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Fast Model Predictive Control for Urban Road

Networks via MILP
Shu Lin, Student Member, IEEE, Bart De Schutter, Senior Member, IEEE, Yugeng Xi, Senior Member, IEEE,

and Hans Hellendoorn

Abstract—In this paper, an advanced control strategy, i.e.
Model Predictive Control (MPC), is applied to control and
coordinate urban traffic networks. However, due to the nonlin-
earity of the prediction model, the optimization of MPC is a
nonlinear non-convex optimization problem. In this case, the on-
line computational complexity becomes a big challenge for the
MPC controller, if it is implemented in real-life traffic network.
To overcome this problem, the on-line optimization problem is
reformulated into a Mixed-Integer Linear Programming (MILP)
optimization problem, so as to increase the real-time feasibility of
the MPC control strategy. The new optimization problem can be
solved very efficiently by existing MILP solvers, and the global
optimum of the problem is guaranteed. Moreover, we propose
an approach to reduce the complexity of the MILP optimization
problem even further. The simulation results show that the MILP-
based MPC controllers can reach the same performance, but the
time taken to solve the optimization becomes only a few seconds,
which is a significant reduction compared with the time required
by the original MPC controller.

Index Terms—Urban traffic network control, Model predictive
control, Urban traffic modeling.

I. INTRODUCTION

TRAFFIC control is one of the most efficient and also

effective ways to reduce traffic congestion and to alle-

viate the problems caused by congestion. To reduce traffic

congestion from a network-wide point of view, advanced

traffic control strategies are needed to coordinate traffic control

measures throughout traffic networks.

There are already well-known coordinated traffic-responsive

control strategies for urban traffic networks, SCOOT [1], [2]

and SCATS [3], which are widely used in many cities around

the world [4]. They are both dynamic traffic control strate-

gies based on measured current traffic states in distributed,

multi-level, hierarchical system structures. It has already been

shown that these two systems work effectively in real traffic

world. But, these two systems are more focusing on dynamic

intersection controllers, and local coordinations that consider

only a few neighbor intersections. In the 1980s and 1990s, a

number of model-based optimization control strategies based

on simple traffic models emerged, e.g. OPAC [5], PRODYN

[6], CRONOS [7], RHODES [8], and MOTION [9], which can
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forecast the future traffic behavior of the network based on

models. With these forecasting models, the control strategies

are able to make control decisions to guarantee better perfor-

mance within an area of the traffic network in a near future.

However, the models used in these control approaches are

mainly simple traffic models based on the traffic data measured

by upstream detectors, which to some extent limits the per-

formance for the future. Moreover, the on-line computational

complexity of these strategies is a practical issue that will

be encountered when implemented in urban traffic networks

[4]. Coordinated traffic-responsive control strategies that are

able to avoid parts of the on-line computational complexity,

were also proposed. UTOPIA/SPOT [10] is a hierarchical

system with simple local intersection controllers and a central

controller for an area of urban networks. The central controller

optimizes the control actions for the whole area based on the

model of the network. The local controller makes the decision

only based on local information, but with a penalty term to

guarantee that the local decision is not too far from the central

decision. Therefore, UTOPIA/SPOT avoids part of the on-

line computational burden, but results in suboptimal solutions.

TUC [11], [12] was proposed for controlling an urban traffic

network based on the well-known simple store-and-forward

model. TUC designs a feedback regulator off-line based on

the store-and-forward model, and on-line derives the traffic

signals using a feedback control law by feeding it with the

real-time measured traffic states. Therefore, the TUC strategy

reduces the on-line computational complexity significantly by

moving the time-consuming optimization off-line. However,

when the real traffic conditions change, the feedback control

law needs to be redesigned according to the new current

traffic conditions, which is also computational complex if it

occurs too frequently. Moreover, more urban traffic control

and simulation systems are also proposed recently [13], [14].

In recent years, some macroscopic urban traffic models that

can describe the traffic dynamics of the whole urban traffic

network, have been developed. Subsequently, model-based

optimization control strategies (including Model Predictive

Control (MPC)) [15]–[17] based on these prediction models

have been developed. The framework of model-based predic-

tive control strategies contains three classical steps: prediction,

on-line optimization, and rolling time horizon. Due to this

framework, model-based optimization control methods are

capable of coordinating all the traffic signals of intersections

within the urban traffic networks; they are robust to the

uncertainty, disturbances, and even the model mismatch in

reality; they are able to predict the future and thus avoid

making myopic control decisions. All these advantages make
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the model-based control methods very attractive. However, the

biggest challenge for implementing a model-based optimiza-

tion control strategy is the on-line computational complexity.

The high on-line computational requirement almost makes

them real-time infeasible1 in the real-life implementation.

In order to improve the applicability of these strategies,

some methods can be developed to solve or alleviate the

computational problem: (i) dividing the network into small

subnetworks, and building distributed controllers [18]–[22];

(ii) solving the optimization problem off-line, such as optimiz-

ing a feedback regulator off-line and using it with real-time

measured traffic states to derive control decisions [4], [12]; (iii)

reducing the prediction model to make it more computational

efficient, so as to improve the real-time feasibility of the

optimization; (iv) approximating the optimization problem by

one that can be solved more computationally efficient. In this

paper, we mainly focus on improving the real-time feasibil-

ity of MPC controllers through improving the efficiency of

solving optimization problems.

This paper is organized as follows. In Section II, a macro-

scopic urban traffic model (S model) is described. In Section

III, MPC controllers are designed for urban traffic networks

based on the S model. Then the S model is reformulated in

Section IV, and MILP-MPC controllers are established based

on the reformulated model in Section V. The derived MILP

problem is further reduced in Section VI. Section VII presents

the simulation results, and Section VIII concludes the paper.

II. MACROSCOPIC URBAN TRAFFIC MODEL (S MODEL)

Considering the computational complexity, typically macro-

scopic models, which focus on traffic flows but not on indi-

vidual vehicles, are selected as prediction models for MPC

controllers. Since the on-line feasibility of the MPC controller

is very important, the prediction model needs to provide a

good trade-off between the accuracy and the computational

complexity. A macroscopic simplified urban traffic model (S

model) was proposed in [23] based on previous work [24]–

[26]. It is demonstrated with experiments that this simpli-

fied traffic model reduces the simulation time significantly,

compared with the model in [25], [26], with only a limited

reduction in accuracy. Therefore, we also use this model here.

In the S model [23], we define J as the set of nodes

(intersections), and L as the set of links (roads) in the urban

traffic network. Link (u,d) is marked by its upstream node

u (u∈ J) and downstream node d (d ∈ J). The input and output

links of link (u,d) can be also specified by the upstream and

downstream nodes. The sets of input and output nodes for link

(u,d) are Iu,d ⊂ J and Ou,d ⊂ J.

In order to describe the evolution of the models, we first

define some variables (see also Fig. 1):

1Real-time feasibility means that the on-line optimization problem can be
solved fast enough so that the result is found before the time at which the
controller should generate the next control signal.

Iu,d : set of input nodes of link (u,d),
Ou,d : set of output nodes of link (u,d),
k : simulation step counter,

nu,d(k) (veh) : number of vehicles in link (u,d) at step k,

qu,d(k) (veh) : queue length at step k in link (u,d), qu,d,o(k)
is the queue length of the sub-stream turning

to link o,

α leave
u,d (k) (veh/h): flow rate leaving link (u,d) at step k,

α leave
u,d,o(k) is the leaving flow rate of the sub-

stream towards o,

αarriv
u,d (k) (veh/h) : flow rate arriving at the end of the queue in

link (u,d) at step k, αarriv
u,d,o(k) is the arriving

flow rate of the sub-stream towards o,

αenter
u,d (k) (veh/h) : flow rate entering link (u,d) at step k,

αenter
i,u,d (k) is the flow rate entering link (u,d)

from i,

βu,d,o(k) : relative fraction of the vehicles in link (u,d)
turning to o at step k,

µu,d (veh/h) : saturated flow rate leaving link (u,d),
gu,d,o(k) (s) : green time length during step k for the traffic

stream towards o in link (u,d),
vfree

u,d (km/h) : free-flow vehicle speed in link (u,d),

Cu,d (veh) : capacity of link (u,d) expressed in number

of vehicles,

Nlane
u,d : number of lanes in link (u,d),

∆cu,d (s) : offset between node u and node d, i.e. the

offset time between the cycle times of the

upstream and the downstream intersections

at the beginning of every control time step,

lveh (m) : average vehicle length.

In the S model, every intersection takes the cycle time as

its simulation time interval. The cycle times for intersection

u and d, which are denoted by cu and cd respectively, can be

different from each other. So, in this situation, the simulation

step counters of different intersections are not same. Moreover,

as cycle times are the simulation time intervals, the input and

output flow rates of the link are averaged over the cycle times

in the S model.

Taking the cycle time cd as the length of the simulation time

interval for link (u,d) and kd as the corresponding time step

counter, the number of the vehicles in link (u,d) is updated

as follows:

nu,d(kd +1) = nu,d(kd)+

(

αenter
u,d (kd)− ∑

o∈Ou,d

α leave
u,d,o(kd)

)

·cd .

(1)

The leaving average flow rate over cd is determined by

α leave
u,d,o(kd) = min

(

βu,d,o(kd) ·µu,d ·gu,d,o(kd)/cd ,

qu,d,o(kd)/cd +αarriv
u,d,o(kd),

βu,d,o(kd)

∑
u∈Id,o

βu,d,o(kd)
·
Cd,o −nd,o(kd)

cd

)

. (2)

The number of vehicles waiting in the queue turning to link
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Fig. 1. A link connecting two traffic-signal-controlled intersections

o is updated as

qu,d,o(kd +1) = qu,d,o(kd)+
(

αarriv
u,d,o(kd)−α leave

u,d,o(kd)
)

· cd .

(3)

The flow rate of vehicles that entered link (u,d) is given by

αarriv
u,d (kd) =

cd − γ(kd)

cd

·αenter
u,d (kd − τ(kd))+

γ(kd)

cd

·αenter
u,d (kd − τ(kd)−1) , (4)

τ(kd) = floor

{(
Cu,d −qu,d(kd)

)
· lveh

Nlane
u,d · vfree

u,d · cd

}

,

γ(kd) = rem

{(
Cu,d −qu,d(kd)

)
· lveh

Nlane
u,d · vfree

u,d · cd

}

. (5)

with floor{x} referring to the largest integer smaller than or

equal to x, and rem{x} is the remainder.

Before reaching the tail of the waiting queues in link (u,d),
the flow rate of arriving vehicles will be divided according to

the turning rates:

αarriv
u,d,o(kd) = βu,d,o(kd) ·α

arriv
u,d (kd). (6)

As the simulation time intervals for the upstream and the

downstream intersections are different from each other, the

flow rates leaving from the upstream links and the flow rates

entering the downstream links have to be synchronized as

follows (see [27] for details).

As Fig. 2 illustrates, first, we define continuous-time flow

rates leaving upstream links as

α leave,cont
i,u,d (t) = α leave

i,u,d (ku), ku · cu ≤ t < (ku +1) · cu, (7)

and then we discrete them for downstream links as

αenter
i,u,d (kd) =

1

cd

∫ (kd+1)·cd+∆cu,d

kd ·cd+∆cu,d

α leave,cont
i,u,d (t)dt . (8)

III. MODEL-BASED URBAN TRAFFIC NETWORK CONTROL

Model Predictive Control (MPC) [28] is a methodology that

repeatedly solves optimization problems on-line in a rolling

horizon way to derive a sequence of control decisions.

A common control time interval Tctrl is defined as Tctrl =
N ·Tlcm, , where N is an integer, so that intersections can com-

municate with each other and be synchronous. For any given

j

cu

cd

Nu = 2

Nd = 3

u

d

0 t

∆cu,d

Tlcm

Tlcm

(a) Relationship between cycle times and control time
interval

α leave
i,u,d (ku)

αenter
i,u,d (kd)

Nukctrl

Ndkctrl

ku

kd

1 2

0 1 2 3

(b) Illustration for synchronizing flow rates

Fig. 2. Synchronization of upstream and downstream intersections

model simulation time step counter kd of intersection d ∈ J, the

corresponding value of kctrl is given by kctrl(kd)= floor
{

kdcd
Tctrl

}

,

where floor{x} is the largest integer smaller than or equal to

x.

The MPC approach can be described by the following three

steps:

1) Prediction model. The S model presented in Section

II above can be used as prediction model for the MPC

controller. It can be generally described, for all kdcd ∈
[kctrlTctrl,(kctrl +1)Tctrl] and (u,d) ∈ L, as

nu,d(kd +1) = f
(
nu,d(kd),g(kctrl),d(kd)

)
(9)

where nu,d(kd) is the number of vehicles in link (u,d)
at simulation time step kd ; d(kd) is the predicted dis-

turbance (the traffic demand), which is the input traffic
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flow rate for the network in the future; g(kctrl) is the

future control input.

2) Optimization problem. Given the control interval Tctrl

and the prediction horizon Np, the optimization problem

of MPC with Total Time Spent (TTS) as objective

function can be expressed as

min
g(kctrl)

J =
NNd(kctrl+Np)

∑
kd=NNdkctrl+1

∑
(u,d)∈L

cd ·nu,d(kd)

s.t. Prediction model (10)

Φ(g(kctrl)) = 0 (cycle time constraints)

gmin ≤ g(kctrl)≤ gmax

where g(kctrl) represents the future control input se-

quence for control step kctrl (e.g. the green time splits),

i.e.

g(kctrl) = [gT(kctrl|kctrl) gT(kctrl +1|kctrl) · · ·

gT(kctrl +Np −1|kctrl)]
T ,

and the vector g(kctrl + j|kctrl) denotes the control input

at the jth control step in the future from the current

control time step kctrl. To decrease the on-line compu-

tational complexity, a control horizon Nc (Nc < Np) can

be defined, such that

g(kctrl + j|kctrl) =g(kctrl +Nc −1|kctrl)

for j = Nc, · · · ,Np −1.

3) Rolling horizon. Once the optimal control input g∗(kctrl)
is derived from the optimization, the first sample of the

optimal result, g∗(kctrl | kctrl), is transferred to the process

and implemented. When arriving to the next control

step kctrl + 1, the prediction model is fed with the real

measured traffic states, the whole prediction horizon is

shifted one step forward, and the optimization starts over

again. This rolling horizon scheme closes the control

loop, enables the system to get feedback from the real

traffic network, and makes the MPC controller robust to

uncertainty and disturbances.

Due to the nonlinear nature of the prediction model, the

optimization problem of the MPC controller in (10) is a

nonlinear non-convex optimization problem. Consequently, the

MPC controller will become real-time infeasible when the

scale of the controlled traffic network grows. Therefore, we

will now reformulate this nonlinear non-convex optimization

problem into an optimization problem that can be solved more

efficiently.

IV. REFORMULATION OF THE URBAN TRAFFIC MODEL

The nonlinear non-convex optimization problem (10) can be

reformulated into a mixed-integer linear optimization problem

[29], which can be solved efficiently by existing MILP (Mixed-

Integer Linear Programming) solvers [30]–[32]. The MILP

solver is more efficient than the SQP solver for this particular

optimization problem, and can find the global optimum rather

than a local optimum.

A. Rules for Transformation

According to [33], consider the statement f (x) ≤ 0, where

f : Rn → R. Assume that x ∈ X , where X ⊂ R
n is a given

bounded set, and define2

M = max
x∈X

f (x), m = min
x∈X

f (x) . (11)

Then, by introducing in δ ∈ {0,1}, the following equiva-

lence holds

(
[ f (x)≤ 0]⇔ [δ = 1]

)
iff

{

f (x)≤ M(1−δ )

f (x)≥ ε +(m− ε)δ
(12)

where ε is a small tolerance, typically the machine precision.

Moreover, δ f (x) can be replaced by the auxiliary real

variable z = δ f (x) which satisfies [δ = 0] ⇒ [z = 0], [δ =
1]⇒ [z = f (x)]. Then z = δ f (x) is equivalent to







z ≤ Mδ

z ≥ mδ

z ≤ f (x)−m(1−δ )

z ≥ f (x)−M(1−δ )

(13)

B. Model Reformulation into Mixed-integer Linear Model

We now show how the model (2) can be reformulated

as mixed-integer linear equations and inequalities using the

equivalent reformulation rules above. Let

a = βu,d,o(kd) ·µu,d ·gu,d,o(kd)/cd

b =
(
qu,d,o(kd)/cd

)
+αarriv

u,d,o(kd) (14)

c = βu,d,o(kd)
(
Cd,o −nd,o(kd)

)
/cd

d = min(a,b),

then (2) becomes

α leave
u,d,o(kd) = min(a,b,c) = min(d,c) . (15)

Let

f1 = b−a, (16)

and define

δ1 =

{

1 if f1 ≤ 0

0 if f1 > 0
(17)

then we have

d = a+(b−a) ·δ1 = a+ f1 ·δ1 . (18)

Similarly, let

f2 = c−d, (19)

and define

δ2 =

{

1 if f2 ≤ 0

0 if f2 > 0
(20)

then we have

min(d,c) = d +(c−d) ·δ2 = d + f2 ·δ2 . (21)

Let

z1 = f1 ·δ1 (22)

2In general, we could also take an upper or a lower bound instead of the
maximum or the minimum.
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z2 = f2 ·δ2 (23)

and substitute (18) into (21), then (15) becomes linear, as

α leave
u,d,o(kd) = a+ z1 + z2 . (24)

According to the equivalent transformation rules, (17) and

(22) are equivalent to inequality constraints

f1 ≤ M1(1−δ1)

f1 ≥ ε +(m1 − ε)δ1

z1 ≤ M1δ1 (25)

z1 ≥ m1δ1

z1 ≤ f1 −m1(1−δ1)

z1 ≥ f1 −M1(1−δ1) .

Similarly, (20) and (23) are equivalent to inequality constraints

f2 ≤ M2(1−δ2)

f2 ≥ ε +(m2 − ε)δ2

z2 ≤ M2δ2 (26)

z2 ≥ m2δ2

z2 ≤ f2 −m2(1−δ2)

z2 ≥ f2 −M2(1−δ2) .

Here, M1 and m1 are the maximum value and the minimum

value of f1, and M2 and m2 are the maximum value and the

minimum value of f2, where M1 =Cu,d/cd , m1 =−µu,d , M2 =
Cd,o/cd , and m2 =−min(µu,d ,Cu,d/cd).

Therefore, by introducing the additional auxiliary binary

variables δ1 and δ2, and the auxiliary real variables f1, f2,

z1, and z2, the original formula (2) in the urban traffic model

is equivalently reformulated as linear equations (16), (19), and

(24), and mixed-integer linear inequalities (25)-(26).

C. Reformulation of the Model Synchronization

Consider (8) for fixed i,u,d, and kd . We will now show that

this result in

αenter
i,u,d (kd) = Fin

(
α leave

i,u,d (ku), · · · ,α
leave
i,u,d (ku + ℓ)

)
, (27)

with ℓ an integer, and Fin a linear function.

In (8), α leave,const
i,u,d (t) is a piecewise continuous func-

tion with intervals ξku
, · · · ,ξku+ℓ and function values

α leave
i,u,d (ku), · · · ,α

leave
i,u,d (ku+ℓ). Hence, we have linear expression

αenter
i,u,d (kd) =

1

cd

ℓ

∑
j=0

ξku+ jα
leave
i,u,d (ku + j), (28)

where ξx depends on cd , cu, and ∆cu,d . Once these variables

are fixed, ξx is fixed.

The linear function Fin can be derived by the following

approach. Given (8), we define

k+u = floor

{
(kd +1) · cd +∆cu,d

cu

}

,

θ+
u = rem

{
(kd +1) · cd +∆cu,d

cu

}

,

k−u = floor

{
kd · cd +∆cu,d

cu

}

,

θ−
u = rem

{
kd · cd +∆cu,d

cu

}

. (29)

where k+u ≥ k−u and 0≤ θ+ < cu, 0≤ θ− < cu. Then, we obtain

αenter
i,u,d (kd) =

1

cd

∫ k+u cu+θ+
u

k−u cu+θ−
u

α leave,cont
i,u,d (t)dt

=
1

cd

[
∫ (k−u +1)cu

k−u cu+θ−
u

α leave
i,u,d (k−u )dt

+
k+u −k−u −1

∑
i=1

∫ ((k−u +i+1)cu

(k−u +i)cu

α leave
i,u,d (k−u + i)dt

+
∫ k+u cu+θ+

u

k+u cu

α leave
i,u,d (k+u )dt

]

=
1

cd

[

(cu −θ−
u )α leave

i,u,d (k−u )+

cu

k+u −k−u −1

∑
i=1

α leave
i,u,d (k−u + i)+θ+

u α leave
i,u,d (k+u )

]

.

Then, the synchronization function (8) can be rewritten into

a linear equation of the form (27). Due to the definition of the

control time interval, the synchronization formula will be the

same in each control time interval. Taking the case in Fig. 2(b)

for example, the synchronization functions within one control

time interval are

αenter
i,u,d (kd) = α leave

i,u,d (ku) , (30)

αenter
i,u,d (kd +1) =

1

cd

[

(cu −∆cu,d − cd)α
leave
i,u,d (ku)

+(∆cu,d +2cd − cu)α
leave
i,u,d (ku +1)

]

, (31)

αenter
i,u,d (kd +2) =

1

cd

[

(2cu −∆cu,d −2cd)α
leave
i,u,d (ku +1)

+∆cu,dα leave
i,u,d (ku +2)

]

, (32)

where kd = Ndkctrl and ku = Nckctrl. Therefore, the linear

synchronization relationship can be pre-specified explicitly ac-

cording to the given cycle times cd and cu of the corresponding

intersections.

When the flow rate leaving link (u,d) is computed in

the S model, the number of vehicles in downstream links

nd,o(ko) is used to calculate the number of vehicles that the

downstream links can accept at most. The simulation time step

counter of intersection o is ko. If ko is different from kd , an

output synchronization function is needed for synchronizing

the original number of vehicles in the downstream link of link

(u,d), n
origin
d,o (ko), from time step ko to kd , as

nd,o(kd) = Fout

(
n

origin
d,o (ko), · · · ,n

origin
d,o (ko + ℓ)

)
, (33)

which is also a linear expression that can be derived using

the same rules as deriving the input synchronization function

above.

D. Link Time Delay Assumption

Assumption 1: We assume that the time delay of the vehi-

cles traveling from the beginning of the link to the end of the

queues in the link is constant.
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Then, having Assumption 1, (4) becomes linear as

αarriv
u,d (kd) =(1− γconst) ·α

enter
u,d (kd − τconst)+

γconst ·α
enter
u,d (kd − τconst −1) , (34)

where τconst and γconst are constant values obtained by (5) with

the queue length fixed. This queue length can be pre-calibrated

for different traffic scenarios and environments according to

the historical data, and stored in a data base.

With the reformulations above, the S model is reformulated

into a mixed-integer linear model. Thereafter, an MILP method

can be used to solve the optimization problem of the MPC

controller based on the mixed-integer linear prediction model.

V. MILP-BASED MPC CONTROLLER

For intersection d, the control time interval and the sim-

ulation time interval satisfy Tctrl = NNdcd . Then, for a given

control time step kctrl, the corresponding simulation time steps

are kd = NNdkctrl,NNdkctrl +1, · · · ,NNd(kctrl +1)−1.

After the model reformulation, the optimization problem of

the MPC controller can be expressed as an MILP problem of

the following form:

min
u(kctrl)

JTTS = cT ·u(kctrl)

s.t. Au(kctrl)≤ b (35)

Aequ(kctrl) = beq

umin ≤ u(kctrl)≤ umax

for appropriately defined matrices A, Aeq, and vectors c, b,

beq, umin and umax, where u(kctrl) contains all the optimization

variables including the control inputs, the states, and the

auxiliary variables for control time steps kctrl, · · · ,kctrl+Np−1;

all the inequality constraints and equality constraints are linear,

and derived from the previous steps.

The vector of optimized variables at control time step kctrl

in optimization problem (35) is

u(kctrl) =[uT(kctrl|kctrl) uT(kctrl +1|kctrl) · · ·

uT(kctrl +Np −1|kctrl)]
T , (36)

where u(kctrl + j|kctrl) at any control time step consists of

control variables (i.e. green time splits), state variables, and

auxiliary variables for all the nodes and links in the traffic

network as:

u(·) = [

Control variables
︷︸︸︷

gT(·)

State variables
︷ ︸︸ ︷

qT(·) nT(·) nT
downLink(·) αT

leave(·) αT
arriv(·) αT

enter(·)

Auxiliary variables
︷ ︸︸ ︷

δ T
1 (·) δ T

2 (·) f T
1 (·) f T

2 (·) zT
1 (·) zT

2 (·)]
T . (37)

where (·) stands for (kctrl + j|kctrl), nT
downLink(kctrl) represents

the vector of the state variables giving the number of vehicles

in the downstream links. All the optimized variables are real

values except for the binary variables δ1(kctrl) and δ2(kctrl).
Supplied with initial traffic states and traffic demands of the

network, the optimization problem can be solved at each

control time step kctrl by the MILP solver. The optimal control

inputs for the first control time step will be applied to the traffic

network. Rolling one step ahead, a new MILP optimization

problem will be built and solved, etc.

Several efficient branch-and-bound algorithms [30] are

available for MILP problems. Moreover, there already exist

several commercial and free solvers for MILP problems such

as, e.g., CPLEX, Xpress-MP, GLPK, or lp solve (see [31],

[32] for an overview).

VI. S∗ MODEL-BASED MPC CONTROLLER VIA MILP

A. S∗ Model

For the S model described in Section II, the formula (2)

computing the average flow rate leaving link (u,d) is the

minimum of three terms. Each term gives the possible leaving

flow rate under a traffic scenario. Under the saturated scenario,

the average leaving flow rate depends on the saturated flow rate

and the green time of the link; under the unsaturated scenario,

the average flow rate is calculated according to the waiting and

arriving flow rate at the intersection; under the over-saturated

scenario, the average flow rate depends on the flow rate that

the downstream link can accept. The traffic is always in the

scenario that has the minimal average flow rate that could

possible leave the link. As an urban traffic model, the S model

is capable of describing all the situations that may happen in

reality. However, when the S model is taken as a control model

of the MPC controller, the third part of (2) can be removed

from the S model to leave the over-saturated scenario out

by adding extra constraints. Therefore, the S model can be

rewritten into S∗ model by rephrasing (2) by

α leave
u,d,o(kd) = min

(

βu,d,o(kd) ·µu,d ·gu,d,o(kd)/cd ,

qu,d,o(kd)/cd +αarriv
u,d,o(kd)

)

,

(38)

and adding upper bound constraint 0≤ nu,d(kd)≤Cu,d to traffic

state nu,d(kd) (number of vehicles in a link) to make sure that

the number of vehicles inside a link will not exceed its storage

capacity Cu,d , i.e. no more vehicles can enter the link when it

is already totally congested.

B. S∗ Model-based MPC Controller

An MPC controller can be established based on the S∗

model using the same method as shown in Section V. A similar

MILP optimization problem as (35) can be built through

reformulating the S∗ model into a mixed-integer linear model.

But, for the new MILP optimization problem, the number

of the auxiliary variables is reduced by half because of the

reduction of the S∗ model. Although the S∗ model does

not take the over-saturated scenario into consideration, it can

still be guaranteed due to the constraints added. Instead of

constraining the average traffic flow rates leaving links, the

maximum number of vehicles that the downstream link can

accept is then constrained by the upper bound. The traffic

state n(k), which is the number of vehicles in a link, is

already an optimization variable of the MILP optimization

problem. Hence, no extra effort is needed to add constraints

to the traffic states n(k) of all the links within the network
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A B

C D

Fig. 3. The layout of an urban road network

at every simulation time step k. In fact, the key idea of

this approach lies in simplifying the optimization problem by

reducing one equation in the prediction model (the S model),

and adding upper bounds to the optimized state variables n(k)
instead. As a result, the main complexity of the S∗ model-

based optimization problem (the number of auxiliary integer

variables introduced) is reduced by half. Meanwhile, even

though the S∗ model-based MILP problem differs from the

S model-based MILP problem, in most of the situations, the

S∗ model-based MILP can keep a good control performance

value compared with the S model-based MILP.

VII. SIMULATIONS

CORSIM is a microscopic traffic simulation software de-

veloped by FHWA [34], which can be used as a benchmark

to design or test traffic control algorithms. We use CORSIM

to simulate the real traffic environment, and design MPC

controllers to decide control inputs for the traffic signals in

CORSIM. The on-line optimization of the MPC controller

is reformulated into different optimization problems, which

are solved using different optimization methods, and then the

control performance (TTS) of the MPC controllers are com-

pared. Multi-start Sequential Quadratic Programming (SQP)

is applied to solve the original S model-based nonlinear non-

convex optimization problem. An MILP solver is used to

solve the S model-based or S∗ model-based MILP problems

obtained after reformulation according to Section IV.

As MILP solver, we use CPLEX, implemented through

the cplex interface function of the Matlab Tomlab toolbox.

For the SQP solver, we apply fmincon provided by the

optimization toolbox of Matlab.

The urban traffic network investigated is a grid network

including 4 intersections (see Fig. 3). The cycle times are 120 s

for intersection A and D, and 60 s for intersection B and C.

The cycle times are constant, and off-sets are 0 during the

simulation (they can be further optimized in a higher control

level). The control time interval is set to the least common

multiple of all the cycle times in the network, i.e. Tctrl is 120 s.

The prediction horizon is 10 control intervals. The control

simulations run for the same time period of 3600s for all
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Fig. 4. TTS comparison of the approaches, SQP, S MILP, and S∗ MILP, for
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Fig. 5. TTS comparison of the approaches, SQP, S MILP, and S∗ MILP, for
2000 veh/h

the experiments. The length of the links are 1220 m, all the

links have 3 lanes. The average vehicle length is 5 m, and

the free-flow speed on the link is 50 km/h. Therefore, the

storage capacity of each link in the network is 740 veh, and

the constant time delay is set to be 87.8 s. The input traffic

flow rates to the network are constant. The simulations are

carried out under 3 scenarios, according to different values

of the input traffic flow rates supplied to the network (input

traffic demands), i.e. 500 veh/h, 2000 veh/h, and 3000 veh/h.

The simulation results are compared for these different traffic

scenarios. The cost function is TTS for the entire simulation.

The number of initial points for the SQP algorithm is 5.

MPC controllers are built for the urban traffic network based

on different optimization algorithms. The MILP approaches

for the reformulated S model and the reformulated S∗ model

are called respectively “S MILP” and “S∗ MILP” here. The

control performance (TTS) of the controllers at every control

step is extracted from CORSIM, and compared in Fig. 4 to

Fig. 6 for all the Scenarios. In general, both S MILP and

S∗ MILP have either better performance (lower TTS) than,

or equal performance to the nonlinear optimization algorithm,

SQP. The reason is that the optimization problem at hand is a

nonlinear non-convex problem because of the nonlinearity of

the S model, so that it may have multiple local optima. The

SQP algorithm is only able to search for the local optimum,

which in general results in a sub-optimal solution. A multi-

start method can be applied to help select a better sub-optimal
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Fig. 6. TTS comparison of the approaches, SQP, S MILP, and S∗ MILP, for
3000 veh/h

solution. However, the multi-start procedure also results in

more CPU time. On the contrary, an MILP problem can be

solved efficiently by existing solvers that guarantee the global

optimum.

We can see from Fig. 4 that the SQP algorithm has better

performance (lower TTS) than S MILP, when the traffic flow

demands are low. This is mainly caused by Assumption 1 made

during the model reformulation. Recall that in order to turn

the optimization problem into an MILP problem, Assumption

1 is made to linearize the original model. In the assumption,

the time delay for vehicles running from the beginning of the

link to the end of the queues in the link is considered to be

constant. In the situation with high traffic demands, the number

of leaving vehicles depends on the saturated flow rate of the

link. In that case, the assumption almost does not have any

influence on the results of MILP. However, in the situation

with low traffic demands, the number of leaving vehicles from

the link depends mainly on the number of waiting vehicles

in the queues, which will be affected by the vehicles arriving

from upstream after a certain time delay in the link. Therefore,

the assumption causes a mismatch of the reformulated MILP

problem from the original optimization problem. As a result,

the MILP algorithm fails to achieve better results than the

SQP algorithm, when the network is less crowded (low traffic

demands). The reduced S∗ MILP is able to keep similar control

performance as S MILP, in some situation even better.

When the traffic flow demands are high, and the traffic

network is more crowded (saturated), the MILP approaches

achieve better performance than the SQP approach, as Fig. 5

to Fig. 6 shows. The influence of Assumption 1, as in low

demand scenarios, almost disappears. But, due to the high

traffic demands and traffic density, there is also less space

for the MILP approaches to improve the control performance,

and hence, the TTS curves stay very close (see Fig. 6).

Furthermore, the output flow rates of the vehicles leaving

the network from the north link of intersection A are also

compared for the five scenarios. Fig. 7 to Fig. 9 illustrate

the flow rates changing for each control time step during the

whole simulations, when the input traffic flow rates supplied

to the network are 500 veh/h, 2000 veh/h, and 3000 veh/h

respectively. The average values of the output flow rates of the

figures are also provided in Table I for the three algorithms,

SQP, S MILP, and S∗ MILP, which illustrates that the S MILP

approach obtains higher output average flow rates than the

SQP approach when the input traffic flows are 2000 veh/h,

but the other way round in the other scenarios. However, the

figures demonstrate that curves of the network output flow

rates are similar to each other for the three algorithms.

TABLE I
AVERAGE NETWORK OUTPUT FLOW RATES FOR DIFFERENT

OPTIMIZATION ALGORITHMS IN ALL SCENARIOS (VEH/H)

Scenario SQP S MILP S∗ MILP

500 veh/h 486 486 486

2000 veh/h 1031 1055 999

3000 veh/h 1079 945 986

0 5 10 15 20 25 30
0

200

400

600

800

Control step k
c

O
u

tp
u

t 
fl
o

w
 r

a
te

 (
v
e

h
/h

)

SQP

S MILP

S* MILP

Fig. 7. Output flow rate comparison of the approaches for 500 veh/h
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Fig. 8. Output flow rate comparison of the approaches for 2000 veh/h

In Table II, the computation time and the number of

optimization variables are compared for different optimization

algorithms, where “tavrg” is the average optimization CPU

time over all the control steps, and “tmax” is the maximum

optimization CPU time. The SQP approach does not have

boolean optimization variables. S∗ MILP has less optimization

variables than S MILP, where the number of auxiliary variables

is reduced by half because of the model adaptation. In general,

the MILP problem with less boolean variables will be solved

faster than the one with more boolean variables, due to the

branch-and-search procedure of MILP solvers. But, this is

not always true for the simulation results of S MILP and

S∗ MILP. Nevertheless, S MILP and S∗ MILP problems

can be both solved very fast by MILP solvers. The CPU
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Fig. 9. Output flow rate comparison of the three approaches for 3000 veh/h

TABLE II
COMPARISON OF COMPUTATION TIMES AND THE NUMBER OF

OPTIMIZATION VARIABLES FOR DIFFERENT OPTIMIZATION ALGORITHMS

IN ALL SCENARIOS

Scenario Algorithm
CPU time (s) # variables
tavrg tmax Real Boolean

500 veh/h
SQP 461.4 601.7 120 -

S MILP 0.8 2.9 6880 1440
S∗ MILP 1.1 1.2 4480 720

2000 veh/h
SQP 453.4 552.5 120 -

S MILP 1.2 2.3 6880 1440
S∗ MILP 1.6 2.5 4480 720

3000 veh/h
SQP 452.4 526.4 120 -

S MILP 1.1 2.6 6880 1440
S∗ MILP 1.1 1.5 4480 720

times are reduced significantly from hundreds of seconds to

a few seconds compared with the SQP solver. Therefore, by

reformulating the original nonlinear non-convex optimization

problem into an MILP problem, the MPC controller for urban

traffic network becomes much more time efficient on-line. As

a result, MILP methods are effective optimization approaches

that can significantly reduce the on-line computational burden,

and improve the real-life applicability of the MPC controllers

for urban traffic networks.

As Table II shows, when the network demands are either

very low or very high, the CPU time of the MILP algorithms

is slightly lower than that for other network demands. The

reason for this phenomenon lies on the principle of the MILP

algorithm: The MILP algorithm uses a branch-and-search

method to search for the optimal combination of all the integer

variables, and a real-valued linear programming problem will

be solved during each step of the search. When the network

demands are very low or very high, the traffic will be in

an unsaturated scenario or an over-saturated scenario. In an

unsaturated scenario, the traffic flow rate for leaving a link

will always depend on the vehicles waiting at the stop-line and

arriving in the link. In an over-saturated scenario, the traffic

flow rate for leaving a link will only depend on the available

space in the downstream links. In both situations, most of the

optimal integer variables of all the links in the network are

already fixed, and need comparatively less time to find. But,

if the network demands are neither very low nor very high,

then all the three possible situations, as in (2), may happen

randomly, thus more time will be needed to search for the

optimal combination of the integer variables.

Although the MILP algorithms are very time efficient in

the case study, in general, MILP problems are still NP-hard

[35]. For larger urban traffic networks, if the size of the MILP

problem becomes too large to be solved, other control struc-

tures can be adopted to avoid this problem. More specifically,

a large-scale urban traffic network can be divided into several

small subnetworks, which will be controlled and coordinated

under a hierarchical control structure or a distributed control

structure [18]–[22].

VIII. CONCLUSION

Model Predictive Control provides many advantages for

controlling urban traffic networks. But it also has a high

requirement for the computational efficiency of the on-line

optimization. Due to the nonlinear non-convex nature of the

optimization problem, the on-line computational complexity is

a big challenge for the MPC controller. To solve this problem,

in this paper, the nonlinear S model was reformulated into

a mixed-integer linear model, which can be expressed by

linear equalities and inequalities, through introducing auxiliary

integer variables. The S model and the reduced S∗ model are

both reformulated according to this method, and the original

nonlinear non-convex optimization problem is written in the

form of MILP problems based on the reformulated S model

and S∗ model respectively. An efficient MILP solver can

then be applied to solve the reformulated MILP optimization

problems of MPC.

The simulation experiments show that the MILP approach

is a breakthrough method to reduce the on-line computational

complexity of the S model-based MPC controller, and also to

increase the applicability of the MPC controller in real-life

traffic networks.

In the future, multi-level control structures and algorithms

will be further investigated for coordinating a large-scale urban

traffic network from a higher level, taking this fast MILP-based

MPC controller as the local subnetwork controller.
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