
Delft University of Technology
Delft Center for Systems and Control

Technical report 10-064

Exploiting policy knowledge in online
least-squares policy iteration: An

empirical study∗

L. Buşoniu, B. De Schutter, R. Babuška, and D. Ernst

If you want to cite this report, please use the following reference instead:
L. Buşoniu, B. De Schutter, R. Babuška, and D. Ernst, “Exploiting policy knowledge
in online least-squares policy iteration: An empirical study,” Automation, Computers,
Applied Mathematics, vol. 19, no. 4, pp. 521–529, 2010.

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/10_064.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/10_064.html


Exploiting policy knowledge in online least-squares policy iteration:

An empirical study

Lucian Buşoniu

Team SequeL

INRIA Lille – Nord Europe

France

lucian@busoniu.net

Bart De Schutter, Robert Babuška

Delft Center for Systems and Control

Delft University of Technology

The Netherlands

{b.deschutter, r.babuska}@tudelft.nl

Damien Ernst

Institut Montefiore

FNRS & University of Liège

Belgium

dernst@ulg.ac.be

Abstract—Reinforcement learning (RL) is a promising par-
adigm for learning optimal control. Traditional RL works for
discrete variables only, so to deal with the continuous variables
appearing in control problems, approximate representations of
the solution are necessary. The field of approximate RL has
tremendously expanded over the last decade, and a wide array of
effective algorithms is now available. However, RL is generally
envisioned as working without any prior knowledge about the
system or the solution, whereas such knowledge is often available
and can be exploited to great advantage. Therefore, in this paper
we describe a method that exploits prior knowledge to accelerate
online least-squares policy iteration (LSPI), a state-of-the-art
algorithm for approximate RL. We focus on prior knowledge
about the monotonicity of the control policy with respect to
the system states. Such monotonic policies are appropriate for
important classes of systems appearing in control applications,
including for instance nearly linear systems and linear systems
with monotonic input nonlinearities. In an empirical evaluation,
online LSPI with prior knowledge is shown to learn much faster
and more reliably than the original online LSPI.

Index Terms—reinforcement learning, prior knowledge, least-
squares policy iteration, online learning.

I. INTRODUCTION

Reinforcement learning (RL) can address problems from

a variety of fields, including automatic control, computer sci-

ence, operations research, and economics [1]–[4]. In automatic

control, RL algorithms can solve nonlinear, stochastic optimal

control problems, in which a cumulative reward signals must

be maximized. Rather than using a model as in classical

control, a RL controller learns how to control the system

from data, and online RL techniques collect their own data

by interacting with the system. For systems with continuous

or large discrete state-action spaces, as most of the systems

encountered in automatic control, RL solutions cannot be rep-

resented exactly, but must be approximated [4]. State-of-the-art

algorithms for approximate RL use weighted summations of

basis functions to represent the value function (which gives the

cumulative reward as a function of the states and possibly of

the actions), and least-squares techniques to find the weights.

Such techniques have been studied by many authors [5]–[10],

and recently surveyed in e.g. [11]–[13].

One such algorithm is least-squares policy iteration (LSPI)

[7]. At every iteration, LSPI evaluates the current control

Based on the paper “Using prior knowledge to accelerate least-squares
policy iteration” by Buşoniu, De Schutter, Babuška, and Ernst, which appeared
in Proceedings of the 2010 IEEE International Conference on Automation
Quality and Testing Robotics (AQTR), © 2010 IEEE.

policy, by computing its approximate value function from

transition samples, and then finds a new, improved policy from

this value function. LSPI can efficiently use transition data col-

lected in any manner, but originally works offline. In [14], we

have introduced an online variant of LSPI, which collects its

own data by interacting with the system, and performs policy

improvements “optimistically” [3], [15], without waiting until

an accurate evaluation of the current policy is completed. Such

policy improvements allow online LSPI to learn fast, i.e., to

achieve good performance after interacting with the system for

only a short interval of time.

In this paper, we present a method to exploit prior knowl-

edge in order to improve the learning speed of online LSPI. Al-

though RL is usually envisioned as working without any prior

knowledge, such knowledge is often available, and exploiting

it can be highly beneficial. We consider prior knowledge in

the form of the monotonicity of the control policy with respect

to the state variables. Such monotonic policies are suitable for

controlling important classes of systems. For instance, policies

that are linear in the state variables, and therefore monotonic,

work well for controlling linear systems, as well as nonlinear

systems in neighborhoods of equilibria where they are nearly

linear. Moreover, some linear systems with monotonic input

nonlinearities (such as saturation or dead-zone nonlinearities)

have policies that, while strongly nonlinear, are nevertheless

monotonic.

We employ a policy representation for which monotonicity

can be ensured by imposing linear inequality constraints on

the policy parameters. This allows policy improvements to

be performed efficiently, using quadratic programming. A

speedup of the learning process is expected, because online

LSPI restricts its focus to the class of monotonic policies,

and no longer invests valuable learning time in trying other,

unsuitable policies. The effects of using prior knowledge in

online LSPI are illustrated in a simulation study involving the

stabilization of a DC motor.

Several other online RL algorithms based on policy iter-

ation and least-squares techniques have been proposed. For

instance, [16] investigated a version of LSPI with online

sample collection, focusing on the issue of exploration. This

version does not perform optimistic policy updates, but fully

executes offline LSPI between consecutive sample-collection

episodes. An algorithm related to LSPI, called least-squares

policy evaluation [6], was studied in the optimistic context



in [17]. Another optimistic variant of policy iteration based

on least-squares methods was given by [10]. However, these

techniques do not exploit prior knowledge about the solution.

The remainder of this paper is organized as follows. The

necessary theoretical background on RL, together with offline

and online LSPI, are described in Section II. Then, in Sec-

tion III, we introduce our method to integrate prior knowledge

into online LSPI, and in Section IV, we present the results of

our simulation experiments. Section V concludes the paper

and outlines some promising directions for future research.

Note that this article is a revised and extended version of

[18]. New, more detailed experimental results and insights are

provided, while the introduction of the various algorithms has

been extended.

II. PRELIMINARIES: REINFORCEMENT LEARNING AND

ONLINE LSPI

This section first summarizes the RL problem in the frame-

work of Markov decision processes, following [4]. Then,

offline LSPI [7] and the online LSPI algorithm we introduced

in [14] are described.

A. Markov decision processes and classical policy iteration

Consider a Markov decision process with state space X

and action space U . Assume for now that X and U are

countable. The probability that the next state xk+1 is reached

after action uk is taken in state xk is f (xk,uk,xk+1), where

f : X ×U ×X → [0,1] is the transition probability function.

After the transition to xk+1, a reward rk+1 = ρ(xk,uk,xk+1) is

received, where ρ : X ×U ×X → R is the reward function.

The symbol k denotes the discrete time index. The expected

infinite-horizon discounted return of initial state x0 under a

control policy h : X →U is:

Rh(x0) = lim
K→∞

Exk+1∼ f (xk,h(xk),·)

{
K

∑
k=0

γkrk+1

}
(1)

where rk+1 = ρ(xk,uk,xk+1), γ ∈ [0,1) is the discount factor,

and the notation xk+1∼ f (xk,h(xk), ·) means that xk+1 is drawn

from the distribution f (xk,h(xk), ·). The goal is to find an

optimal policy h∗ that maximizes the return (1) from every

x0 ∈ X . RL algorithms aim to find h∗ from transition and

reward data, without using the functions f and ρ . Moreover,

online RL algorithms do not even require data in advance, but

collect their own data, by interacting with the system while

they learn.

The classical policy iteration algorithm starts with some

initial policy h0. At every iteration τ ≥ 0, the algorithm

first evaluates the current policy hτ by computing its Q-

function Qτ : X×U→R, which gives for every pair (x,u) the

expected return when starting in x, applying u, and following

hτ thereafter. This Q-function is the unique solution of the

Bellman equation:

Qτ = Tτ(Qτ) (2)

where the Bellman mapping Tτ is:

[Tτ(Q)](x,u) = Ex′∼ f (x,u,·)

{
ρ(x,u,x′)+ γQ(x′,hτ(x

′))
}

Once Qτ is available, an improved policy is determined:

hτ+1(x)← argmax
u

Qτ(x,u) (3)

and the algorithm continues with this policy at the next

iteration. Policy iteration is guaranteed to converge to h∗, see,

e.g., Section 4.3 of [2].

B. Least-squares policy iteration

When the state-action space is very large, Q-functions

cannot be represented exactly, but must be approximated.

Here, linearly parameterized approximators are considered:

Q̂(x,u) = φ T(x,u)θ (4)

where φ(x,u) is a vector of n basis functions (BFs), φ(x,u) =
[φ1(x,u), . . . ,φn(x,u)]

T, and θ ∈ R
n is a parameter vector.

Given this approximator, the policy evaluation problem at the

τth iteration, for the policy hτ , boils down to finding θτ so

that Q̂τ ≈ Qτ , where Q̂τ(x,u) = φ T(x,u)θτ .

LSPI [7] is an originally offline RL algorithm that finds Q̂τ

by solving a projected form of the Bellman equation:

Q̂τ = Pw(Tτ(Q̂τ)) (5)

where Pw performs a weighted least-squares projection

onto the space of representable Q-functions, i.e., the space{
φ T(x,u)θ |θ ∈ R

n
}

spanned by the BFs. The weight func-

tion w : X×U→ [0,1] must satisfy ∑x,u w(x,u) = 1, because it

is also interpreted as a probability distribution. Note that the

algorithm is called “least-squares” because (5) is, in a sense, a

least-squares approximation of the original Bellman equation

(2).

Equation (5) is rewritten as a linear system in the parame-

ters:

Γθτ = z

where the matrix Γ ∈ R
n×n and the vector z ∈ R

n can be

estimated from samples (note Γ and z are different at every

iteration, since they depend on the policy). More specifically,

consider a set of ns samples {(xls ,uls ,x
′
ls
∼ f (xls ,uls , ·),rls =

ρ(xls ,uls ,x
′
ls
)) | ls = 1, . . . ,ns}, where the probability of each

pair (x,u) is w(x,u). The estimates Γ̂ and ẑ are initialized to

zeros and updated for every sample ls = 1, . . . ,ns as follows:

Γ̂← Γ̂+φ(xls ,uls)φ
T(xls ,uls)− γφ(xls ,uls)φ

T(x′ls ,hτ(x
′
ls
))

ẑ← ẑ+φ(xls ,uls)rls

After processing the entire batch of samples, an estimated

parameter vector θ̂τ is found by solving:

1

ns
Γ̂θ̂τ =

1

ns
ẑ

This equation can be solved in several ways, e.g., (i) by

matrix inversion, (ii) by Gaussian elimination, or (iii) by in-

crementally computing the inverse with the Sherman-Morrison

formula. When ns → ∞ and under appropriate conditions,
1
ns

Γ̂→ Γ and 1
ns

ẑ→ z, and therefore θ̂τ → θτ (see [7], Chapter

6 of [3]). Note that in the sequel, we drop the hat notation



for Γ, z, and θτ , with the implicit understanding that they are

always estimates.

Once a parameter vector is available, it is used in (4)

to obtain an approximate Q-function, thus completing the

policy evaluation step. In turn, this approximate Q-function

is plugged into (3) to perform the policy improvement step,

and the LSPI algorithm continues with the improved policy at

the next iteration.

LSPI is data-efficient and, as long as the policy evaluation

error is bounded, eventually produces policies with a bounded

suboptimality. Note that although for the derivation above

we assumed that X and U are countable, LSPI can also be

applied in uncountable spaces, such as the continuous spaces

found in most automatic control problems. For a more detailed

description of LSPI, see [7].

C. Online LSPI

In this paper, we consider an online variant of LSPI, which

collects its own transition samples by interacting with the

system [14]. This online variant is shown in Algorithm 1. Note

that an idealized, infinite-time setting is considered, in which

the algorithm runs forever and its result is the performance

improvement achieved while interacting with the system. In

practice, the algorithm is of course stopped after a finite time.

Algorithm 1 Online LSPI with ε-greedy exploration.

Input: BFs φ1, . . . ,φn; γ; Kθ ; {εk}k≥0; δ
1: τ ← 0; initialize policy h0

2: Γ← δ In×n; z← 0n

3: measure initial state x0

4: for each time step k ≥ 0 do

5: uk←

{
hτ(xk) w.p.1− εk

a uniform random action w.p.εk

6: apply uk, measure next state xk+1 and reward rk+1

7:
Γ←Γ+φ(xk,uk)φ

T(xk,uk)

− γφ(xk,uk)φ
T(xk+1,hτ(xk+1))

8: z← z+φ(xk,uk)rk+1

9: if k = (τ +1)Kθ then

10: find θτ by solving 1
k+1

Γθτ =
1

k+1
z

11: hτ+1(x)← argmaxu φ T(x,u)θτ

12: τ ← τ +1

13: end if

14: end for

To achieve fast learning, online LSPI performs policy im-

provements once every few transitions, without waiting until

an accurate evaluation of the current policy is completed

(unlike the offline algorithm, which processes all the samples

at every iteration, to obtain an accurate policy evaluation).

The integer Kθ ≥ 1 is the number of transitions between two

consecutive policy improvements. Such a variant of policy

iteration is called “optimistic” [3], [15] (it is “fully optimistic”

if a policy improvements is performed after each transition,

and “partially optimistic” otherwise).

Online LSPI must also explore, i.e., try other actions than

those given by the current policy. Exploration helps to collect

informative data about (i) the performance of actions different

from those taken by the current policy, and (ii) regions of the

state space that would not be reached using this policy. In

Algorithm 1, ε-greedy exploration is employed, which applies

at every step k a uniformly random exploratory action with

probability εk ∈ [0,1], and the action indicated by the policy

with probability 1−εk, see, e.g., Section 2.2 of [2]. Typically,

εk decreases over time, so that the algorithm increasingly

exploits the current policy. Furthermore, to ensure the invert-

ibility of Γ in the early stages of the learning process, this

matrix is initialized to a small multiple of the identity matrix,

using the parameter δ > 0.

Note that, in practice, online LSPI does not have to compute

and store complete improved policies (line 11). Indeed, such a

procedure would be problematic in large and continuous state

spaces. Fortunately, improved actions can instead be found by

applying the formula at line 11 on demand, only for the states

where such actions are actually necessary (another alternative,

where an explicitly parameterized policy is stored and updated,

will be presented in Section III-B). Another observation is

that learning is often split in distinct trials, instead of being

performed along a single trajectory as shown – for simplicity –

in Algorithm 1. Each trial can be terminated after a predefined

length of time, or upon reaching certain special states (e.g.,

corresponding to a final goal or to an irrecoverable failure).

III. ONLINE LSPI WITH PRIOR KNOWLEDGE

RL is usually envisioned as working without any prior

knowledge about the system or the solution. However, in

practice, prior knowledge is often available, and using it can

be very beneficial. Prior knowledge may refer, e.g., to the

policy, to the Q-function, or to the system dynamics. We

describe a way to exploit prior knowledge about the optimal

policy, or more generally about good policies that are not

necessarily optimal. Policy knowledge is often easier to obtain

than knowledge about the value function (which is a rather

complicated function of the system dynamics, reward function,

and the policy itself).

Policy knowledge can generally be described by defining

constraints. The main benefit of constraining policies is a

speedup of the learning process, expected because the algo-

rithm restricts its focus to the constrained class of policies,

and no longer invests learning time in trying other, unsuitable

policies. We do not focus on accelerating computation, but

rather on using experience more efficiently: an algorithm is

fast if it performs well after a observing a small number

of transitions. This measure of learning speed is crucial in

practice, because obtaining data is costly (in terms of energy

consumption, wear-and-tear, and possibly economic profit),

whereas computation is relatively cheap.

We develop an online LSPI variant for globally monotonic

policies. Such policies are monotonic with respect to any state

variable, if the other state variables are held constant. Mono-

tonic policies are suitable for controlling important classes



of systems. For instance, policies that are linear in the state

variables, and therefore monotonic, work well for control-

ling (nearly) linear systems, as well as nonlinear systems

in neighborhoods of equilibria where they are nearly linear.

Monotonic policies are also work suitable for controlling some

linear systems with monotonic input nonlinearities (such as

saturation or dead-zone nonlinearities), for which the policy

may be strongly nonlinear, but still monotonic.

A. Globally monotonic policies

Consider a system with a D-dimensional, continuous state

space X ⊂ R
D. We assume that X is a hyperbox:

X = [xmin,1,xmax,1]×·· ·× [xmin,D,xmax,D] (6)

where xmin,d ∈ R, xmax,d ∈ R, and xmin,d < xmax,d , for d =
1, . . . ,D. For simplicity, we also assume that u is scalar, but

the entire derivation in the sequel can easily be extended to

multiple action variables.

A policy h is monotonic along the dth dimension of the

state space if and only if, for any pair (x, x̄) ∈ X×X of states

that fulfill:

xd ≤ x̄d ; and xd′ = x̄d′ ∀d
′ 6= d

the policy satisfies:

δmon,d ·h(x)≤ δmon,d ·h(x̄) (7)

where δmon,d ∈ {−1,1} specifies the monotonicity direction:

if δmon,d is −1 then h is decreasing along the dth dimen-

sion, and if it is 1 then h is increasing. A policy is (glob-

ally) monotonic if it is monotonic along every dimension

d. The monotonicity directions are collected in a vector

δmon = [δmon,1, . . . ,δmon,D]
T ∈ {−1,1}D

, which encodes the

prior knowledge about the policy monotonicity.

B. Enforcing monotonicity

To efficiently enforce policy monotonicity, two choices are

made. The first choice is to represent the policy explicitly,

rather than implicitly via the Q-function, as in the original

online LSPI. This frees us from translating the monotonicity

constraints into Q-function constraints – a task that, while

possible in principle, is very difficult to perform in practice,

due to the complex relationship between a policy and its Q-

function. The monotonicity constraints are enforced directly on

the policy parameters, in the policy improvement step. Note

that, since continuous-state policies cannot be represented

exactly in general, the explicit representation comes at the

expense of introducing policy approximation errors.

The second choice is to employ a linear policy parameteri-

zation:1

ĥ(x) = ∑
N

i=1
ϕi(x)ϑi = ϕT(x)ϑ (8)

where ϕ(x) = [ϕ1(x), . . . ,ϕN (x)]T are axis-aligned, normal-

ized radial basis functions (RBFs) with their centers arranged

1We use calligraphic notation to differentiate mathematical objects related
to policy approximation from those related to Q-function approximation (e.g.,
the policy parameters are denoted by ϑ , whereas the Q-function parameters
are denoted by θ ).

on a grid and having identical widths; and ϑ ∈ R
N is the

policy parameter vector. The first and last grid points are

placed at the boundaries of the hyperbox state space (6), and

the grid spacing is equidistant along each dimension. The

formula to compute the ith normalized RBF is:

ϕi(x) =
ϕ̄i(x)

∑N

i′=1 ϕ̄i′(x)
, where ϕ̄i(x) = exp

[
−

D

∑
d=1

(xd− ci,d)
2

b2
i,d

]

and where ci,d is the center coordinate along the dth dimen-

sion, and bi,d is the width along this dimension.

With this specific policy approximator, in order to satisfy (7)

it suffices to enforce a proper ordering of the parameters cor-

responding to each sequence of RBFs, along all the grid lines

and in every dimension of the state space. We have verified the

sufficiency of this condition using extensive experimentation,

for many RBF configurations and parameter values, and we

conjecture that it is also sufficient in general — although we

have not yet formally proven this.

To develop a mathematical notation for this condition,

denote the grid sizes along each dimension by, respectively,

N1, . . . ,ND; there are N = ∏D
d=1 Nd RBFs in total. Fur-

thermore, denote by ϕi1,...,iD the RBF located at grid indices

i1, . . . , iD, and by ϑi1,...,iD the parameter that multiplies this

RBF in (8). We will use these D-dimensional indices inter-

changeably with the single-dimensional indices that appear

in (8). Choosing any bijective mapping between the D-

dimensional indices and the single-dimensional ones suffices

to make these two indexing conventions equivalent.

The monotonicity conditions on the parameters can now be

written in the following, linear form:

δmon,1 ·ϑ1,i2,i3,...,iD ≤ δmon,1 ·ϑ2,i2,i3,...,iD ≤ . . .

. . .≤ δmon,1 ·ϑN1,i2,...,iD for all i2, i3, . . . , iD,

δmon,2 ·ϑi1,1,i3,...,iD ≤ δmon,2 ·ϑi1,2,i3,...,iD ≤ . . .

. . .≤ δmon,2 ·ϑi1,N2,i3,...,iD for all i1, i3, . . . , iD,

· · · · · · · · ·

δmon,D ·ϑi1,i2,i3,...,1 ≤ δmon,D ·ϑi1,i2,i3,...,2 ≤ . . .

. . .≤ δmon,D ·ϑi1,i2,i3,...,ND
for all i1, i2, . . . , iD−1

(9)

The total number of inequalities in (9) (height of ∆mon) is:

∑
D

d=1

(
(Nd−1)∏

D

d′=1,d′ 6=d
Nd′

)

This type of constraints is easier to understand in the two-

dimensional case. For instance, an ordering corresponding to

a 3×3 grid of RBFs could be:

ϑ1,1 ≤ ϑ1,2 ≤ ϑ1,3

≥ ≥ ≥
ϑ2,1 ≤ ϑ2,2 ≤ ϑ2,3

≥ ≥ ≥
ϑ3,1 ≤ ϑ3,2 ≤ ϑ3,3

(10)

in which case the policy would be decreasing along the first

dimension of X – vertically in (10) – and increasing along the

second dimension – horizontally in (10).



The constraints (9) can be collected in a concise matrix

form:

∆monϑ ≤ 0 (11)

where each row represents a constraint, and 0 is an appropri-

ately sized vector of zeros. For example, the constraints (10)

lead to the following matrix ∆mon:




ϑ1,1 ≤ ϑ1,2 1 0 0 −1 0 0 0 0 0

ϑ1,2 ≤ ϑ1,3 0 0 0 1 0 0 −1 0 0

ϑ2,1 ≤ ϑ2,2 0 1 0 0 −1 0 0 0 0

ϑ2,2 ≤ ϑ2,3 0 0 0 0 1 0 0 −1 0

ϑ3,1 ≤ ϑ3,2 0 0 1 0 0 −1 0 0 0

ϑ3,2 ≤ ϑ3,3 0 0 0 0 0 1 0 0 −1

ϑ1,1 ≥ ϑ2,1 −1 1 0 0 0 0 0 0 0

ϑ2,1 ≥ ϑ3,1 0 −1 1 0 0 0 0 0 0

ϑ1,2 ≥ ϑ2,2 0 0 0 −1 1 0 0 0 0

ϑ2,2 ≥ ϑ3,2 0 0 0 0 −1 1 0 0 0

ϑ1,3 ≥ ϑ2,3 0 0 0 0 0 0 −1 1 0

ϑ2,3 ≥ ϑ3,3 0 0 0 0 0 0 0 −1 1




The constraints along the horizontal axis of (10) are added

to ∆mon first, followed by the constraints along the vertical

axis. The column order of ∆mon depends on the choice of

the bijection between two-dimensional and single-dimensional

parameter indices (see discussion above). In this particular

case, the parameters have been collected column-wise, so that

their single-dimensional order is: (1,1), (2,1), (3,1), (1,2),
(2,2), (3,2), (1,3), (2,3), (3,3). To help with reading the

matrix, the corresponding inequality constraint is added to the

left of each row.

An added benefit of the approximate policy (8) is that it

produces continuous actions. Note, however, that if a discrete-

action Q-function approximator is employed – as is often the

case, and as we also do in Section IV below – the continuous

actions given by the policy must be discretized during learning

into actions belonging to the discrete action set, denoted by

Ud = {u1, . . . ,uM}. (This is because a discrete-action approx-

imator will return an identically zero basis function vector

when presented with an action not on the discretization.) For

instance, one could use nearest-neighbor discretization:

ud = argmin
j=1,...,M

∣∣u−u j

∣∣ (12)

where ud denotes the discretized action (recall the action

was assumed to be scalar; for multiple action variables, a

vector norm should be used instead of the absolute value).

In this case, the policy evaluation step actually estimates the

Q-function of a discretized version of the policy.

C. Online LSPI with monotonic policies

The prior knowledge about policy monotonicity is employed

in online LSPI by replacing the unconstrained policy improve-

ment (line 11 of Algorithm 1) with the constrained least-

squares problem:

ϑτ+1 = argmin
ϑ satisfying (9)

Ns

∑
is=1

(
ϕT(xis)ϑ −uis

)2

where uis = argmax
u

φ T(xis ,u)θτ (13)

Here, {x1, . . . ,xNs
} is an arbitrary set of state samples to

be used for policy improvement. Since the constraints (9)

are linear, the problem (13) can be efficiently solved using

quadratic programming. The parameter vector ϑτ+1 leads to

a monotonic and approximately improved policy ĥτ+1(x) =
ϕT(x)ϑτ+1, which is used instead of the unconstrained policy

to choose actions and in the updates of Γ.

Algorithm 2 summarizes online LSPI with monotonic poli-

cies, a general linear parameterization of the Q-function, and

ε-greedy exploration.

Algorithm 2 Online LSPI with monotonic policies.

Input: Q-function BFs φ1, . . . ,φn, policy BFs ϕ1, . . . ,ϕN ;

monotonicity directions δmon; samples {x1, . . . ,xNs
}; γ;

Kθ ; {εk}
∞
k=0; δ

1: τ ← 0; initialize policy parameter ϑ0

2: Γ← δ In×n; z← 0

3: measure initial state x0

4: for each time step k ≥ 0 do

5: uk←

{
ϕT(xk)ϑτ w.p. 1− εk

a uniform random action in U w.p. εk

6: apply uk, measure next state xk+1 and reward rk+1

7:
Γ←Γ+φ(xk,uk)φ

T(xk,uk)

− γφ(xk,uk)φ
T(xk+1,ϕ

T(xk+1)ϑτ)
8: z← z+φ(xk,uk)rk+1

9: if k = (τ +1)Kθ then

10: find θτ by solving 1
k+1

Γθτ =
1

k+1
z

11: find ϑτ+1 by solving (13)

12: τ ← τ +1

13: end if

14: end for

To generalize this framework to multiple action variables,

a distinct policy parameter vector should be used for every

action variable, and the monotonicity constraints should be

enforced separately, for each of these parameter vectors.

Different monotonicity directions can be imposed for different

action variables.

As an alternative to (13), policy improvement could be

performed with:

ϑτ+1 = argmax
ϑ satisfying (9)

Ns

∑
is=1

Q̂τ(xis ,ϕ
T(xis)ϑ)

= argmax
ϑ satisfying (9)

Ns

∑
is=1

φ T(xis ,ϕ
T(xis)ϑ)θτ

which aims to maximize the approximate Q-values of the

actions chosen by the policy in the state samples. This is a

more direct way of improving the policy, but unfortunately



it is generally a very difficult nonlinear optimization problem.

Since the samples uis are already fixed when ϑτ+1 is computed,

the optimization problem (13) is convex, and thus easier to

solve.

IV. EXPERIMENTAL STUDY

In this section, we investigate the effects of using prior

knowledge in online LSPI. To this end, in a simulation ex-

ample involving the stabilization of a DC motor, we compare

the learning performance of online LSPI with prior knowledge

(Algorithm 2), with the performance of the original online

LSPI (Algorithm 1), which does not use prior knowledge.

A. DC motor problem and some near-optimal solutions

The DC motor is described by the discrete-time dynamics:

f (x,u) = Ax+Bu

A =

[
1 0.0049

0 0.9540

]
, B =

[
0.0021

0.8505

]

where x1 = α ∈ [−π,π] rad is the shaft angle, x2 = α̇ ∈
[−16π,16π] rad/s is the angular velocity, and u ∈ [−10,10]V

is the control input (voltage). The state variables are restricted

to their domains using saturation. The goal is to stabilize the

system around x = 0, and is described by the quadratic reward

function:

ρ(x,u) =−xTQrewx−Rrewu2

Qrew =

[
5 0

0 0.01

]
, Rrew = 0.01

with discount factor γ = 0.98.

Because the dynamics are linear and the reward function is

quadratic, the optimal policy would be a linear state feedback,

of the form h(x) = LTx, if the constraints on the state and

action variables were disregarded. The gain vector L can be

computed from f and ρ , using an extension of linear quadratic

control to the discounted case, as explained, e.g., in, Section

3.2 of [3]. The result is L = [−12.93,−0.69]T, corresponding

to a policy that monotonically decreases along both axes of

the state space. This monotonicity property will be used in the

sequel. Note that only prior knowledge about the signs of the

feedback gains is required to establish the policy monotonicity

directions, and the actual values of these gains are not needed.

Figure 1(a) presents the linear policy corresponding to

L, after additionally restricting the control action to the al-

lowed interval [−10,10], using saturation. For comparison,

Figure 1(b) presents a near-optimal policy, computed by

an interpolation-based approximate value iteration algorithm,

with an accurate approximator. This algorithm takes into

account that the states and the action are constrained to finite

domains. Note that value iteration employs a model, whereas

online LSPI does not. The policy from Figure 1(b) strongly

resembles Figure 1(a), and is monotonic over most of the state

space. The only nonmonotonic regions appear in the top-left

and bottom-right corners of the figure, probably because the

state constraints. We conclude that the class of monotonic

policies to which online LSPI will be restricted does indeed

contain near-optimal solutions.

B. Policy and Q-function approximators, parameter settings,

and performance criterion

To apply online LSPI with monotonicity constraints, the

policy is represented using a grid of RBFs, as described in

Section III-B. The grid contains 9× 9 RBFs, so the policy

has 81 parameters. The RBF width along each dimension is

identical to the distance between two adjacent RBFs along that

dimension. To perform the policy improvements (13), Ns =
1000 uniformly distributed, random state samples are used.

The Q-function approximator relies on the same grid of

state-dependent RBFs as the policy approximator, and on

a discretization of the action space into 3 discrete values:

{−10,0,10}. (Of course, in general the Q-functions BFs can

be chosen independently from the policy BFs.) To obtain the

state-action BFs required for Q-function approximation (4), the

RBFs are replicated for every discrete action, obtaining a total

of 81 ·3 = 243 BFs. When computing approximate Q-values,

all the BFs that do not correspond to the current discrete

action are taken equal to 0, i.e., the vector of Q-function BFs

is φ(x,u) = [I (u = −10) · ϕT(x),I (u = 0) · ϕT(x),I (u =
10) ·ϕT(x)]T, where the indicator function I is 1 when its

argument is true, and 0 otherwise.

Note that, although the parameterized policy produces con-

tinuous actions, the Q-function approximator only works for

the discrete actions considered. Therefore, the continuous

actions produced by the policy must be discretized during

learning, at lines 5 and 7 of Algorithm 2. We employ nearest-

neighbor discretization (12) for this purpose.

The learning experiment has a length of 600 s and is divided

into learning trials having the same length, 1.5 s. The initial

state of each trial is chosen randomly from a uniform distribu-

tion over the state space. The policy is improved once every

Kθ = 100 transitions. An exponentially decaying exploration

schedule is used that starts from an initial probability ε0 = 1,

and decays so that after t = 200 s, ε becomes 0.1. The

parameter δ is set to 0.001. The initial policy parameters,

together with the resulting policy, are identically zero.

The original online LSPI employs the same Q-function ap-

proximator and settings as online LSPI with prior knowledge,

but does not approximate the policy or enforce monotonicity

constraints. Instead, it computes greedy actions on demand, by

maximizing the Q-function (see Section II). The initial policy

chooses the first discrete action (−10) for any state.

After each online LSPI experiment is completed, snapshots

of the policy taken at increasing moments of time are eval-

uated. This produces a curve recording the control perfor-

mance of the policy over time. During performance evaluation,

learning and exploration are turned off. Policies are evaluated

using simulation, by estimating their average return (score)

over the grid of initial states X0 = {−π,−π/2,0,π/2,π}×
{−10π,−5π,−2π,−π,0,π,2π,5π,10π}. The return from

each state on this grid is estimated by simulating only the

first K steps of the controlled trajectory, with K chosen large

enough to guarantee the estimate is within a 0.1 distance of

the true return.



−2 0 2
−50

0

50

α [rad]

α
’ 
[r

a
d

/s
]

h(α,α’) [V]

 

 

−10

−5

0

5

10

(a) Saturated linear state feedback.

−2 0 2
−50

0

50

α [rad]

α
’ 
[r

a
d

/s
]

h(α,α’) [V]

 

 

−10

−5

0

5

10

(b) Near-optimal policy found by approximate value iter-
ation.

Fig. 1. Near-optimal policies for the DC motor.

C. Results and discussion

Figure 2 shows the learning performance of online LSPI

with monotonic policies, in comparison to the performance of

the original online LSPI. Mean values across 20 independent

runs are reported, together with 95% confidence intervals on

these means.

0 100 200 300 400 500 600

−700

−600

−500

−400

−300

−200

 

 

S
c
o

re

t [s]

prior knowledge, mean

95% confidence bounds

no prior knowledge, mean

95% confidence bounds

Fig. 2. Performance comparison between online LSPI with prior knowledge
and the original online LSPI. The horizontal axis shows the time spent
interacting with the system (simulation time).

Using prior knowledge leads to much faster and more reli-

able learning: the score converges in around 50 s of simulation

time, during which 10000 samples are observed. In contrast,

online LSPI without prior knowledge requires more than 300 s

(60000 samples) to reach a near-optimal performance, and has

a larger variation in performance across the 20 runs, which can

be seen in the wider 95% confidence intervals.

The final performance is also better when using monotonic

policies, largely because these policies output continuous

actions. Recall however from Section IV-B that this advantage

cannot be exploited during learning, when the actions must

be discretized to make them compatible with the Q-function

approximator. To better understand the effects of discretizing

actions, Figure 3 shows the performance of the policies com-

puted using online LSPI with prior knowledge and discretized,

in comparison to the original online LSPI. While the final

performance is now the same, the learning speed advantage of

using prior knowledge is evidently maintained.

0 100 200 300 400 500 600

−700

−600

−500

−400

−300

−200

 

 

S
c
o

re

t [s]

prior knowledge + discretized, mean

95% confidence bounds

no prior knowledge, mean

95% confidence bounds

Fig. 3. Performance comparison between online LSPI with prior knowledge
and discretized policies, and the original online LSPI.

Figure 4 compares a representative solution obtained using

prior knowledge with one obtained by the original online

LSPI. The policy of Figure 4(b), obtained without using prior

knowledge, violates monotonicity in several areas. The Q-

function in Figure 4(c), corresponding to the monotonic policy,

is smoother. The control performance of the monotonic policy

– Figure 4(e) – is better than the performance of the policy

found without prior knowledge – Figure 4(f). This difference

appears mainly because the monotonic policy outputs contin-

uous actions.

The mean execution time of online LSPI with prior

knowledge is 1046.5 s, with a 95% confidence interval of

[1024.2,1068.9] s. For the original online LSPI algorithm,

the mean execution time is 87.7 s with a confidence interval

of [81.8,93.6] s. These execution times were recorded while

running the algorithms in MATLAB 7 on a PC with an Intel

Core 2 Duo E6550 2.33 GHz CPU and with 3 GB of RAM.

So, although online LSPI with prior knowledge learns faster

in terms of simulation time (number of transition samples

observed), its execution time is larger. This is mainly because

the constrained policy improvements (13) are more compu-

tationally demanding than the original policy improvements

(3). In particular, solving (13) takes much longer than a



−2 0 2
−50

0

50

α [rad]

α
’ 
[r

a
d

/s
]

h(α,α’) [V]

 

 

−10

−5

0

5

10

(a) Policy found using prior knowledge.

−2 0 2
−50

0

50

α [rad]

α
’ 
[r

a
d

/s
]

h(α,α’) [V]

 

 

−10

−5

0

5

10

(b) Policy found without prior knowledge.

−2
0

2

−50

0

50
−1000

−500

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0
)

(c) Q-function found using prior knowledge. A slice through the
Q-function is shown, taken for u = 0.

−2
0

2

−50

0

50
−1000

−500

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0
)

(d) Q-function found without prior knowledge.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

α
 [
ra

d
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−40

−20

0

α
’ 
[r

a
d
/s

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

u
 [
V

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−40
−20

0

r 
[−

]

t [s]

(e) Trajectory controlled by the policy found using prior knowledge.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

α
 [
ra

d
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−40

−20

0

α
’ 
[r

a
d
/s

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

u
 [
V

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−40
−20

0

r 
[−

]

t [s]

(f) Trajectory controlled by the policy found without prior knowledge.

Fig. 4. Left: Representative solutions found using prior knowledge (with continuous-action, parameterized policies). Right: Representative solutions found
without prior knowledge (with discrete-action, implicitly represented policies).



sampling period (around 0.75 s, whereas Ts = 0.005 s), which

means that the algorithm cannot be directly applied in real-

time. To address this difficulty, besides the obvious solution

of optimizing the implementation (e.g., by switching from

MATLAB to C, which should provide a significant boost in

execution speed), another possibility is to perform the policy

improvements asynchronously, on a different thread than the

one responsible with controlling the system. This thread could

run on another processor. While executing policy improve-

ment, the system should be controlled with the previously

available policy, possibly collecting transition samples for later

use in evaluating the new policy.

V. CONCLUSIONS AND OPEN ISSUES

We have described and empirically studied an approach

to integrate prior knowledge into online least-squares policy

iteration. We have focused on a particular type of prior

knowledge: that a (near-)optimal policy is monotonic in the

state variables. Such policies are appropriate in certain prob-

lems of practical interest, such as (nearly) linear systems, or

nonlinear systems arising from linear dynamics combined with

monotonic input nonlinearities. For an example involving the

stabilization of a DC motor, using this type of prior knowledge

has led to more reliable and faster learning (in terms of time

spent interacting with the system).

The global monotonicity requirement is restrictive in gen-

eral, so an important point of improvement is the combination

of online LSPI with more general types of prior knowledge.

Some immediate improvements are enforcing monotonicity

only with respect to a subset of state variables, or only over

a subregion of the state space, such as in the neighborhood

of an equilibrium. A very general way to express prior

knowledge are inequality and equality constraints of the form

gin(x,h(x)) ≤ 0, geq(x,h(x)) = 0. Unlike the monotonicity

property, such constraints can be exploited without represent-

ing the policy explicitly. Instead, they can be enforced while

computing improved actions on demand with (3).

It would also be useful to empirically investigate the effects

of using continuous-action Q-function approximators in online

LSPI with monotonic policies. This can improve performance

by eliminating the need to discretize the actions during learn-

ing. An efficient way of using continuous actions is described

by [19].

Finally, while here we used the LSPI algorithm as a basis

for our extensions, several other recently developed policy

iteration algorithms based on least-squares methods (see [13]

for a survey) could also benefit from prior knowledge.

REFERENCES

[1] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Athena Scientific, 1996.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

[3] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.
Athena Scientific, 2007, vol. 2.

[4] L. Buşoniu, R. Babuška, B. De Schutter, and D. Ernst, Reinforcement
Learning and Dynamic Programming Using Function Approximators, ser.
Automation and Control Engineering. Taylor & Francis CRC Press,
2010.

[5] J. Boyan, “Technical update: Least-squares temporal difference learn-
ing,” Machine Learning, vol. 49, pp. 233–246, 2002.

[6] A. Nedić and D. P. Bertsekas, “Least-squares policy evaluation algo-
rithms with linear function approximation,” Discrete Event Dynamic
Systems: Theory and Applications, vol. 13, no. 1–2, pp. 79–110, 2003.

[7] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal
of Machine Learning Research, vol. 4, pp. 1107–1149, 2003.

[8] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode rein-
forcement learning,” Journal of Machine Learning Research, vol. 6, pp.
503–556, 2005.

[9] H. Yu and D. P. Bertsekas, “Convergence results for some temporal
difference methods based on least squares,” IEEE Transactions on
Automatic Control, vol. 54, no. 7, pp. 1515–1531, 2009.

[10] C. Thiery and B. Scherrer, “Least-squares λ policy iteration: Bias-
variance trade-off in control problems,” in Proceedings 27th International
Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June
2010, pp. 1071–1078.

[11] D. P. Bertsekas, “Approximate dynamic programming,” 20
November 2010, update of Chapter 6 in volume 2 of the
book Dynamic Programming and Optimal Control. Available at
http://web.mit.edu/dimitrib/www/dpchapter.html.

[12] L. Buşoniu, A. Lazaric, M. Ghavamzadeh, R. Munos, R. Babuška,
and B. De Schutter, “Least-squares methods for policy iteration,” in
Reinforcement Learning: State of the Art, M. Wiering and M. van
Otterlo, Eds. Springer, 2011, submitted.

[13] D. P. Bertsekas, “Approximate policy iteration: A survey and some new
methods,” Journal of Control Theory and Applications, vol. 9, no. 3, pp.
310–335, 2011.

[14] L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška, “Online least-
squares policy iteration for reinforcement learning control,” in Proceed-
ings 2010 American Control Conference (ACC-10), Baltimore, US, 30
June – 2 July 2010, pp. 486–491.

[15] R. S. Sutton, “Learning to predict by the method of temporal differ-
ences,” Machine Learning, vol. 3, pp. 9–44, 1988.

[16] L. Li, M. L. Littman, and C. R. Mansley, “Online exploration in
least-squares policy iteration,” in Proceedings 8th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS-
09), vol. 2, Budapest, Hungary, 10–15 May 2009, pp. 733–739.

[17] T. Jung and D. Polani, “Kernelizing LSPE(λ ),” in Proceedings 2007
IEEE Symposium on Approximate Dynamic Programming and Rein-
forcement Learning (ADPRL-07), Honolulu, US, 1–5 April 2007, pp.
338–345.

[18] L. Buşoniu, B. De Schutter, R. Babuška, and D. Ernst, “Using prior
knowledge to accelerate online least-squares policy iteration,” in 2010
IEEE International Conference on Automation, Quality and Testing,
Robotics (AQTR-10), Cluj-Napoca, Romania, 28–30 May 2010.

[19] J. Pazis and M. Lagoudakis, “Binary action search for learning
continuous-action control policies,” in Proceedings of the 26th Interna-
tional Conference on Machine Learning (ICML-09), Montreal, Canada,
14–18 June 2009, pp. 793–800.


