game with closed-loop information

structure, dynamics defined by (1), and profit functions (2).

Based on the analysis in Sections IV-B.1 and IV-B.2, we

propose the following approach:

• If the follower acts in the last stage of the game K,

convert the game into the game with the leader acting

last, as was shown in Section IV-B.2.

• Find the team maximum of the game for the leader,

which determines the upper bound of the leader’s profit.

• Adopt a particular representation of the optimal team

strategy of the leader in this team problem. This par-

ticular strategy must force the follower to maximize

the profit function of the team problem while she is

maximizing her own profit function. Such a strategy can

be found following the example in Section IV-B.1.



As was it shown in Sections IV-B.1 and IV-B.2, the

leader’s strategy may be nonunique and may be discontin-

uous. However, if there exists a smooth optimal strategy of

P1, then this strategy can be also found using the indirect

approach presented in this section. For some problems a

P1’s strategy forcing the follower to maximize the P1’s profit

function cannot be found. This does not need to mean

that there is no team-optimal solution. However, if we are

unable to find such a solution, we can restrict ourselves to

suboptimal solutions of the original game, as it will be shown

in the companion paper for the stochastic variant of the game

(1)-(2).

V. CONCLUSIONS & FUTURE RESEARCH

We have introduced specific types of discrete-time infinite

dynamic games and have proposed methods to find their

Stackelberg equilibrium solutions. Such solutions depend on

the information structure of the games. We have reviewed

already existing methods applicable to solve problems with

open-loop information structure. After having studied two

specific examples we have proposed an indirect method to

solve the game with closed-loop information structure for

general problems. This method is applicable especially if the

classical solutions of the problem may not exist.

While in this paper we have focused on deterministic

problems, in the companion paper we will focus on their

stochastic variants.

Future research consists of extending the approaches

proposed here to feedback Stackelberg games and inverse

Stackelberg problems.
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[21] R. P. Hämäläinen, Nash and Stackelberg solutions to general linear-

quadratic two-player difference games. Espoo, Finland: Systems The-
ory Laboratory B-29, Helsinki University of Technology publication,
1976.

[22] D. E. Kirk, Optimal Control Theory, An Introduction. Englewood
Cliffs, New Jersey: Prentice Hall, 1970.

[23] D. P. Bertsekas, Nonlinear Programming. Belmont, Massachusetts:
Athena Scientific, 2003.

[24] S. Boyd, Convex Optimization. Cambridge, UK: Cambridge Univer-
sity Press, 2004.

[25] A. Douglis, “The continuous dependence of generalized solutions of
nonlinear partial differential equations upon initial data,” Communica-

tions on Pure and Applied Mathematics, vol. 14, pp. 267–284, 1961.
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